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1. Introduction

Consider the initial-value problem for the semiclassical limit of defocusing nonlinear
Schrödinger equation (DFNLS) in one space dimension

iε
∂u

∂t
+
ε2

2
uxx − λ|u|2u = 0 (x ∈ Ω, t > 0),

u0(x) = A0(x)eiS0(x)/ε,

(1.1)

where i2 = −1, the domain Ω is an open set in R, u(x, t) is the complex-valued wave function,
0 < ε � 1 is the scaled Planck constant, and λ ≥ 0 is a real constant. A0(x) is given with the
initial amplitude and S0(x) is the real initial phase function with A0(x) and S′0(x) decaying
rapidly as |x| → ∞. To avoid boundary effects and obtain enough information of statistics,
we compute the solution in a sufficiently large interval [−M,M].
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The DFNLS (1.1) has infinitely many conservation laws (see, e.g., [1–3]), two of which
are

∂tρ + ∂xJ = 0,

∂tJ + ∂x

(
J2

ρ

)
+

1
2
∂x
(
ρ2
)
=
ε2

4
∂x
(
ρ∂2

x log ρ
)
,

(1.2)

where ρ (the position density) and J (the current density) are primary physical quantities
and can be computed from the wave function u(x, t):

ρ(x, t) = |u(x, t)|2,

J(x, t) = εIm
(
u(x, t)ux(x, t)

)
,

(1.3)

where “−“ denotes complex conjugation. The two conservation laws can also be denoted by
the L2 norm and energy density conservation laws

‖u(·, t)‖2 =
∫
R

|u(x, t)|2dx = ‖u0(x)‖2,

E(·, t) = ε2

2

∫
R

|ux(x, t)|2dx +
λ

2

∫
R

|u(x, t)|4dx,
(1.4)

where ‖ · ‖ is the standard L2-norm in R.
The DFNLS is connected with many applications in science and technology. One of the

most important applications of the semiclassical limit of (1.1) arises in nonlinear optics [4],
in particular regarding the production and propagation of laser pulses in fiber optics. Here ε
depends on the dimensions on the problem (amplitude of the initial pulse, dimensions of the
fiber, etc.). Another application appears in the study of the so-called Bose-Einstein condensate
[5, 6], where ε now does represent the Planck constant.

The limit ε → 0 is called the semiclassical limit and considerable attention has been
given recently to the investigation of its existence and structure [7–11]. The dynamics of the
limit is an open problem. Wright et al. have provided the exact solution of the geometric optics
approximation of the defocusing nonlinear Schrödinger equation in [12]. Much progress has
been made recently in understanding semiclassical limits of the linear Schrödinger equation.
Particularly by the introduction of tools from microlocal analysis, such as defect measures
[13], H-measures [14], and Wigner measures [15, 16].

Numerically this is a notoriously difficult problem. The oscillatory nature of the
solutions of the nonlinear Schrödinger equation with small ε provides severe numerical
burdens. Even for stable numerical approximations (or under mesh size and time step
restrictions which guarantee stability), the oscillations may very well pollute the solution
in such a way that the quadratic macroscopic quantities and other physical observables
come out completely wrong unless the spatial-temporal oscillations are fully resolved
numerically. For a long-time considerable consideration has been given to this problem by
many researchers. In [17, 18], Markowich et al. utilized the Wigner measure in analyzing
the semiclassical limit for the the linear Schrödinger equation with small ε, to study
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the finite difference approximation. In [19, 20], Bao et al. simulated the solution by the time-
splitting spectral approximation for the linear and nonlinear Schrödinger equation. Hector D.
Ceniceros presented the semiclassical limit of the focusing nonlinear Schrödinger equation by
moving mesh method [21] and Ceniceros and Tian studied it by nonlinear Fourier filtering
method in [22]. But there are few research on DFNLS.

