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1. Introduction

In recent years, the existence of periodic solutions for the predator-prey model has been
widely studied. Models with harvesting (or exploited) terms are often considered (see, e.g.,
[1–4]). Generally, the model with harvesting (or exploited) terms is described as follows:

ẋ = xf
(
x, y

) − h,

ẏ = yg
(
x, y

) − k,
(1.1)

where x and y are functions of time representing densities of prey and predator, respectively;
h and k are harvesting (or exploited) terms standing for the harvests (see [5]). Considering
the inclusion of the effect of changing environment, Zhang and Hou [6] considered the
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following model of ordinary differential equations with Holling-type II functional response
and harvesting (or exploited) terms:

ẋ(t) = x(t)
(
a(t) − b(t)x(t) − c(t)y(t)

m(t)y(t) + x(t)

)
− h1(t),

ẏ(t) = y(t)
(
−d(t) + f(t)x(t)

m(t)y(t) + x(t)

)
− h2(t),

(1.2)

where the parameters in system (1.2) are continuous positive ω-periodic functions. Authors
discussed the existence of positive periodic solutions of system (1.2) in the region D =
{(x, y) | x > 0, y > 0}.

On the other hand, the theory of calculus on time scales unifies continuous and
discrete analysis, many results concerning differential equations carry over quite easily to
corresponding results for difference equations, while other results seem to be completely
different from their continuous counterparts. The study of dynamic equations on general time
scales can reveal such discrepancies and help avoid proving results twice-once for differential
equations and once again for difference equations. The two main features of the calculus on
time scales are unification and extension. To prove a result for a dynamic equation on a time
scale is not only related to the set of real numbers or set of integers but those pertaining to
more general time scales.

The principle aim of this paper is to systematically unify the existence of multiple
periodic solutions of population models modelled by ordinary differential equations and
their discrete analogues in form of difference equations and to extend these results to more
general time scales. The approach is based on a continuation theorem in coincidence degree,
which has been widely applied to deal with the existence of periodic solutions of differential
equations and difference equations. Therefore, we consider the following ratio-dependent
predator-prey system with Beddington-DeAngelis functional response and harvesting terms
on time scales T:

zΔ1 (t) = a(t) − b(t)ez1(t) − c1(t)ez2(t)

ez2(t) + α(t)ez1(t) + β(t)e2z2(t)
− h1(t)e−z1(t),

zΔ2 (t) = −d(t) + c2(t)ez1(t)

ez2(t) + α(t)ez1(t) + β(t)e2z2(t)
− h2(t)e−z2(t),

(1.3)

where z1(t) and z2(t) represent the prey and the predator population, respectively;
a(t), b(t), ci(t) (i = 1, 2), d(t), hi(t) (i = 1, 2), and α(t), β(t) are all rd-continuous positive
ω-periodic functions denoting the prey intrinsic growth rate, death rate, capture rate,
conversion rate of predator, death rate of predator, harvesting rate, and Beddington-
DeAngelis functional response parameters, respectively.
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Remark 1.1. In (1.3), set xi(t) = exp{zi(t)}, i = 1, 2. If T = R, then (1.3) reduces to the
ratio-dependent predator-prey system with Beddington-DeAngelis functional response and
harvesting terms governed by the ordinary differential equations

x′
1(t) = x1(t)

(

a(t) − b(t)x1(t) − c1(t)x2(t)
x2(t) + α(t)x1(t) + β(t)x2

2(t)

)

− h1(t),

x′
2(t) = x2(t)

(

−d(t) + c2(t)x1(t)
x2(t) + α(t)x1(t) + β(t)x2

2(t)

)

− h2(t).

(1.4)

If T = Z, then (1.3) is reformulated as

x1(k + 1) = x1(k)

(

a(k) − b(k)x1(k) − c1(k)x2(k)
x2(k) + α(k)x1(k) + β(k)x2

2(k)

)

− h1(k),

x2(k + 1) = x2(k)

(

−d(k) + c2(k)x1(k)
x2(k) + α(k)x1(k) + β(k)x2

2(k)

)

− h2(k),

(1.5)

which is the discrete time ratio-dependent predator-prey systemwith Beddington-DeAngelis
functional response and harvesting terms and is also a discrete analogue of (1.3).

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Throughout
this paper, we assume that the time scale T is unbounded above and below, such as R, Z, and⋃

k∈Z
[2k, 2k + 1]. The following definitions and lemmas can be found in [7].

