
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2009, Article ID 239209, 18 pages
doi:10.1155/2009/239209

Research Article
Multiple Positive Periodic Solutions for
Delay Differential System

Zhao-Cai Hao,1, 2 Ti-Jun Xiao,2, 3 and Jin Liang2, 4

1 Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China
2 Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
3 School of Mathematical Sciences, Fudan University, Shanghai 200433, China
4 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Correspondence should be addressed to Zhao-Cai Hao, zchjal@163.com

Received 11 September 2009; Accepted 6 December 2009

Recommended by Binggen Zhang

We obtain some existence results for multiple positive periodic solutions of some delay differential
systems. Examples are presented as applications. For a general positive integerm ≥ 2, main results
of this paper do not appear in former literatures as we know. Comparing with the existing results,
our results are new also whenm = 1.

Copyright q 2009 Zhao-Cai Hao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

It is known that multiple delay Logistic equations

y′(t) = −a(t)y(t) + f
(
t, y(t − τ0(t)), y(t − τ1(t)), . . . , y(t − τn(t))

)
,

y′(t) = a(t)y(t) − f
(
t, y(t − τ0(t)), y(t − τ1(t)), . . . , y(t − τn(t))

)
,

(1.1)

are generalizations of many biological models, such as Logistic models of Single-species
growth (see [1–3]),

y′(t) = a(t)y(t)
[
1 − y(t − τ(t))

K(t)

]
,

y′(t) = y(t)

[

a(t) −
n∑

i=1

bi(t)y(t − τi(t))

]

,

y′(t) = a(t)y(t)

[

1 −
n∏

i=1

y(t − τi(t))
K(t)

]

,

(1.2)
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and red blood cell models (see [4–7]),

y′(t) = −a(t)y(t) + b(t)e−y(t−τ(t)),

y′(t) = −a(t)y(t) + b(t)
1 + yn(t − τ(t))

.
(1.3)

For biological models, positive periodic solutions are often important and many results have
been achieved in this direction, for instance, [8–10].

To the best of our knowledge, few papers concerning the existence of multiple positive
solutions of (1.1) can be found in literature. Furthermore, no papers have yet deal with the
more general nonautonomous delay differential systems

y′
1(t) = −a1(t)y1(t) + f1(t, Y1(t), Y2(t), . . . , Ym(t)),

y′
2(t) = −a2(t)y2(t) + f2(t, Y1(t), Y2(t), . . . , Ym(t)),

...

y′
m(t) = −am(t)ym(t) + fm(t, Y1(t), Y2(t), . . . , Ym(t)),

(1.4)

y′
1(t) = a1(t)y1(t) − f1(t, Y1(t), Y2(t), . . . , Yn(t)),

y′
2(t) = a2(t)y2(t) − f2(t, Y1(t), Y2(t), . . . , Yn(t)),

...

y′
n(t) = an(t)yn(t) − fm(t, Y1(t), Y2(t), . . . , Yn(t)),

(1.5)

where m,n are all positive integer and

ai(·), i ∈ Λ1 := {1, 2, . . . , m},
fi(·, . . . , ·), i ∈ Λ1,

τj(·), j ∈ Λ2 := {1, 2, . . . , n}
(1.6)

are given functions and signs Yi, i ∈ Λ1 are given as follows:

Yi(t) :=
(
yi(t − τ1(t)), yi(t − τ2(t)), . . . , yi(t − τn(t))

)
, t ∈ R, i ∈ Λ1. (1.7)

The extension to systems is a natural one; for example, many occurrences in nature involve
two or more populations coexisting in an environment, with the model being best described
by a system of differential equations (see [11]).

The aim of this paper is to investigate systems (1.4) and (1.5). In what follows we
only discuss the existence of positive periodic solutions of system (1.4); similar results can be
obtained for system (1.5). By using multiple fixed-point theorems (see Lemmas 2.1 and 2.2),
which are different from those used in [8–10], we obtain the existence of multiple positive
periodic solutions of system (1.4) (see Theorems 3.1, 4.1, and 4.3). Some examples are given



Discrete Dynamics in Nature and Society 3

also to illustrate our main theorems. Main results of this paper are new also even ifm = 1 (see
Remark 4.5).