The purpose of this paper is to provide an effective numerical method to solve
the DFNLS with small parameter ε. In space direction, we use Fourier spectral method,
and in time direction we use difference method. In the case that the space direction has
spectral accuracy, we expect to improve the computational efficiency by increasing the time
step, which is beneficial to the numerical simulation and the discussion on the long-time
behavior of this problem. In numerical computation, for one thing, because of the strong
nonlinear character of (1.1), the numerical stability cannot be completely ensured by the
traditional numerical methods. For another thing, because of the oscillation of high frequency
of the solution of this equation, an ideal discretization of space and time should decompose
bordering surface precisely. Hence a high resolution ratio of space is needed, and very small
time step must be used to satisfy the demands of computational stability if we take standard
explicit or semi-implicit scheme. When ε is very small, the explicit treatment for nonlinear
item λ|u2|u usually causes strict restriction on time step, and it is not practical to have a
long-time computation in this case. To relax restriction of this kind of problem, we provide
a semi-implicit difference Fourier spectral method. That is to say, to improve the stability
of algorithm, we add a routine item to the semi-implicit scheme where a larger time step is
allowed in the numerical experiment [23–25]. First, for the treatment of time discretization,
the semi-implicit scheme is used. Second, for the second-order item in (1.1), the implicit
scheme is employed to reduce the restriction on time step. Third, for the nonlinear item,
the explicit scheme is used to avoid solving systems of nonlinear equations at each time step
as this explicit treatment can be computed by FFT. We expect that the computation will be
easy, large time step is allowed in the solution procedure, and the numerical stability can be
guaranteed at the same time.

The organization of this paper is as follows. In Section 2, a theoretical analysis for
the semi-implicit method is provided, and the first-order time-stepping method stability
properties are investigated. The second-order semi-implicit methods are mainly investigated
in Section 3. Full discretization schemes and accuracy tests are presented in Section 4. Finally,
some computational results are given in Section 5.

2. Stability Analysis for First-Order Time Discretization for (1.1)

In this section, we present Fourier spectral approximations of the problem (1.1) with periodic
boundary conditions.

We define periodic Sobolev space as

Hs(Ω) =
{
v(x, t) ∈ Hs

loc(Ω) | v(x + L, t) = v(x, t)
}
. (2.1)

Define inner product and norm as

(u, v) =
∫
Ω
uv dx, ‖v‖2 = (v, v). (2.2)
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For any 1 ≤ p ≤ ∞, let Lp(Ω) = {v | ‖v‖Lp <∞}, where

‖v‖Lp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫
Ω
|v|qdx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Ω
|v(x)|, p =∞.

(2.3)

First we consider the classical first-order semi-implicit method, the scheme is obtained
by combining first-order backward difference (BD1) for ∂u/∂t and a first-order extrapolation
(EP1) for the nonlinear item at the same time

iε
un+1 − un

�t +
ε2

2
un+1
xx − λ|un|

2un = 0 (n > 0), (2.4)

where �t is the time-step and tn = n�t, un is an approximation to u(x, tn).
We expect that the implicit treatment for the second-order item uxx in (2.4) can relax

the restriction on time step. And we notice that it will not increase the complexity of the
algorithm through the spectral method because the second-order item here is complete linear.
In Section 4, it is showed that large step is not allowed in scheme (2.4) when ε is small. That
is to say, to guarantee the stability, a very small time step must be used to get the precise
solution. To overcome this shortage, we add an item to the scheme and have the following
modified scheme (BD1/EP1):

iε
un+1 − un

�t +
ε2

2
un+1
xx −A

(
un+1 − un

)
− λ|un|2un = 0 (n > 0), (2.5)

where A is an undetermined positive constant, which will be given in the following results.
The purpose of adding an item is to improve the stability of the original scheme, and a larger
time step can be allowed in the computation.

As we can see, (2.5) can be denoted as the following weak form:

iε

(
un+1 − un

�t , v

)
− ε

2

2

(
un+1
x , vx

)
−A
(
un+1 − un, v

)
− λ
(
|un|2un, v

)
= 0, ∀v ∈ H1(Ω).