Definition 2.1 (see [8]). One says that a time scale T is periodic if there exists p > 0 such that
if t ∈ T, then t ± p ∈ T. For T/=R, the smallest positive p is called the period of the time scale.

Definition 2.2 (see [8]). Let T/=R be a periodic time scale with period p. One says that the
function f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t +ω) = f(t) for all t ∈ T, and ω is the smallest number such that f(t +ω) = f(t). If
T = R, one says that f is periodic with period ω > 0 if ω is the smallest positive number such
that f(t +ω) = f(t) for all t ∈ T.

Notation 2.3. To facilitate the discussion below, we now introduce some notation to be used
throughout this paper. Let T be ω-periodic; that is, t ∈ T implies t +ω ∈ T,

κ = min{[0,+∞) ∩ T}, Iω = [κ, κ +ω] ∩ T,

fM = sup
t∈T

f(t), fL = inf
t∈T

f(t),
(2.1)

where f ∈ Crd(T,R) is an ω-periodic function.
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Notation 2.4. Let X, Z be two Banach spaces, let L : DomL ⊂ X → Z be a linear mapping,
and let N : X → Z be a continuous mapping. If L is a Fredholm mapping of index zero
and there exist continuous projectors P : X → X and Q : Z → Z such that ImP = KerL,
KerQ = ImL = Im(I − Q), then the restriction L|DomL∩KerP : (I − P)X → ImL is invertible.
Denote the inverse of that map by KP . If Ω is an open bounded subset of X, the mapping N

will be called L-compact on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact.
Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 2.5 (Continuation theorem [9]). Let X, Z be two Banach spaces, and let L be a Fredholm
mapping of index zero. Assume that N : Ω → Z is L-compact on Ω with Ω being open bounded in
X. Furthermore assume the following:

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx/=λNx;

(b) for each x ∈ ∂Ω ∩ KerL, QNx/= 0;

(c) deg{JQN,Ω ∩ KerL, 0}/= 0.

Then the operator equation Lx = Nx has at least one solution in DomL ∩Ω.

3. Existence of Periodic Solutions

Our main result on the existence of two positive periodic solutions for system (1.3) is stated
in the following theorem.

Theorem 3.1. Assume that the following holds:

(i) aL − cM1 > 2
√
bMhM

1 ,

(ii) cM2 > dLαL,

(iii) (dLαL − cM2 )hL
1 + hL

2a
M > 2

√
aMdLhL

1α
LhL

2 ,

then system (1.3) has at least two positive ω-periodic solutions.

Proof. Let

X = Z =
{
z = (z1, z2)T ∈ Crd

(
T,R2

)
| zi(t +ω) = zi(t), i = 1, 2, ∀t ∈ T

}
, (3.1)

and define

‖z‖ =
∥∥∥(z1, z2)T

∥∥∥ =
2∑

i=1

max
t∈Iω

|zi(t)|, z ∈ X (or Z), (3.2)
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where | · | is the Euclidean norm. Then X and Z are both Banach spaces with the above norm
‖ · ‖. Let

Nz(t) =

(
f1(t)

f2(t)

)

=

⎛

⎜
⎜
⎜
⎜
⎝

a(t) − b(t)ez1(t) − c1(t)ez2(t)

ez2(t) + α(t)ez1(t) + β(t)e2z2(t)
− h1(t)e−z1(t)

−d(t) + c2(t)ez1(t)

ez2(t) + α(t)ez1(t) + β(t)e2z2(t)
− h2(t)e−z2(t)

⎞

⎟
⎟
⎟
⎟
⎠

,

Lz(t) = zΔ(t), Pz(t) = Qz(t) =
1
ω

∫

Iω

z(t)Δt, z ∈ X.