This paper is organized as follows. In Section 2, we make some preliminaries. In
Section 3, we derive existence result (see Theorem 3.1) for two positive periodic solutions of
system (1.4). Example 3.2 is given below Theorem 3.1. The existence of three positive periodic
solutions of system (1.4) is presented in Section 4 (see Theorems 4.1 and 4.3). Applications of
Theorems 4.1 and 4.3 may be seen from Examples 4.2 and 4.4.

2. Preliminaries

We make the basic assumption throughout this paper that

T > 0 is a fixed constant;

ai ∈ C(R, [0,∞)), a(t)/≡ 0, ai(t) = ai(t + T), t ∈ R, i ∈ Λ1;

fi ∈ C
(
R × [0,∞)m×n, [0,∞)

)
, i ∈ Λ1;

fi is T -periodic function in relative to t, i ∈ Λ1;

τj ∈ C(R, [0,∞)), τj(t + T) = τj(t), t ∈ R, j ∈ Λ2.

(2.1)

Let us now provide some preparations. Let S be a real Banach space and let P be a
cone in S. A map α is said to be a nonnegative continuous concave functional on cone P if
α : P → [0,∞) is continuous and

α
(
tx + (1 − t)y

) ≥ tα(x) + (1 − t)α
(
y
) ∀x, y ∈ P, t ∈ [0, 1]. (2.2)

For numbers M, N such that 0 < M < N, and a nonnegative continuous concave functional
α on cone P , we define

PM := {x ∈ P : ‖x‖ < M},
P(α,M) := {x ∈ P : α(x) < M},

P(α,M,N) := {x ∈ P : M ≤ α(x), ‖x‖ ≤ N}.

(2.3)

Setting u = (u1, u2, . . . , un) ∈ [0,∞)n, we define

|u|0 := max
j∈Λ2

{
uj

}
. (2.4)
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Write

D :=
{
y(t) : y ∈ C(R,R), y(t + T) = y(t)

}
,

E := D ×D × · · · ×D︸ ︷︷ ︸
m

,

∥
∥y
∥
∥
0 := sup

t∈[0,T]

∣
∣y(t)

∣
∣ for y ∈ D,

∥
∥y
∥
∥ :=

∑

i∈Λ1

∥
∥yi

∥
∥
0 for y =

(
y1, y2, . . . , ym

) ∈ E,

P :=
{
y =

(
y1, y2, . . . , ym

) ∈ E : yi(t) ≥ δi
∥
∥yi

∥
∥
0, i ∈ Λ1

}
,

(2.5)

where

δi = e−
∫T
0 ai(s)ds, i ∈ Λ1. (2.6)

Then (D, ‖ · ‖0) and (E, ‖ · ‖) are all Banach spaces and P is a cone in E. Set

Mi
1 :=

1

e
∫T
0 ai(s)ds − 1

, Mi
2 :=

e
∫T
0 ai(s)ds

e
∫T
0 ai(s)ds − 1

, i ∈ Λ1,

Gi(t, s) :=
e
∫s
t ai(ξ)dξ

e
∫T
0 ai(ξ)dξ − 1

, (t, s) ∈ R × [t, t + T], i ∈ Λ1.

(2.7)

It is easy to see that for any (t, s) ∈ R × [t, t + T], functions Gi(t, s), i ∈ Λ1 have properties

Mi
1 := Gi(t, t) ≤ Gi(t, s) ≤ Gi(t, t + T) := Mi

2, i ∈ Λ1,

δi =
Mi

1

Mi
2

≤ Gi(t, s)
Gi(t, t + T)

≤ 1, i ∈ Λ1.
(2.8)

Now we define an operator A : E → E as follows:

Ay(t) := (A1(t), A2(t), . . . , Am(t)), t ∈ R, y =
(
y1, y2, . . . , ym

) ∈ E, (2.9)

where

Ai(t) :=
∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Yn(s))ds, t ∈ R, i ∈ Λ1, (2.10)

signs Yi, i ∈ Λ1 are given in (1.7) and we often use them in the remainder of this paper. It is
easy to say that a T -periodic solution of operator equation

y = Ay, (2.11)
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on P , that is, a fixed point of operator A, is a T -positive periodic solution of system (1.4).
So, our main results concerning multiple positive solutions of system (1.4) will arise as
application of the following fixed-point theorem.

