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1. Introduction

It is well known that Gompertz equation [1] describes the growth law for a single species.
The model reads as

dx(t)
dt

= rx(t) ln
K

x(t)
, (1.1)

where x(t) is the density of the population, r is a positive constant called the intrinsic growth
rate, the positive constant K is usually referred to as the environment carrying capacity or
saturation level, and r ln(K/x) denotes relative growth rate.

Many systems in physics, chemistry, biology, and information science have impulsive
dynamical behavior due to abrupt jumps at certain instants during the evolving processes.
This dynamical behavior can be modeled by impulsive differential equations. The theory of
impulsive differential systems has been developed by numerous mathematicians [2–4]. But
more realistic models should include some of the past states of these systems, that is, ideally,
a real system should be modeled by differential equations with time delays. Recently, the
investigation of impulsive delay differential equations is beginning [5–7].
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In this paper, we need to consider a function

φ(x) =
x2(t)

1 +mx2(t)
, (1.2)

which is called Holling III functional response. The coefficient m is a positive constant and its
biological meaning can be found in [8].

We introduce the model as follows:

dx(t)
dt

= rx(t) ln
K

x(t)
− x2(t)

1 +mx2(t)
y(t),

dy(t)
dt

= β
x2(t − τ)

1 +mx2(t − τ)
y(t − τ) − dy(t),

t /=nT, n ∈N,

Δx(t) = −px(t),
Δy(t) = 0,

t = nT, n ∈N,

(1.3)

where x(t) and y(t) are densities of the prey and the predator, respectively, r is the Gomportz
intrinsic growth rate of the prey in the absence of the predator, β is the conversion rate, d
is the death rate of the predator, τ is mean length of the digest period, and p (0 < p < 1)
represents impulsive harvest to preys by catching or pesticides at t = nT , n ∈N.

The initial conditions for system (1.3) are

(
φ1(s), φ2(s)

)
∈ C+ = C

(
[−τ, 0], R2

+

)
, φi(0) > 0 (i = 1, 2). (1.4)

From the biological point of view, we only consider system (1.3) in the biological
meaning region D = {(x, y) | x, y ≥ 0}.

All outline of this paper is as follows. We give some basic knowledge in Section 2.
In Section 3, using discrete dynamical system determined by the stroboscopic map, we
obtain the existence and global attractivity of the “predator-extinction” periodic solution. In
Section 4, with the theory of delay and impulsive different equations, we obtain the sufficient
condition for the permanence of the system. In the last section, we give the numerical
simulation and discussion.

2. Basic Knowledge

Let R+ = [0,∞), R2
+ = {x ∈ R2|x ≥ 0}, Ω = intR2

+, and N be the set of all nonnegative
integers. Denote that f =

(
f1, f2

)T is the map defined by the right-hand side of the first two
equations of system (1.3). Let V0 = {V : R+ ×R2

+ → R+, continuous on (nT, (n+ 1)T]×R2
+, and

lim(t,z)→ (nT+,x)V (t, z) = V (nT+, x) exist}.

Definition 2.1. Let V ∈ V0, then for (t, X) ∈ (nT, (n + 1)T] × R2
+, the upper right derivative of

V (t, x) with respect to the impulsive differential system (1.3) is defined as

D+V (t, X) = lim sup
h→ 0+

1
h

[
V
(
t + h,X + hf(t, x)

)
− V (t, X)

]
. (2.1)



Discrete Dynamics in Nature and Society 3

The solution of system (1.3) is a piecewise continuous function. The smoothness properties
of f guarantee the global existence and uniqueness of the solution of system (1.3) [9].