(3.3)

Then

KerL =
{
z ∈ X | z = (z1(t), z2(t))T ∈ R

2 for t ∈ T

}
,

ImL =

{

(z1, z2)T ∈ Z |
∫

Iω

zi(t)Δt = 0, i = 1, 2, for t ∈ T

}

,

(3.4)

and dimKerL = codimImL = 2. Since ImL is closed in Z, then L is a Fredholm mapping
of index zero. It is easy to show that P , Q are continuous projectors such that ImP = KerL
and KerQ = ImL = Im(I − Q). Furthermore, the generalized inverse (to L) KP : ImL →
KerP ∩DomL exists and is given by

KPz = KP

(
z1

z2

)

=

⎛

⎜⎜⎜⎜
⎝

∫ t

κ

z1(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

z1(s)ΔsΔt

∫ t

κ

z2(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

z2(s)ΔsΔt

⎞

⎟⎟⎟⎟
⎠

. (3.5)

Thus

QNz = QN

(
z1

z2

)

=

⎛

⎜⎜⎜⎜
⎝

1
ω

∫κ+ω

κ

f1(t)Δt

1
ω

∫κ+ω

κ

f2(t)Δt

⎞

⎟⎟⎟⎟
⎠

,

KP (I −Q)Nz =

⎛

⎜⎜⎜⎜
⎝

∫ t

κ

f1(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

f1(s)ΔsΔt +
(
1
2
− t

ω

)∫κ+ω

κ

(t − κ)f1(s)Δs

∫ t

κ

f2(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

f2(s)ΔsΔt +
(
1
2
− t

ω

)∫κ+ω

κ

(t − κ)f2(s)Δt

⎞

⎟⎟⎟⎟
⎠

.

(3.6)

Obviously, QN : X → Z, KP (I −Q)N : X → X are continuous. Since X is a Banach
space, using the Arzela-Ascoli theorem, it is easy to show thatKP (I −Q)N(Ω) is compact for



6 Discrete Dynamics in Nature and Society

any open bounded set Ω ⊂ X. Moreover, QN(Ω) is bounded, thus, N is L-compact on Ω for
any open bounded set Ω ⊂ X. Corresponding to the operator equation Lz = λNz, λ ∈ (0, 1),
we have

zΔi (t) = λfi(t), i = 1, 2. (3.7)

Suppose that (z1, z2)
T ∈ X is a solution of (3.7) for certain λ ∈ (0, 1). Then there exist

ξi, ηi ∈ Iω, i = 1, 2, such that

zi(ξi) = min
t∈Iω

{zi(t)}, zi
(
ηi
)
= max

t∈Iω
{zi(t)}, i = 1, 2. (3.8)

It is clear that zΔi (ξi) = 0, zΔi (ηi) = 0, i = 1, 2. From this and system (3.7), we have

f1(ξ1) = 0, (3.9a)

f2(ξ2) = 0, (3.9b)

f1
(
η1
)
= 0, (3.10a)

f2
(
η2
)
= 0. (3.10b)

It follows from (3.9a) that

z1(ξ1) < ln
aM

bL
. (3.11)

From (3.9b), we obtain

dL ≤ d(ξ2) <
c2(ξ2)ez1(ξ2)

ez2(ξ2) + α(ξ2)ez1(ξ2) + β(ξ2)e2z2(ξ2)
<

cM2 aM

bL
(
ez2(ξ2) + βLe2z2(ξ2)

) , (3.12)

which leads to

z2(ξ2) < ln
−bLdL +

√(
bLdL

)2 + 4bLdLβLcM2 aM

2bLdLβL
=: ln ρ. (3.13)

Equation (3.10a) yields

z1
(
η1
)
> ln

hL
1

aM
. (3.14)

Equation (3.10b) deduces

cM2
αL

>
c2
(
η2
)
ez1(η2)

ez2(η2) + α
(
η2
)
ez1(η2) + β

(
η2
)
e2z2(η2)

>
hL
2

ez1(η2)
, (3.15)
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which implies

z2
(
η2
)
> ln

αLhL
2

cM2
. (3.16)

From (3.9a), we also have

b(ξ1)e2z1(ξ1) +
c1(ξ1)ez1(ξ1)+z2(ξ1)

ez2(ξ1) + α(ξ1)ez1(ξ1) + β(ξ1)e2z2(ξ1)
+ h1(ξ1) − a(ξ1)ez1(ξ1) = 0, (3.17)

which implies that

bMe2z1(ξ1) +
(
cM1 − aL

)
ez1(ξ1) + hM

1 > 0. (3.18)

Set

u± =

(
aL − cM1

) ±
√(

cM1 − aL
)2 − 4bMhM

1

2bM
, (3.19)

then

z1(ξ1) > lnu+ or z1(ξ1) < lnu−. (3.20)

From (3.10a), a parallel argument to (3.20) gives

z1
(
η1
)
> lnu+ or z1

(
η1
)
< lnu−. (3.21)