(2.6)

Theorem 2.1. If A in (2.5) is sufficiently large, the following energy inequality holds:

E
(
un+1

)
≤ E(un), (2.7)

where

E(un) =
ε2

2
‖unx‖

2 +
λ

2
‖un‖4

L4 . (2.8)
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More precisely, the positive constant A satisfies

A ≥ λ
2
|un|2 + λ

4

∣∣∣un+1 + un
∣∣∣2. (2.9)

Proof. Let v = 2(un+1 − un) in (2.6), take the real part of the result

ε2 Re
(
un+1
x , un+1

x − unx
)
+ 2 Re

(
A
(
un+1 − un

)
+ λ|un|2un, un+1 − un

)
= 0. (2.10)

Now we estimate the terms in (2.10), respectively,

2 ReA
(
un+1 − un, un+1 − un

)
= 2A

∥∥∥un+1 − un
∥∥∥2
,

ε2 Re
(
un+1
x , un+1

x − unx
)

= ε2 Re

(
un+1
x + unx

2
+
un+1
x − unx

2
, un+1

x − unx

)

=
ε2

2

∥∥∥un+1
x − unx

∥∥∥2
+
ε2

2

(∥∥∥un+1
x

∥∥∥2
− ‖unx‖

2
)
,

2λRe
(
|un|2un, un+1 − un

)

= 2λRe

(
|un|2,

(
un+1 + un

2
− u

n+1 − un

2

)(
un+1 − un

))

= λ
(
|un|2,

∣∣∣un+1
∣∣∣2 − |un|2 − ∣∣∣un+1 − un

∣∣∣2)

= λ

(∣∣un+1
∣∣2 + |un|2

2
−
∣∣un+1

∣∣2 − |un|2
2

,
∣∣∣un+1

∣∣∣2 − |un|2
)
− λ
∫
Ω
|un|2

∣∣∣un+1 − un
∣∣∣2dx

=
λ

2

(∥∥∥un+1
∥∥∥4

L4
− ‖un‖4

L4

)
− λ

2

∫
Ω

(∣∣∣un+1
∣∣∣2 − |un|2)2

dx − λ
∫
Ω
|un|2

∣∣∣un+1 − un
∣∣∣2dx.

(2.11)

From the inequality

∫
Ω

(∣∣∣un+1
∣∣∣2 − |un|2)2

dx ≤
∫
Ω

∣∣∣un+1 + un
∣∣∣2∣∣∣un+1 − un

∣∣∣2dx (2.12)

and the above estimations, we obtain

E
(
un+1

)
+
ε2

2

∥∥∥un+1
x − unx

∥∥∥2

+
∫
Ω

[
2A − λ

2

∣∣∣un+1 + un
∣∣∣2 − λ|un|2]∣∣∣un+1 − un

∣∣∣2dx ≤ E(un).
(2.13)
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The last term mentioned previously can be made nonnegative if the following
inequality holds:

A ≥ λ
2
|un|2 + λ

4

∣∣∣un+1 + un
∣∣∣2. (2.14)

Remark 2.2. From the proof of Theorem 2.1, we know that the selection of A in (2.14) depends
on solution of the equation in the (n + 1)th step. But essentially it is not difficult to choose a
suitable A. Actually, we can determine it approximately from the following expression:

A ≥ max
x∈Ω

{
3λ
2
|un(x)|2

}
. (2.15)

Remark 2.3. In numerical computation, condition (2.14) can be guaranteed by a posterior
method; that is, when computation of each step finishes, we check whether the condition
(2.14) is satisfied to guarantee the decrement or the conservation of discrete energy.