Lemma 2.2 (see [9]). Considering the following impulsive differential inequalities:

dm(t)
dt

≤ p(t)m(t) + q(t), t /= tk, k = 1, 2 . . . ,

m
(
w+

k

)
≤ dkm(tk) + bk, t = tk, t ≥ t0,

(2.2)

where p, q ∈ PC[R+, R] and dk ≥ 0, bk are constants, then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

t0

p(s)ds

)

+
∑

t0<tk<t

⎛

⎝
∏

tk<tj<t

dj exp

(∫ t

t0

p(s)ds

)⎞

⎠bk

+
∫ t

t0

∏

s<tk<t

dk exp

(∫ t

s
p(σ)dσ

)

q(s)ds, t ≥ t0.

(2.3)

Lemma 2.3. There exists a constant L = βrK(Ked/r − 1)/d > 0 such that x(t) ≤ K and y(t) ≤ L
for each solution of system (1.3) with t large enough.

Proof. Define

V (t) = βx(t) + y(t + τ), (2.4)

then V ∈ V0. Since dx/dt ≤ rx(t) ln(K/x(t)), dx/dt|x=K = 0; in addition, x(nT+) ≤ x(nT).
Thus x(t) ≤ K for t large enough.

We calculate the upper right derivative of V (t) along a solution of system (1.3) as

D+V (t) + dV (t) ≤ βx(t)r ln
Ked/r

x(t)

= βx(t)r ln Ked/r

≤ βrK
(
Ked/r − 1

)
.

(2.5)

So we have that

D+V (t) ≤ −dV (t) +M, t/=nT, n ∈N,

V (t+) ≤ V (t), t = nT, n ∈N.
(2.6)
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By Lemma 2.2, for t ∈ (nT, (n + 1)T], we have that

V (t) =

(

V (0+) −
βrK

(
Ked/r − 1

)

d

)

exp(−dt) +
βrK

(
Ked/r − 1

)

d
,

lim
t→∞

V (t) ≤
βrK

(
Ked/r − 1

)

d
.

(2.7)

So, V (t) is ultimately bounded. Therefore by the definition of V (t), there exists a constant
L = βrK(Ked/r − 1)/d > 0 such that x(t) ≤ K and y(t) ≤ L for each solution of system (1.3)
with t large enough. This completes the proof.

Lemma 2.4 (see [10]). Consider a delay equation

ẋ(t) = ax(t − τ) − bx(t), (2.8)

where a, b, τ are all positive constants and x(t) > 0 for −τ ≤ t ≤ 0. Thus one has the following.

(1) If a > b, then limt→∞x(t) = +∞.

(2) If a < b, then limt→∞x(t) = 0.

3. “Predator-Extinction” Periodic Solution

3.1. Existence of a “Predator-Extinction” Periodic Solution

First, we begin analyzing the existence of a “predator-extinction” solution, in which predator
is absent from the system, that is,

y(t) = 0, t ≥ 0. (3.1)

In this condition, we know the growth of the prey in the time-interval nT ≤ t ≤ (n+1)T
and give some basic properties of the following subsystem of (1.3):

dx(t)
dt

= rx(t) ln
K

x(t)
, t /=nT, n ∈N,

Δx(t) = −px(t), t = nT, n ∈N.

(3.2)

For system (3.2), we let �(t) = lnx(t) and obtain a linear nonhomogeneous impulsive
equation

d�(t)
dt

= −r�(t) + r ln K, t /=nT, n ∈N,

Δ�(t) = ln
(
1 − p

)
, t = nT, n ∈N.

(3.3)
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Solving the first equation of system (3.3) between pulses yields

�(t) = ln K + (�((n − 1)T) − lnK)e−r(t−(n−1)T), (n − 1)T < t ≤ nT. (3.4)

For the second equation of system (3.3), using discrete dynamical system determined
by the stroboscopic map yields

�(nT) = ln K + (�((n − 1)T) − lnK)e−rT + ln
(
1 − p

)
=: f(�(n − 1)T), (3.5)

where f(�) = lnK + (� − lnK)e−rT + ln(1 − p). From (3.5), we can see that this difference
system has an equilibrium �∗0 = lnK + ln(1 − p)/(1 − e−rT ), which implies that system (3.3)
has a unique T-periodic solution