Lemma 2.1 (see [12]). Let P be a cone in a real Banach space B. Let α and γ be increasing,
nonnegative, continuous functionals on P , and let θ be a nonnegative continuous functional on P
with θ(0) = 0 such that, for some c > 0 and M > 0,

γ(x) ≤ θ(x) ≤ α(x), ‖x‖ ≤ Mγ(x), ∀x ∈ P(γ, c). (2.12)

Suppose there exists a completely continuous operator A : P(γ, c) → P and 0 < a < b < c such that

θ(λx) ≤ λθ(x), for 0 ≤ λ ≤ 1, x ∈ ∂P(θ, b), (2.13)

and

(i) γ(Ax) > c, for all x ∈ ∂P(γ, c);

(ii) θ(Ax) < b, for all x ∈ ∂P(θ, b);

(iii) P(α, a)/=φ, and α(Ax) > a, for all x ∈ ∂P(α, a).

Then A has at least two fixed points x1 and x2 belonging to P(γ, c) such that

a < α(x1), with θ(x1) < b,

b < θ(x2), with γ(x2) < c.
(2.14)

Lemma 2.2 (see [13]). Let P be a cone in a real Banach space E, let A : Pc → Pc be completely
continuous, and let α be a nonnegative continuous concave functional on P with α(x) ≤ ‖x‖ for all
x ∈ Pc. Suppose that there exists 0 < d < M < N ≤ c such that

(i) {x ∈ P(α,M,N) : α(x) > M}/=φ and α(Ax) > M for x ∈ P(α,M,N);

(ii) ‖Ax‖ < d for all ‖x‖ ≤ d;

(iii) α(Ax) > M for x ∈ P(α,M, c) with ‖Ax‖ > N.

Then A has at least three fixed points x1, x2, x3 satisfying

‖x1‖ < d, M < α(x2), ‖x3‖ > d, α(x3) < M. (2.15)

3. Existence of Two Positive Solutions of System (1.4)

In this section, we apply Lemma 2.1 to establish Theorem 3.1, the existence result of two
positive solutions of system (1.4). Example 3.2 will be given as an application of Theorem 3.1.
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Theorem 3.1. Assume that there exist numbers 0 < a < b < c such that the following three
assumptions are satisfied.

(H1) One has

fk0(t,U1, U2, . . . , Um) >
c + 1
TM1

, t ∈ R, ϕ ∈
[
c, cδ−1

]
, (3.1)

where k0 ∈ Λ1 is fixed and

Ui :=
(
U1

i , U
2
i , . . . , U

n
i

)
, U

j

i ∈ [0,∞), i ∈ Λ1, j ∈ Λ2,

M1 :=min
{
M1

1,M
2
1, . . . ,M

m
1

}
, δ :=min{δ1, δ2, . . . , δm}, ϕ := |U1|0+|U2|0+· · ·+|Um|0,

(3.2)

(H2) t ∈ R, Ui ∈ [0,∞)n, i ∈ Λ1, and ϕ ∈ [b, bδ−1] imply

m∑

i=1

fi(t,U1, U2, . . . , Um) <
b

(1 + δ)TM2
, (3.3)

where

M2 := max
{
M1

2,M
2
2, . . . ,M

m
2

}
, (3.4)

(H3) t ∈ R, Ui ∈ [0,∞)n, i ∈ Λ1, and ϕ ∈ [δa, a] imply

m∑

i=1

fi(t,U1, U2, . . . , Um) >
a + 1
TM1

. (3.5)

Then system (1.4) has at least two T -positive periodic solutions.

Proof. We begin by defining

γ
(
y
)
:= θ

(
y
)
:=

m∑

i=1

min
t∈[0,T]

yi(t), y =
(
y1, y2, . . . , ym

) ∈ P,

α
(
y
)
:=
∥∥y
∥∥, y ∈ P.