From (3.9b), we also obtain

c2(ξ2)ez1(ξ2)

ez2(ξ2) + α(ξ2)ez1(ξ2)
− d(ξ2) − h2(ξ2)e−z2(ξ2) ≥ 0, (3.22)

which implies

aMdLe2z2(ξ2) +
[(

dLαL − cM2

)
hL
1 + hL

2a
M
]
ez2(ξ2) + hL

1h
L
2α

L ≤ 0. (3.23)

Set

v± =

(
cM2 − dLαL

)
hL
1 − hL

2a
M ±

√((
cM2 − dLαL

)
hL
1 − hL

2a
M
)2 − 4aMdLhL

1h
L
2α

L

2aMdL
, (3.24)
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then

lnv− < z2(ξ2) < lnv+ or lnv+ < z2
(
η2
)
< lnv−. (3.25)

From (3.11), (3.14), (3.20), and (3.21), we obtain for all t ∈ Iω,

ln
hL
1

aM
< z1(t) < lnu− (3.26)

or

lnu+ < z1(t) < ln
aM

bL
. (3.27)

From (3.13), (3.16), and (3.25), we obtain that for all t ∈ Iω,

A := max

{

lnv−, ln
αLhL

2

cM2

}

< z2(t) < min
{
lnv+, ln ρ

}
=: B. (3.28)

Obviously, ln(hL
1/a

M), ln(aM/bL), lnu±, A, B are independent of λ. Now take

Ω1 =

{

z = (z1, z2)T ∈ X | z1(t) ∈
(

ln
hL
1

aM
, lnu−

)

, z2(t) ∈ (A,B)

}

,

Ω2 =

{

z = (z1, z2)T ∈ X | z1(t) ∈
(

lnu+, ln
aM

bL

)

, z2(t) ∈ (A,B)

}

,

(3.29)

thenΩ1 andΩ2 are bounded open subsets of X, andΩ1 ∩Ω2 = Ø. ThusΩ1 andΩ2 satisfy the
requirement (a) in Lemma 2.5.

Now we show that (b) of Lemma 2.5 holds; that is, we need to prove when z =
(z1, z2)

T ∈ ∂Ωi ∩ KerL = ∂Ωi ∩ R
2, QNz/= (0, 0)T, i = 1, 2. If it is not true, then when

z ∈ ∂Ωi ∩ KerL = ∂Ωi ∩ R
2, i = 1, 2, constant vector z with z ∈ ∂Ωi, i = 1, 2, satisfies

QNz = (0, 0)T. Thus there exist two points ti ∈ Iω (i = 1, 2) such that

a(t1) − b(t1)ez1 − c1(t1)ez2

ez2 + α(t1)ez1 + β(t1)e2z2
− h1(t1)e−z1 = 0,

−d(t2) + c2(t2)ez1

ez2 + α(t2)ez1 + β(t2)e2z2
− h2(t2)e−z2 = 0.

(3.30)

From this and following the arguments of (3.26)–(3.28), we have

ln
hL
1

aM
< z1 < lnu−, A < z2 < B or lnu+ < z1 < ln

aM

bL
, A < z2 < B. (3.31)
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Thus z ∈ Ω1 ∩ R
2, or z ∈ Ω2 ∩ R

2. This contradicts the fact that z ∈ ∂Ωi ∩ R
2, i = 1, 2. Hence

condition (b) in Lemma 2.5 holds.
Finally, we show that (c) in Lemma 2.5 is valid. Noticing that the system of algebraic

equations

a(t1) − b(t1)ex − h1(t1)
ex

= 0,

−d(t2) + c2(t2)ex

ey + α(t2)ex + β(t2)e2y
− h2(t2)

ey
= 0

(3.32)

has two distinct solutions (x∗
1, y

∗
1) and (x∗

2, y
∗
2) since the conditions hold in Theorem 3.1, and

we have

(
x∗
1, y

∗
1

)
=
(
lnx−, lny−

)
,

(
x∗
2, y

∗
2
)
=
(
lnx+, lny+

)
, (3.33)

where

x± =
a(t1) ±

√
(a(t1))2 − 4b(t1)h1(t1)

2b(t1)
,

y± =
1

2a(t2)d(t2)

{
(c2(t2) − d(t2)α(t2))h1(t2) − h2(t2)a(t2)

±
√
((c2(t2)−d(t2)α(t2))h1(t2)−h2(t2)a(t2))

2−4a(t2)d(t2)h1(t2)h2(t2)α(t2)
}
.