�∗(t) = ln K +
(
�∗0 − ln K

)
e−r(t−(n−1)T), (n − 1)T < t ≤ nT. (3.6)

Since x∗0 = e�
∗
0 , then x∗(t) = e�

∗(t) is the unique positive T-periodic solution of (3.2).
In the following, we will prove that x∗(t) is globally asymptotically stable. By

Lemma 2.3, we find that any solution of (3.2) is ultimately upper bounded, so we need only
to prove that

lim
t→∞
|�(t) −�∗(t)| = 0, (3.7)

where �∗(t) is the periodic solution of system (3.3) Suppose that with lnx∗(0) = ln x∗0 =
�∗(0) = �∗0 .

|�(t) −�∗(t)| =
∣∣�(0) −�∗0

∣∣e−rt ≤ e−(n−1)rT , (3.8)

since limt→∞e
−(n−1)rT = 0; thus, limt→∞|�(t) −�∗(t)| = 0.

Theorem 3.1. System (3.2) has unique a positive periodic solution x∗(t) which is globally
asymptotically stable. That is, system (1.3) has a “predator-extinction” periodic solution (x∗(t), 0)
for t ∈ (nT, (n + 1)T], n ∈N.

3.2. Global Attractivity of the “Predator-Extinction” Periodic Solution

Denote that

R1 =
βK2

d
[
mK2 + exp

(
2 ln
(
1/1 − p

))
/
(
exp(rT) − 1

)] . (3.9)

Theorem 3.2. If R1 < 1, then the “predator-extinction” periodic solution (x∗(t), 0) of system (1.3)
is globally attractive.
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Proof. We denote that (x(t), y(t)) be any solution of system (1.3) with initial condition (1.4).
From the second equation of system (1.3), we have that

dy(t)
dt

≤
β

m
y(t − τ) − dy(t). (3.10)

We consider the following comparison equation:

dz(t)
dt

=
β

m
z(t − τ) − dz(t). (3.11)

If β/m − d < 0, then R1 < 1; according to Lemma 2.4, we obtain limt→∞z(t) = 0.
Since y(s) = z(s) = φ2(s) > 0 for all s ∈ [−τ, 0], by the comparison theorem in

differential equation and the positivity of the solution, we have that y(t) → 0 as t → ∞.
In the following, we suppose that β/m ≥ d. Since R1 < 1, we have that

βK2 exp
(
2 ln
(
1 − p

)
/
(
exp(rT) − 1

))

1 +mK2 exp
(
2 ln
(
1 − p

)
/
(
exp(rT) − 1

)) − d < 0. (3.12)

Because the function x2/(1 + mx2) is monotonically increasing with respect to x, we
choose a sufficiently small positive constant ε such that

β
[
K exp

(
ln
(
1 − p

)
/
(
exp(rT) − 1

))
+ ε
]2

1 +m
[
K exp

(
ln
(
1 − p

)
/
(
exp(rT) − 1

))
+ ε
]2 − d < 0. (3.13)

Noting that dx(t)/dt ≤ rx(t) ln(K/x(t)), Δx(t) = −px(t) for nT < t ≤ (n + 1)T , then
we consider the following comparison system:

dz(t)
dt

= rz(t) ln
K

z(t)
, t /=nT, n ∈N,

z(t+) =
(
1 − p

)
z(t), t = nT, n ∈N,

z(0+) = x(0+).