3. Higher-Order Methods for Semi-Implicit Time Discretization

3.1. Second-Order Scheme: BD2/EP2

Similar to the first-order scheme, Higher-Order time discretization can be constructed. For
example, by combining the second-order backward difference (BD2) for ∂u/∂t, and the
second-order extrapolation (EP2) for the explicit treatment of nonlinear item, we have the
following second-order scheme:

iε
3un+1 − 4un + un−1

2Δt
+
ε2

2
un+1
xx − λ

∣∣∣2un − un−1
∣∣∣2(2un − un−1

)
= 0, (3.1)

here we add an A-item similar to the item added in the first-order scheme, and expect that
this item can be consistent with the global order of the scheme and keep the scheme stable.
Therefore an O(�t2∂ttu) item is added in the above scheme, and we arrive at the following
modified second-order scheme (BD2/EP2):

iε
3un+1 − 4un + un−1

2Δt
+
ε2

2
un+1
xx −A

(
un+1 − 2un + un−1

)
− λ
∣∣∣2un − un−1

∣∣∣2(2un − un−1
)
= 0.

(3.2)

As usual, to start the iteration, u0(x) is given by the initial condition and u1(x) is computed
by the first-order scheme (2.5).

Equation (3.2) can also be denoted by the following weak form:

iε

(
3un+1 − 4un + un−1

2Δt
, v

)
− ε

2

2

(
un+1
x , vx

)
−A
(
un+1 − 2un + un−1, v

)

− λ
(∣∣∣2un − un−1

∣∣∣2(2un − un−1
)
, v

)
= 0, ∀v ∈ H1(Ω),

(3.3)

where A is a positive constant.
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Lemma 3.1. One has

Re
(

2un+1, 3un+1 − 4un + un−1
)
=
∥∥∥un+1

∥∥∥2
− ‖un‖2 +

∥∥∥2un+1 − un
∥∥∥2
−
∥∥∥2un − un−1

∥∥∥2

+
∥∥∥un+1 − 2un + un−1

∥∥∥2
.

(3.4)

Proof. We have

Re
(

2un+1, 3un+1 − 4un + un−1
)

= Re
(

2un+1, un+1 − un +
(

2un+1 − un
)
−
(

2un − un−1
))

= Re
(

2un+1, un+1 − un
)
+ Re

(
2un+1,

(
2un+1 − un

)
−
(

2un − un−1
))
,

Re
(

2un+1, un+1 − un
)

= Re
(
un+1 + un + un+1 − un, un+1 − un

)

=
∥∥∥un+1

∥∥∥2
− ‖un‖2 + Re

(
un+1 − un, un+1 − un

)
,

Re
(

2un+1,
(

2un+1 − un
)
−
(

2un − un−1
))

= Re
((

2un+1 − un
)
+
(

2un − un−1
)
− un + un−1,

(
2un+1 − un

)
−
(

2un − un−1
))

=
∥∥∥2un+1 − un

∥∥∥2
−
∥∥∥2un − un−1

∥∥∥2
+ Re

(
−un + un−1, 2un+1 − 3un + un−1

)

=
∥∥∥2un+1 − un

∥∥∥2
−
∥∥∥2un − un−1

∥∥∥2
+ Re

(
−un + un−1, 2

(
un+1 − un

)
−
(
un − un−1

))

=
∥∥∥2un+1 − un

∥∥∥2
−
∥∥∥2un − un−1

∥∥∥2
− 2 Re

(
un − un−1, un+1 − un

)
+ Re

(
un − un−1, un − un−1

)
,

(3.5)

then

Re
(

2un+1, 3un+1 − 4un + un−1
)

=
∥∥∥un+1

∥∥∥2
− ‖un‖2 +

∥∥∥2un+1 − un
∥∥∥2
−
∥∥∥2un − un−1

∥∥∥2
+ Re

(
un+1 − un, un+1 − un

)

− 2 Re
(
un − un−1, un+1 − un

)
+ Re

(
un − un−1, un − un−1

)

=
∥∥∥un+1

∥∥∥2
− ‖un‖2 +

∥∥∥2un+1 − un
∥∥∥2
−
∥∥∥2un − un−1

∥∥∥2
+
∥∥∥un+1 − 2un + un−1

∥∥∥2
.