(3.6)
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Clearly, α and γ are increasing, nonnegative, continuous functionals on P , and θ is
nonnegative a continuous functional on P with θ(0) = 0. Moreover, we observe that

γ
(
y
)
= θ
(
y
) ≤ α

(
y
)
, ∀y ∈ P, (3.7)

∥
∥y
∥
∥ ≤ δ−1γ

(
y
)
, ∀y ∈ P, (3.8)

θ(λx) = λθ(x), for 0 ≤ λ ≤ 1, x ∈ ∂P(θ, b). (3.9)

Now, we proceed to show that other conditions of Lemma 2.1 are also satisfied.
Firstly, we will show that

A : P(γ, c) −→ P is completely continuous. (3.10)

In fact, we have from (2.3), for any y = (y1, y2, . . . , ym) ∈ P(γ, c),

‖Ai‖0 ≤ Mi
2

∫T

0
fi(s, Y1(s), Y2(s), . . . , Yn(s))ds, i ∈ Λ1, (3.11)

which yields

Ai(t) ≥ Mi
1

∫T

0
fi(s, Y1(s), Y2(s), . . . , Yn(s))ds

≥ Mi
1

Mi
2

‖Ai‖0

= δi‖Ai‖0, t ∈ R, y ∈ P(γ, c), i ∈ Λ1.

(3.12)

Hence Ay ∈ P for all y ∈ P(γ, c). Furthermore, we know from the continuity of functions
fi(·, . . . , ·), ai(·), Γi(·, ·), i ∈ Λ1 that the operator A is completely continuous. Hence, we
conclude that (3.10) holds.

Secondly, let us prove

γ
(
Ay
)
> c, ∀y ∈ ∂P

(
γ, c
)
. (3.13)

For any y = (y1, y2, . . . , ym) ∈ ∂P(γ, c), so that γ(y) = c, we get, in view of (1.7), (2.4) and
(3.8),

c =
m∑

i=1
min
t∈[0,T]

yi(t) ≤
m∑

i=1
|Yi(t)|0, t ∈ R,

m∑

i=1

|Yi(t)|0 ≤
m∑

i=1

∥∥yi

∥∥
0 ≤ δ−1γ

(
y
)
= cδ−1, t ∈ R.

(3.14)
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Consequently, for any y ∈ ∂P(γ, c), condition (H1) and (3.14) imply that

γ
(
Ay
)
=

m∑

i=1

min
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≥ min
t∈[0,T]

∫ t+T

t

Gk0(t, s)fk0(s, Y1(s), Y2(s), . . . , Ym(s))ds

≥ min
t∈[0,T]

∫ t+T

t

Mk0
1
c + 1
TM1

ds

> c,

(3.15)

which gives (3.13).
Thirdly, we verify

θ
(
Ay
)
< b, ∀y ∈ ∂P(θ, b). (3.16)

As before, θ(y) = b and (1.7), (2.4), and (3.8) also tell us that

b ≤
m∑

i=1

|Yi(t)|0 ≤ bδ−1, t ∈ R. (3.17)

Then condition (H2), (3.17), and the fact that the function min is concave imply

θ
(
Ay
)
=

m∑

i=1

min
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≤ min
t∈[0,T]

∫ t+T

t

m∑

i=1

Mi
2fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≤ min
t∈[0,T]

∫ t+T

t

M2
b

(1 + δ)TM2
ds

< b.

(3.18)

Thus (3.16) holds.
Finally, let us prove

P(α, a)/=φ, α
(
Ay
)
> a, ∀y ∈ ∂P(α, a). (3.19)

Obviously,

y =
(
y1, y2, . . . , ym

)
=
(

a

m + 1
,

a

m + 1
, . . . ,

a

m + 1

)
∈ P(α, a). (3.20)
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In addition, for any y ∈ ∂P(α, a), we get

δa ≤
m∑

i=1

|Yi(t)|0 ≤ a, t ∈ R (3.21)

since
∑m

i=1 ‖yi‖0 = a and y = (y1, y2, . . . , ym) ∈ P . So we have from condition (H3) that

α
(
Ay
)
=

m∑

i=1

max
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≥ max
t∈[0,T]

∫ t+T

t

m∑

i=1

Mi
1fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≥ max
t∈[0,T]

∫ t+T

t

M1
a + 1
TM1

ds

> a.