(3.14)

From Section 3.1, we see that

z∗(t) = exp

{

ln K +
ln
(
1 − p

)

1 − e−rT
e−r(t−(n−1)T)

}

(n − 1)T < t ≤ nT, (3.15)

which is unique a globally asymptotically stable positive T-periodic solution of system (3.14).
There exist a positive integer n1 and an arbitrarily small positive constant ε for all

t ≥ n1T such that

x(t) ≤ z∗(t) + ε ≤ exp

{

ln K +
ln
(
1 − p

)

1 − e−rT
e−rT
}

+ ε =: σ. (3.16)
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From (3.16) and the second equation of system (1.3), for t > n1T + τ we have

dy(t)
dt

≤
βσ2

1 +mσ2
y(t − τ) − dy(t). (3.17)

Considering the following comparison equation:

dz(t)
dt

=
βσ2

1 +mσ2
z(t − τ) − dz(t), (3.18)

we can see (3.13), that is, βσ2/(1+mσ2) < d; according to Lemma 2.4, we obtain limt→∞z(t) =
0.

Since y(s) = z(s) = φ2(s) > 0 for all s ∈ [−τ, 0], by the comparison theorem in
differential equation and the positivity of the solution, we have that y(t) → 0 as t → ∞.

Next, we will prove that x(t) → x∗(t) as t → ∞. Without loss of generality, we may
assume that 0 < y(t) ≤ ε for all t ≥ 0. By the first equation of system (1.3), we have that

dx(t)
dt

≥ rx(t) ln
K

x(t)
− x2(t)y(t)

≥ rx(t) ln
K

x(t)
−Kx(t)ε

≥ rx(t) ln
Ke−Kε/r

x(t)
.

(3.19)

Then we have that z̃1(t) → x∗(t) as ε → 0 as t → ∞, where z̃1(t) is unique a positive
solution of

dz1(t)
dt

= rz1(t) ln
Ke−Kε/r

z1(t)
, t /=nT, n ∈N,

z1(t+) =
(
1 − p

)
z1(t), t = nT, n ∈N,

z1(0+) = x(0+).

(3.20)

From Section 3.1, we obtain

z̃1(t) = exp

{

ln
(
Ke−Kε/r

)
+

ln
(
1 − p

)

1 − e−rT
e−r(t−nT)

}

, nT < t ≤ (n + 1)T. (3.21)

By using comparison theorem of impulsive differential equation [11], for any ε1 > 0,
there exists T1 > 0 and such that t > T1

x(t) > z̃1(t) − ε1. (3.22)

On the other hand, from the first equation of (1.3), we have that dx(t)/dt ≤ rx(t) ln(K/x(t)).
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Table 1: Critical values of some parameters of system (1.3) (R1 < 1 must be satisfied).

The conditions for global attractivity of (x∗(t), 0)

p > p∗ p∗ = 1 − 1/

√√
√
√
(

βK2

d
−mK2

)erT−1

T < T ∗ T ∗ =
1
r

ln

[

1 −
ln
(
1 − p

)2

ln(βK2/d −mK2)

]

m > m∗ m∗ =
β

d
− 1
K2

exp

(
− ln
(
1 − p

)2

erT − 1

)

Considering the following comparison system:

dz2(t)
dt

= rz2(t) ln
K

z2(t)
, t /=nT,

z2(t+) =
(
1 − p

)
z2(t), t = nT,

z2(0+) = x(0+),

(3.23)

we have that

z̃2(t) = exp

{

ln K +
ln
(
1 − p

)

1 − e−rT
e−r(t−nT)

}

, nT < t ≤ (n + 1)T, (3.24)

x(t) < z̃2(t) + ε1, (3.25)

as t → ∞ and z̃2(t) = x∗(t). Let ε1 → 0, then it follows from (3.22) and (3.25), that we can
see x∗(t)− ε1 < x(t) < x∗(t)+ ε1 for t large enough, which implies x(t) → x∗(t) as t → ∞. The
proof is completed.

Now, we give the following theorem.

Theorem 3.3. (1) If β/m < d, then the “predator-extinction” periodic solution (x∗(t), 0) is globally
attractive.

(2) If β/m ≥ d and p > p∗, T < T ∗, m > m∗, then the “predator-extinction” periodic solution
(x∗(t), 0) is globally attractive, where the critical values p∗, T ∗,m∗ are listed in Table 1.