(3.34)

It is easy to verify that

ln
hL
1

aM
< lnx− < lnu− < lnu+ < lnx+ < ln

aM

bL
,

ln
αLhL

1

cM2
< lny− < lnv− < lnv+ < lny+ < ln ρ.

(3.35)

Therefore, (x∗
1, y

∗
1) ∈ Ω1, (x∗

2, y
∗
2) ∈ Ω2.

Define the homotopy Hμ(z1, z2) : DomL × [0, 1] → R
2 by

Hμ(z1, z2) = μQN(z1, z2) +
(
1 − μ

)
G(z1, z2), for μ ∈ [0, 1], (3.36)

where

G

(
z1

z2

)

=

⎛

⎜⎜
⎝

a(t1) − b(t1)u − h1(t1)
u

−d(t2) + c2(t2)u
v + α(t2)u + β(t2)v2

− h2(t2)
v

⎞

⎟⎟
⎠, (3.37)
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and μ ∈ [0, 1] is a parameter, u = ez1 , v = ez2 , and (u, v)T is a constant vector in R
2. It is easy

to show that 0/∈Hμ(∂Ωi ∩ KerL) (i = 1, 2). In fact, if there are a certain z∗ = (z∗1, z
∗
2) and a

certain μ∗ ∈ [0, 1] such that Hμ∗(z∗1, z
∗
2) = 0, where z∗i ∈ ∂Ωi ∩ KerL (i = 1, 2), then there exist

t∗i ∈ Iω (i = 1, 2) such that

a
(
t∗1
) − b

(
t∗1
)
ez

∗
1 − μ∗c1

(
t∗1
)
ez

∗
2

ez
∗
2 + α

(
t∗1
)
ez

∗
1 + β

(
t∗1
)
e2z

∗
2
− h1

(
t∗1
)
e−z

∗
1 = 0,

−d(t∗2
)
+

c2
(
t∗2
)
ez

∗
1

ez
∗
2 + α

(
t∗2
)
ez

∗
1 + β

(
t∗2
)
e2z

∗
2
− h2

(
t∗2
)
e−z

∗
2 = 0.

(3.38)

By carrying out similar arguments as above, we also obtain conclusions as same as (3.26)–
(3.28), that is,

ln
hL
1

aM
< z∗1 < lnu−, A < z∗2 < B or lnu+ < z∗1 < ln

aM

bL
, A < z∗2 < B. (3.39)

This contradicts the fact that z∗i ∈ ∂Ωi ∩ KerL (i = 1, 2).
Note that J = I (identical mapping), since ImQ = KerL, according to the invariance

property of homotopy, direct calculation produces

deg
{
JQN(z1, z2)T,Ωi ∩ KerL, (0, 0)T

}

= deg
{
G(z1, z2)T,Ωi ∩ KerL, (0, 0)T

}

= sign

∣∣∣∣∣∣∣∣∣∣∣

−b(t1) + h1(t1)

u∗
i
2

0

c2(t2)
(
v∗
i + β(t2)v∗

i
2
)

(
v∗
i + α(t2)u∗

i + β(t2)v∗
i
2
)2

h2(t2)

v∗
i
2

− c2(t2)u∗
i

(
1 + 2β(t2)v∗

i

)

(
v∗
i + α(t2)u∗

i + β(t2)v∗
i
2
)2

∣∣∣∣∣∣∣∣∣∣∣

= sign

∣∣∣∣∣∣∣∣∣∣∣

−b(t1)u∗
i +

h1(t1)
u∗
i

0

c2(t2)v∗
i

(
v∗
i + β(t2)v∗

i
2
)

(
v∗
i + α(t2)u∗

i + β(t2)v∗
i
2
)2

h2(t2)
v∗
i

− c2(t2)u∗
i v

∗
i

(
1 + 2β(t2)v∗

i

)

(
v∗
i + α(t2)u∗

i + β(t2)v∗
i
2
)2

∣∣∣∣∣∣∣∣∣∣∣

= sign

⎡

⎢
⎣

(

−b(t1)u∗
i +

h1(t1)
u∗
i

)
⎛

⎜
⎝

h2(t2)
v∗
i

− c2(t2)u∗
i v

∗
i

(
1 + 2β(t2)v∗

i

)