(3.6)
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Lemma 3.2. One has

Re
(
un+1 − 2un + un−1, 3un+1 − 4un + un−1

)

=
∥∥∥un+1 − un

∥∥∥2
−
∥∥∥un − un−1

∥∥∥2
+ 2
∥∥∥un+1 − 2un + un−1

∥∥∥2
.

(3.7)

Theorem 3.3. Let {un(x), n = 1, 2, . . .} be the solution of the semidiscrete problem (3.2). The
corresponding generalized energy Ẽn is defined as follows:

Ẽn =
ε2

2

(
‖unx‖

2 +
∥∥∥2unx − un−1

x

∥∥∥2
)
+ 2A

∥∥∥un − un−1
∥∥∥2

+
λ

2

(
‖un‖4

L4 +
∥∥∥2un − un−1

∥∥∥4

L4

)
. (3.8)

Then, for large enough A, the following discrete energy inequality holds

Ẽn+1 ≤ Ẽn. (3.9)

Proof. Let v = −2(3un+1 − 4un + un−1) in (3.3), taking the real part of the result we have

ε2

2
Re
(
3un+1

x − 4unx + u
n−1
x , 2un+1

x

)
+ 2ARe

(
3un+1 − 4un + un−1, un+1 − 2un + un−1)

+ 2λRe
(

3un+1 − 4un + un−1,
∣∣∣2un − un−1

∣∣∣2(2un − un−1
))

= 0.

(3.10)

Using Lemmas 3.1 and 3.2, the first term of the left of (3.10) is

ε2

2
Re
(

3un+1
x − 4unx + u

n−1
x , 2un+1

x

)

=
ε2

2

(∥∥∥un+1
x

∥∥∥2
− ‖unx‖

2 +
∥∥∥2un+1

x − unx
∥∥∥2
−
∥∥∥2unx − un−1

x

∥∥∥2
+
∥∥∥un+1

x − 2unx + u
n−1
x

∥∥∥2
)
,

2ARe
(

3un+1 − 4un + un−1, un+1 − 2un + un−1
)

= 2A
(∥∥∥un+1 − un

∥∥∥2
−
∥∥∥un − un−1

∥∥∥2
+ 2
∥∥∥un+1 − 2un + un−1

∥∥∥2
)
,

(3.11)
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the third term of the left of (3.10) is

2λRe
(

3un+1 − 4un + un−1,
∣∣∣2un − un−1

∣∣∣2(2un − un−1
))

= λRe
(

3un+1 − 4un + un−1,
∣∣∣2un − un−1

∣∣∣22un+1
)

− 2λRe
(

3un+1 − 4un + un−1,
∣∣∣2un − un−1

∣∣∣2(un+1 − 2un + un−1
))

= λ
(∣∣∣2un − un−1

∣∣∣2, ∣∣∣un+1
∣∣∣2 − |un|2 + ∣∣∣2un+1 − un

∣∣∣2 − ∣∣∣2un − un−1
∣∣∣2 + ∣∣∣un+1 − 2un + un−1

∣∣∣2)

− 2λ
(∣∣∣2un − un−1

∣∣∣2, ∣∣∣un+1 − un
∣∣∣2 − ∣∣∣un − un−1

∣∣∣2 + 2
∣∣∣un+1 − 2un + un−1

∣∣∣2)

= λ
(∣∣∣2un − un−1

∣∣∣2, ∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2 + ∣∣∣un+1
∣∣∣2 − |un|2 − 3

∣∣∣un+1 − 2un + un−1
∣∣∣2)

− 2λ
(∣∣∣2un − un−1

∣∣∣2, ∣∣∣un+1 − un
∣∣∣2 − ∣∣∣un − un−1

∣∣∣2)

= I1 + I2 + I3 + I4,

(3.12)