4. Permanence

In the above section, we have proved that, when p > p∗, T < T ∗, or m > m∗, the “predator-
extinction” periodic solution (x∗(t), 0) is globally attractive. But in natural world, the predator
cannot be eradicated totally. In order to save resources, we need to keep the prey and predator
coexisting when the prey does not bring about immense economic losses. Next, we will
discuss the permanence of system (1.3).
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Definition 4.1. System (1.3) is said to be uniformly persistent if there are positive constants
mi (i = 1, 2) and a finite time T0 such that for all solutions (x(t), y(t)) with initial values
x(0+) > 0, y(0+) > 0, x(t) ≥ m1, and y(t) ≥ m2 hold for all t > T0.

Definition 4.2. System (1.3) is said to be permanent if there exists a compact region D ⊂ intΩ,
such that every solution of system (1.3) with initial condition (1.4) will eventually enter and
remain in region D.

Denote that

R2 =
βK2

d
[
mK2 + exp

(
2 ln
(
1/1 − p

)
/
(
1 − exp(−rT)

))] . (4.1)

Theorem 4.3. If R2 > 1, then there exist two positive constants m1 and m2 such that x(t) ≥ m1,
y(t) ≥ m2 for t large enough, that is, system (1.3) is uniformly persistent.

Proof. Suppose that (x(t), y(t)) is any positive solution of system (1.3) with initial condition
(1.4). From Lemma 2.3, we know that x(t) ≤ K, y(t) ≤ L.

Firstly, from the first equation of system (1.3), we know that dx(t)/dt ≥
rx(t) ln(Ke−KL/r/x(t)). Now, we consider the following equation:

dz3(t)
dt

= rz3(t) ln
Ke−KL/r

z3(t)
, t /=nT, n ∈N,

z3(t+) =
(
1 − p

)
z3(t), t = nT, n ∈N,

z3(0+) = x(0+).

(4.2)

therefore we have that

z̃3(t) = exp

{

ln Ke−KL/r +
ln
(
1 − p

)

1 − e−rT
e−r(t−nT)

}

nT < t ≤ (n + 1)T. (4.3)

There exists a ε > 0 small enough such that, for sufficiently large t,

x(t) > z̃3(t) − ε ≥ exp

{

ln
(
Ke−KL/r

)
+

ln
(
1 − p

)

1 − e−rT

}

− ε =: m1. (4.4)

Secondly, we will find m2 such that y(t) ≥ m2.
The second equation of system (1.3) may be rewritten as follows:

dy(t)
dt

=

(
βx2(t)

1 +mx2(t)
− d
)

y(t) − d

dt

∫ t

t−τ

βx2(θ)
1 +mx2(θ)

y(θ). (4.5)
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Define

V (t) = y(t) +
∫ t

t−τ

βx2(θ)
1 +mx2(θ)

y(θ). (4.6)

Calculating the derivative of V (t) along the solution of (1.3), it follows from (4.5) that

dV (t)
dt

= β
x2(t − τ)

1 +mx2(t − τ)
y(t − τ) − dy(t) +

βx2(t)
1 +mx2(t)

y(t) −
βx2(t − τ)

1 +mx2(t − τ)
y(t − τ)

= d

(
β

d

x2(t)
1 +mx2(t)

− 1

)

y(t).

(4.7)

Since R2 > 1, then we can deduce that

r

2K

[
2 ln
(
1 − p

)

1 − e−rT
+ ln
(
K2
(
β

d
−m
))]

> 0. (4.8)

Hence, we choose two positive constants m∗2 and ε1 small enough such that

β

d

ζ2

1 +mζ2
> 1, (4.9)

where

ζ = K exp
{
−
Km∗2
r

}
· exp

{
ln
(
1 − p

)

1 − e−rT

}

− ε1 > 0,

0 < m∗2 <
r

2K

[
2 ln
(
1 − p

)

1 − e−rT
+ ln
(
K2
(
β

d
−m
))]

.