(
v∗
i + α(t2)u∗

i + β(t2)v∗
i
2
)2

⎞

⎟
⎠

⎤

⎥
⎦

= sign

[
(
a(t1) − 2b(t1)u∗

i

)
(

h2(t2)
v∗
i

−
(
v∗
i d(t2) + h2(t2)

)(
1 + 2β(t2)v∗

i

)

c2(t2)u∗
i

(
h2(t2)
v∗
i

+ d(t2)

))]

,

(3.40)
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where deg{·, ·, ·} is the Brouwer degree, and u∗
i , v

∗
i are positive solution for (3.32) in Ωi,

respectively. And

h2(t2)
v∗
i

−
(
v∗
i d(t2) + h2(t2)

)(
1 + 2β(t2)v∗

i

)

c2(t2)u∗
i

(
h2(t2)
v∗
i

+ d(t2)

)

/= 0, (3.41)

otherwise, we have c2(t2)u∗
i h2(t2) = (1+2β(t2)v∗

i )(v
∗
i d(t2)+h2(t2))

2.After test and verification,
it is not possible. Thus

deg
{
JQN(z1, z2)T,Ω1 ∩ KerL, (0, 0)T

}

= deg
{
G(z1, z2)T,Ω1 ∩ KerL, (0, 0)T

}

= sign

[

(a(t1) − 2b(t1)x−)

(
h2(t2)
y−

−
(
y−d(t2) + h2(t2)

)(
1 + 2β(t2)y−

)

c2(t2)x−

(
h2(t2)
y−

+ d(t2)
))]

= −1,

deg
{
JQN(z1, z2)T,Ω2 ∩ KerL, (0, 0)T

}
= deg

{
G(z1, z2)T,Ω2 ∩ KerL, (0, 0)T

}

= sign

[

(a(t1) − 2b(t1)x+)

(
h2(t2)
y+

−
(
y+d(t2) + h2(t2)

)(
1 + 2β(t2)y+

)

c2(t2)x+

(
h2(t2)
y+

+ d(t2)
))]

= 1.
(3.42)

By now we have proved that Ωi (i = 1, 2) verifies all requirements of Lemma 2.5.
Therefore, system (1.3) has at least two ω-periodic solutions in DomL ∩ Ωi (i = 1, 2),
respectively. The proof is complete.

Corollary 3.2. If the conditions in Theorem 3.1 hold, then both the corresponding continuous model
(1.4) and the discrete model (1.5) have at least two ω-periodic solutions.

Remark 3.3. If β(t) ≡ 0 in system (1.3), then the system is a ratio-dependent predator-prey
model with Holling-type functional response and harvesting terms on time scales:

zΔ1 (t) = a(t) − b(t)ez1(t) − c1(t)ez2(t)

ez2(t) + α(t)ez1(t)
− h1(t)e−z1(t),

zΔ2 (t) = −d(t) + c2(t)ez1(t)

ez2(t) + α(t)ez1(t)
− h2(t)e−z2(t).

(3.43)

Therefore, we have the following results.

Corollary 3.4. If the conditions in Theorem 3.1 hold, then system (3.43) has at least two ω-periodic
solutions. Specifically, both the corresponding continuous model and the discrete model of the system
(3.43) have at least two ω-periodic solutions.
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Remark 3.5. If h1(t) ≡ 0, h2(t) ≡ 0 in system (1.3), then the system is a general ratio-dependent
predator-prey model with Beddington-DeAngelis functional response on time scales:

zΔ1 (t) = a(t) − b(t)ez1(t) − c1(t)ez2(t)

ez2(t) + α(t)ez1(t) + β(t)e2z2(t)
,

zΔ2 (t) = −d(t) + c2(t)ez1(t)

ez2(t) + α(t)ez1(t) + β(t)e2z2(t)
.

(3.44)

Using Lemma 2.5, we can obtain another important conclusion as follows.

Theorem 3.6. Assume that the following holds:

(i) aL > cM1 ,

(ii) cM2 > dLαL,

(iii) aL > cM1 /βL,

then system (3.44) has at least a positive ω-periodic solutions.

Corollary 3.7. If the conditions in Theorem 3.6 hold, then both the corresponding continuous model
and the discrete model of the system (3.44) have at least a positive ω-periodic solutions.
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