(3.22)

Hence (3.19) holds.
To sum up, (3.6)–(3.10), (3.13), (3.16), and (3.19) tell us that conditions of Lemma 2.1

all hold here. Consequently, system (1.4) has at least two T -positive periodic solutions y1 =
(y1

1 , y
1
2 , . . . , y

1
m) and y2 = (y2

1 , y
2
2 , . . . , y

2
m) belonging to P(γ, c) such that

a <
∥∥∥y1

∥∥∥, with
m∑

i=1

min
t∈[0,T]

y1
i < b,

b <
m∑

i=1
min
t∈[0,T]

y2
i < c.

(3.23)

As an application of Theorem 3.1, we provide the following example. For convenience,
all examples in this paper are given when n = 1, m = 2.

Example 3.2. Assume that τ1 > 0 is a fixed constant. Consider the following system:

y′
1(t) = −(ln 2)|sin t|y1(t) +

1
4π

e| cos t|−1g1
(
t, y1(t − τ1), y2(t − τ1)

)
,

y′
2(t) = −1

2
(ln 3)|cos t|y2(t) +

1
4π

e| sin t|−1g2
(
t, y1(t − τ1), y2(t − τ1)

)
,

(3.24)

where

g1(t, u1, u2) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

12e, t ∈ R, u1 + u2 ∈ [0, 160],

2401e(u1 + u2 − 160) + 12e(199 − u1 − u2)
39

, t ∈ R, u1 + u2 ∈ [160, 199],

2401e, t ∈ R, u1 + u2 ∈ [199,∞).
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g2(t, u1, u2) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

42
2
3
, t ∈ R, u1 + u2 ∈ [0, 160],

(u1 + u2 − 160) + 42(2/3)(199 − u1 − u2)
39

, t ∈ R, u1 + u2 ∈ [160, 199],

1, t ∈ R, u1 + u2 ∈ [199,∞).
(3.25)

We set

a = 1, b = 40, c = 199,

a1(t) := (ln 2)|sin t|, a2(t) :=
1
2
(ln 3)|cos t|, t ∈ R,

f1
(
t, y1(t − τ), y2(t − τ)

)
=

1
4π

e| cos t|−1g1
(
t, y1(t − τ), y2(t − τ)

)
, t ∈ R,

f2
(
t, y1(t − τ), y2(t − τ)

)
=

1
4π

e| sin t|−1g2
(
t, y1(t − τ), y2(t − τ)

)
, t ∈ R

(3.26)

Then

T = π, δ =
1
4
, M1 =

1
3
, M2 =

3
2
. (3.27)

We may verify that conditions (H1), (H2), and (H3) are all satisfied. Hence, Theorem 3.1
tells us that system (3.24) has at least two π-positive periodic solutions y1 = (y1

1 , y
1
2) and

y2 = (y2
1 , y

2
2) such that

1 < max
t∈[0,π]

y1
1 + max

t∈[0,π]
y1
2 , min

t∈[0,π]
y1
1 + min

t∈[0,π]
y1
2 < 40,

40 < min
t∈[0,π]

y2
1 + min

t∈[0,π]
y2
2 < 199.

(3.28)

4. Existence of Three Positive Solutions of System (1.4)

For the sake of convenience we list the assumptions to be used in this section as follows.

(H4) There exists a number C1 > 0 such that

fi(t,U1, U2, . . . , Um) <
C1

mTM2
, t ∈ R, Ui ∈ [0,∞)n, ϕ ≤ C1, i ∈ Λ1, (4.1)

where ϕ and Ui, i ∈ Λ1 are given in (H1).