(4.10)

In the following, we will find m2 such that y(t) ≥ m2. There are two cases.
(1) We claim that the inequality y(t) < m∗2 cannot hold for all t > t1 (t1 > 0); otherwise,

there is a positive constant t1 such that y(t) < m∗2 for all t > t1.
From the first equation of system (1.3), we have that

dx(t)
dt

≥ rx(t) ln
Ke−Km∗2/r

x(t)
. (4.11)



Discrete Dynamics in Nature and Society 11

We have that x(t) ≥ z̃4(t), where z̃4(t) is unique a positive solution of

dz4(t)
dt

= rz4(t) ln
Ke−Km∗2/r

z4(t)
, t /=nT, n ∈N,

z4(t+) =
(
1 − p

)
z4(t), t = nT, n ∈N,

z4(0+) = x(0+).

(4.12)

From Section 3.1, we have that

z̃4(t) = exp

{

ln Ke−Km∗2/r +
ln
(
1 − p

)

1 − e−rT
e−r(t−nT)

}

nT < t ≤ (n + 1)T. (4.13)

By comparison theory [11], for any ε1 > 0, there exists a T1 > 0, for t > T1, such that

x(t) > z̃4(t) − ε1 ≥ exp

{

ln Ke−Km∗2/r +
ln
(
1 − p

)

1 − e−rT

}

− ε1 =: ζ. (4.14)

From (4.7) and (4.14), we have that

dV (t)
dt

≥ d

(
β

d

ζ2(t)
1 +mζ2(t)

− 1

)

y(t), t ≥ T1. (4.15)

Denote that

yl = min
t∈[T1,T1+τ]

y(t). (4.16)

We show that y(t) ≥ yl for all t ≥ T1. Otherwise, there exists a nonnegative constant T2

such that y(t) ≥ yl, for t ∈ [T1, T1 + τ + T2), y(T1 + τ + T2) = yl and ẏ(T1 + τ + T2) ≤ 0.
Thus, from the second equation of (1.3) and (4.12), (4.14), we can see that

dy(T1 + τ + T2)
dt

>

(

β
ζ2

1 +mζ2
− d
)

yl = d

(
β

d

ζ2

1 +mζ2
− 1

)

yl > 0, (4.17)

which is a contradiction to y(t) ≤ L. Hence we get that y(t) ≥ yl > 0 for all t ≥ T1. Meanwhile,
we can see that dV (t)/dt > 0, which implies that V (t) → ∞, t → ∞.

This is a contradiction to V (t) ≤ (1 + βτK)L. Thus, for any positive constant t1, the
inequality y(t) ≤ m∗2 cannot hold for all t ≥ t1.

(2) If y(t) ≥ m∗2 holds for all t large enough, then our aim is obtained. Otherwise, y(t)
is oscillatory about m∗2. Let m2 = min{m∗2/2, m∗2e

−dτ}.
We will prove that y(t) ≥ m2. There exist two positive constants t, χ such that y(t) =

y(t + χ) = m∗2 and y(t) < m∗2 for t ∈ [t, t + χ].
When t is large enough, the inequality x(t) > σ holds true for t ∈ [t, t + χ].
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Table 2: Critical values of some parameters of system (1.3) (R2 > 1 must be satisfied).

The conditions for the permanence of system (1.3)

p < p∗ p∗ = 1 − 1/

√√
√
√
(

βK2

d
−mK2

)1−e−rT

T > T∗ T ∗ = −1
r

ln

[

1 +
ln
(
1 − p

)2

ln(βK2/d −mK2)

]

m < m∗ m∗ =
β

d
− 1
K2

exp

{
− ln
(
1 − p

)2

1 − e−rT

}

Since y(t) is continuous and bounded and does not have impulsive effort, we conclude
that y(t) is uniformly continuous. There exist a constant T3 (0 < T3 < τ and T3 is independent
to t) such that y(t) > m∗2/2 for all t ∈ [t, t + T3].