(H5) There exist numbers C2 > C1 and i0 ∈ Λ1 such that

fi0(t,U1, U2, . . . , Um) >
C3

TM1
, t ∈ R, Ui ∈ [0,∞)n, C2 ≤ ϕ ≤ C3, (4.2)
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where

C3 :=
C2(1 + δ)

δ
. (4.3)

(H6) One has

lim
ϕ→∞

max
t∈[0,T]

fi(t,U1, U2, . . . , Um)
ϕ

<
1

mTM2
, Ui ∈ [0,∞)n, i ∈ Λ1. (4.4)

(H7) There exists a number C4 > C3 such that,

fi(t,U1, U2, . . . , Um) ≤ C4

mTM2
, t ∈ R, Ui ∈ [0,∞)n, ϕ ≤ C4, i ∈ Λ1. (4.5)

Let us now state the first existence result of three positive solutions of system (1.4).

Theorem 4.1. Assume that conditions (H4), (H5), and (H6) hold. Then system (1.4) has at least
three T -positive periodic solutions.

Proof. Firstly, we set

β
(
y
)
:=

m∑

i=1

min
t∈[0,T]

yi(t), y =
(
y1, y2, . . . , ym

) ∈ P. (4.6)

Obviously, β is a nonnegative continuous concave functional on P and

β
(
y
) ≤ ∥∥y∥∥, y =

(
y1, y2, . . . , ym

) ∈ PM for any M > 0. (4.7)

Secondly, condition (H6) implies that there exists a number C5 ≥ C3 such that

A : PC5 −→ PC5 is completely continuous. (4.8)

In fact, we know from condition (H6) that there exist numbers

τi > 0, 0 < σi <
1

mTM2
, i ∈ Λ1 (4.9)

satisfying

max
t∈[0,T]

fi(t, Y1(t), Y2(t), . . . , Ym(t))∥∥y
∥∥ ≤ σi,

∥∥y
∥∥ ≥ τi, i ∈ Λ1. (4.10)
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So

fi(t, Y1(t), Y2(t), . . . , Ym(t)) ≤ σi

∥
∥y
∥
∥, t ∈ [0, T],

∥
∥y
∥
∥ ≥ τi, i ∈ Λ1. (4.11)

Set

Ci
6 := max

t∈[0,T]
{
fi(t, Y1(t), Y2(t), . . . , Ym(t))

}
, t ∈ [0, T],

∥
∥y
∥
∥ ≤ τi, i ∈ Λ1. (4.12)

Then

fi(t, Y1(t), Y2(t), . . . , Ym(t)) ≤ Ci
6 + σi

∥
∥y
∥
∥, t ∈ [0, T], y ∈ P, i ∈ Λ1. (4.13)

Let us choose

C5 ≥ max

{

C3,
mC1

6TM
1
2

1 −mTM1
2σ1

,
mC2

6TM
2
2

1 −mTM2
2σ2

, . . . ,
mCm

6 TM
m
2

1 −mTMm
2 σm

}

. (4.14)

Then for any y = (y1, y2, . . . , ym) ∈ PC5 , we have

∥∥Ay
∥∥ =

m∑

i=1

max
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(t, Y1(s), Y2(s)), . . . , Ym(s)
)
ds

≤
m∑

i=1

max
t∈[0,T]

∫ t+T

t

Gi(t, t + T)
[
σi

∥∥y
∥∥ + Ci

6

]
ds

≤
m∑

i=1

(
σiC5 + Ci

6

)
TMi

2

≤ C5,

(4.15)

which implies A(y) ∈ PC5 for all y ∈ PC5 . Moreover, we know from the proof of (3.10) that
A : PC5 → PC5 is completely continuous.

Thirdly, let us show that numbers

0 < C1 < C2 < C3 ≤ C5 (4.16)

satisfy conditions (i), (ii), and (iii) of Lemma 2.2.

Step 1. We prove that

{
y ∈ P

(
β, C2, C3

)
: β
(
y
)
> C2

}
/=φ, β

(
Ay
)
> C2, y ∈ P

(
β, C2, C3

)
. (4.17)
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Clearly, y = (y1, y2, . . . , ym) = (C3/m,C3/m, . . . , C3/m) ∈ {P(β, C2, C3) : β(y) > C2}.
Moreover, for any y = (y1, y2, . . . , ym) ∈ P(β, C2, C3),we have

C2 ≤
m∑

i=1

min
t∈[0,T]

yi(t) ≤
m∑

i=1

|Yi(t)|0 ≤
∥
∥y
∥
∥ ≤ C3. (4.18)

Then condition (H5), (4.6), and (4.18) imply that

β
(
Ay
)
=

m∑

i=1

min
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≥ min
t∈[0,T]

∫ t+T

t

Gi0(t, s)fi0(s, Y1(s), Y2(s), . . . , Ym(s))ds

≥ min
t∈[0,T]

∫ t+T

t

Mi0
1

C3

TM1
ds

≥ C3

> C2,

(4.19)

which gives β(Ay) > C2 for y ∈ P(β, C2, C3). And then we arrive at (4.17).

Step 2. Condition (H4) implies

∥∥Ay
∥∥ < C1 for

∥∥y
∥∥ ≤ C1. (4.20)

In fact, for any y = (y1, y2, . . . , ym) ∈ PC1 , that is, ‖y‖ ≤ C1, from

|Yi(t)|0 ≤
∥∥yi

∥∥
0, t ∈ [0, T], i ∈ Λ1, (4.21)

and condition (H4) we have

∥∥Ay
∥∥ =

m∑

i=1

max
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≤
m∑

i=1

max
t∈[0,T]

∫ t+T

t

Mi
2fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

< mmax
t∈[0,T]

∫ t+T

t

M2
C1

mTM2
ds

= C1,

(4.22)

which yields (4.20).
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Step 3. β(Ay) > C2 for y ∈ P(β, C2, C5) with ‖Ay‖ > C3. This is the case because Ay ∈ P
implies

β
(
Ay
)
=

m∑

i=1

min
t∈[0,T]

Ai(t) ≥ δ
m∑

i=1

‖Ai‖0 = δ
∥
∥Ay

∥
∥ > δC3 > C2. (4.23)

At present, we may say that hypotheses of Lemma 2.2 (the Leggett-Willaims theorem)
are satisfied. Hence system (1.4) has at least three T -positive periodic solutions:

u = (u1, u2, . . . , um), v = (v1, v2, . . . , vm), w = (w1, w2, . . . , wm), (4.24)

such that

‖u‖ < C1, C2 <
m∑

i=1

min
t∈[0,T]

vi,

‖w‖ > C1,
m∑

i=1

min
t∈[0,T]

wi < C2.

(4.25)

We give the following example to illustrate Theorem 4.1.

Example 4.2. Consider the following system:

y′
1(t) = − 1

4π
(ln 3)(2 + cos t)y1(t) +

1
4π

e(sin t)−1g1
(
t, y1(t − τ2), y2(t − τ2)

)
,

y′
2(t) = − 1

4π
(ln 2)(2 + sin t)y2(t) +

1
4π

e(cos t)−1g2
(
t, y1(t − τ2), y2(t − τ2)

)
,

(4.26)

where τ2 > 0 is a fixed constant and

g1(t, u1, u2) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
5
, t ∈ R, u1 + u2 ∈ [0, 1],

(3 − u1 − u2)
5

+
(
36e2 + 1

)
(u1 + u2 − 1), t ∈ R, u1 + u2 ∈ [1, 3],

72e2 + 2, t ∈ R, u1 + u2 ∈ [3, 12],

5
12

(u1 + u2) − 3 + 72e2, t ∈ R, u1 + u2 ∈ [12,∞),

g2(t, u1, u2) := constant <
7
15

, (t, u1, u2) ∈ R × [0,∞) × [0,∞).

(4.27)
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We set

a1(t) :=
1
4π

(ln 3)(2 + cos t), a2(t) :=
1
4π

(ln 2)(2 + sin t), t ∈ R,

f1
(
t, y1(t − τ), y2(t − τ)

)
:=

1
4π

e(sin t)−1g1
(
t, y1(t − τ), y2(t − τ)

)
, t ∈ R,

f2
(
t, y1(t − τ), y2(t − τ)

)
:=

1
4π

e(cos t)−1g2
(
t, y1(t − τ), y2(t − τ)

)
, t ∈ R,

C1 := 1, C2 := 3.