If χ < T3, then our aim is obtained.
If T3 < χ ≤ τ , from the second equation of (1.3), we have that dy(t)/dt ≥ −dy(t) for

t ∈ [t, t + χ], and then we have that y(t) ≥ m∗2e
−dτ for t < t ≤ t + χ ≤ t + τ . Therefore, y(t) ≥ m2

for t ∈ [t, t + τ].
If χ > τ , by the second equation of system (1.3), we have that y(t) ≥ m2 for t ∈ [t, t+τ],

the same as above claim; we can obtain y(t) ≥ m2 for t ∈ [t + τ, t + χ].
Since the interval [t, t+χ] is arbitrarily chosen, we get that y(t) ≥ m2 for t large enough.
This proof is complete.

Theorem 4.4. If R2 > 1, then system (1.3) is permanent.

Proof. Suppose that (x(t), y(t)) is any solution of system (1.3) with initial condition (1.4). By
Theorem 4.3, there exist positive constants m1, m2, and T ′ such that x(t) ≥ m1, y(t) ≥ m2 for
t ≥ T ′. Set

D =
{(

x, y
)
∈ R2

+ | m1 ≤ x(t) ≤ K,m2 ≤ y(t) ≤ L
}
. (4.18)

Then D is a bounded compact region and D ⊂ intΩ. By Theorem 4.3, every solution of
system (1.3) with initial condition (1.4) eventually enters and remains in region D.

The proof is complete.

Theorem 4.5. If p < p∗, T > T∗, orm < m∗, then system (1.3) is permanent, where the critical values
p∗, T∗, m∗ are listed in Table 2.

5. Numerical Simulation and Discussion

In this paper, we introduce and discuss a predator-prey system model with Holling III
response functional under time delay on the predator and impulsive perturbations on the
prey. From Section 3, there exists a predator-extinction periodic solution of system (1.3); when
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Figure 1

R1 < 1, the predator eradication periodic solution is globally attractive. From Section 4, when
R2 > 1, system (1.3) is permanent.

In the following, we will analyze the influence of them on the dynamics of system
(1.3). We consider the hypothetical set of parameter values as r = 1.5, K = 2, β = 0.6, d = 0.4,
and τ = 0.

Figure 1 is the dynamical behavior of system (1.3) with r = 1.5, K = 2, β = 0.6, d = 0.4,
τ = 0, p = 0.5, T = 0.45, and R1 = 0.9658214856 < 1. (a) is the timeseries of prey population
(x) for periodic oscillation; (b) is the timeseries of population (y) for extinction; (c) is the
phase portrait of the prey and the predator population for global attractivity of the “predator-
eradication” periodic solution.

Figure 2 is the dynamical behavior of system (1.3) with r = 1.5, K = 2, β = 0.6, d = 0.4,
τ = 0, p = 0.2, T = 1, and R2 = 2.083554740 > 1. (a) is the timeseries of prey population (x) for
permanence; (b) is the timeseries of population (y) for permanence; (c) is the phase portrait
(T-periodic solution) of the prey and the predator population of system (1.3).

By Theorems 3.2 and 4.3, we know that, when R1 = 0.9658214856 < 1, the “predator-
eradication” periodic solution is globally attractive (Figure 1); when R2 = 2.083554740 > 1,
system (1.3) is permanence (Figures 2(a) and 2(b)).
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In Figure 1(b), we know that the predator population dies ultimately; we know that,
although impulsive catching is larger or the period of pulsing is shorter, we kill the prey
largely, and the predator population will decrease largely. It is very difficult for it to prey on
prey; the predator can die out earlier than the prey. From Figure 2, we suppose that a smaller
impulsive catching rate or a longer period can cause the prey and predator populations to
coexist.
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