(4.28)

Then

T = 2π, δ =
1
3
, M1 =

1
3
, M2 = 2. (4.29)

We may verify also that conditions (H4), (H5), and (H6) hold. Hence, Theorem 4.1 tells us
that system (4.26) has at least three 2π-positive periodic solutions:

y1 =
(
y1
1 , y

1
2

)
, y2 =

(
y2
1 , y

2
2

)
, y3 =

(
y3
1 , y

3
2

)
(4.30)

such that

∥∥∥y1
∥∥∥ < 1, 3 < min

t∈[0,2π]
y2
1 + min

t∈[0,2π]
y2
2 ,

∥∥∥y3
∥∥∥ > 1, min

t∈[0,2π]
y3
1 + min

t∈[0,2π]
y3
2 < 3.

(4.31)

The second existence result of three positive solutions of system (1.4) is as follows.

Theorem 4.3. Assume that conditions (H4), (H5), and (H7) hold. Then system (1.4) has at least
three T -positive periodic solutions.

Proof. If we can get (4.8) with C5 replaced by C4 in this case, then the proof is complete. In
fact, for any y = (y1, y2, . . . , ym) ∈ PC4 , condition (H7) implies

∥∥Ay
∥∥ =

m∑

i=1

max
t∈[0,T]

∫ t+T

t

Gi(t, s)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≤
m∑

i=1

max
t∈[0,T]

∫ t+T

t

Gi(t, t + T)fi(s, Y1(s), Y2(s), . . . , Ym(s))ds

≤ mmax
t∈[0,T]

∫ t+T

t

M2
C4

mTM2
ds

≤ C4.

(4.32)
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Then

A : PC4 −→ PC4 , (4.33)

as desired. This ends the proof.

The following example is an application of Theorem 4.3.

Example 4.4. Consider system

y′
1(t) = − 1

4π
(ln 2)(2 + cos t)y1(t) +

1
4π

e(cos t)−1g1
(
t, y1(t − τ3), y2(t − τ3)

)
,

y′
2(t) = − 1

4π
(ln 2)(2 + sin t)y2(t) +

1
4π

e(cos t)−1g2
(
t, y1(t − τ3), y2(t − τ3)

)
,

(4.34)

where τ3 > 0 is a fixed constant and

g1(t, u1, u2) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(1 + u2)
3(u1 + u2 + 1)

, t ∈ R, u1 + u2 ∈ [0, 2],

(1 + u2)(4 − u1 − u2)
3(u1 + u2 + 1)

+
1
2
(
24e2 + 1

)
(u1 + u2 − 2), t ∈ R, u1 + u2 ∈ [2, 4],

24e2 + 1, t ∈ R, u1 + u2 ∈ [4,∞),

g2(t, u1, u2) := constant < 1, (t, u1, u2) ∈ R × [0,∞) × [0,∞).
(4.35)

If we set

a1(t) :=
1
4π

(ln 2)(2 + cos t), a2(t) :=
1
4π

(ln 2)(2 + sin t), t ∈ R,

fi
(
t, y1(t − τ), y2(t − τ)

)
=

1
4π

e(cos t)−1gi
(
t, y1(t − τ), y2(t − τ)

)
, t ∈ R, i = 1, 2,

(4.36)

then

T = 2π, δ =
1
2
, M1 = 1, M2 = 2. (4.37)

We choose

C1 := 2, C2 := 4, C4 := 50e2. (4.38)
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Then assumptions (H4), (H5), and (H7) hold. Hence we know from Theorem 4.3 that system
(4.34) has at least three 2π-positive periodic solutions:

y1 =
(
y1
1 , y

1
2

)
, y2 =

(
y2
1 , y

2
2

)
, y3 =

(
y3
1 , y

3
2

)
(4.39)

such that

∥
∥
∥y1

∥
∥
∥ < 2, 4 < min

t∈[0,2π]
y2
1 + min

t∈[0,2π]
y2
2 ,

∥
∥
∥y3

∥
∥
∥ > 2, min

t∈[0,2π]
y3
1 + min

t∈[0,2π]
y3
2 < 4.

(4.40)

We end this paper by the following remark.

Remark 4.5. For a general positive integer m ≥ 2, main results of this paper do not appear in
former literatures as we know. Comparing with the existing results, our Theorems 3.1, 4.1,
and 4.3 are new also when m = 1.
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