I1 = λ
(∣∣∣2un − un−1

∣∣∣2, ∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2)

=
λ

2

(∣∣∣2un+1 − un
∣∣∣2 + ∣∣∣2un − un−1

∣∣∣2, ∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2)

− λ
2

(∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2, ∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2)

=
λ

2

(∥∥∥2un+1 − un
∥∥∥4

L4
−
∥∥∥2un − un−1

∥∥∥4

L4

)
− λ

2

∫
Ω

(∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2)2

dx,

I2 = λ
(∣∣∣2un − un−1

∣∣∣2, ∣∣∣un+1
∣∣∣2 − |un|2)

= λ
(∣∣∣un+1

∣∣∣2, ∣∣∣un+1
∣∣∣2 − |un|2) +

(∣∣∣2un − un−1
∣∣∣2 − ∣∣∣un+1

∣∣∣2, ∣∣∣un+1
∣∣∣2 − |un|2)

=
λ

2

(∣∣∣un+1
∣∣∣2 + |un|2, ∣∣∣un+1

∣∣∣2 − |un|2) +
λ

2

(∣∣∣un+1
∣∣∣2 − |un|2, ∣∣∣un+1

∣∣∣2 − |un|2)

+ λ
(∣∣∣2un − un−1

∣∣∣2 − ∣∣∣un+1
∣∣∣2, ∣∣∣un+1

∣∣∣2 − |un|2)

=
λ

2

(∥∥∥un+1
∥∥∥4

L4
− ‖un‖4

L4

)
+
λ

2

∫
Ω

(∣∣∣un+1
∣∣∣2 − |un|2)2

dx

+ λ
∫
Ω

(∣∣∣2un − un−1
∣∣∣2 − ∣∣∣un+1

∣∣∣2)(∣∣∣un+1
∣∣∣2 − |un|2)dx,
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I3 = −2λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2(∣∣∣un+1 − un

∣∣∣2 − ∣∣∣un − un−1
∣∣∣2)dx,

I4 = −3λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2∣∣∣un+1 − 2un + un−1

∣∣∣2dx,
(3.13)

from

Re
[
−2|a|2 + 2|b|2 − 2|a − b|2

]
= −4 Re[a(a − b)], (3.14)

we have

I3 + I4 = −2λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2(∣∣∣un+1 − un

∣∣∣2 − ∣∣∣un − un−1
∣∣∣2)dx

− 3λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2∣∣∣un+1 − 2un + un−1

∣∣∣2dx
= −4λRe

∫
Ω

∣∣∣2un − un−1
∣∣∣2(un+1 − un

)(
un+1 − 2un + un−1

)
dx

− λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2∣∣∣un+1 − 2un + un−1

∣∣∣2dx.
(3.15)

Using the definition of Ẽn and from the estimation of (3.11), (3.12), then

Ẽn+1 +
ε2

2

∥∥∥un+1
x − 2unx + u

n−1
x

∥∥∥2
+ r = Ẽn, (3.16)

where

r = 4A‖δttun‖2 +
λ

2

∫
Ω

(∣∣∣un+1
∣∣∣2 − |un|2)2

dx − λ
2

∫
Ω

(∣∣∣2un+1 − un
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2)2

dx

− λ
∫
Ω

(∣∣∣un+1
∣∣∣2 − ∣∣∣2un − un−1

∣∣∣2)(∣∣∣un+1
∣∣∣2 − |un|2)dx

− 4λRe
∫
Ω

∣∣∣2un − un−1
∣∣∣2(un+1 − un

)(
un+1 − 2un + un−1

)
dx

− λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2∣∣∣un+1 − 2un + un−1

∣∣∣2dx.

(3.17)

Obviously, (3.9) holds provided that r > 0. In the following we will show that r can be made
nonnegative if A is chosen large enough. To simplify we denote un+1 − 2un + un−1 by δttun. By
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simple calculation and applying Young’s inequality ab ≤ εa2 + b2/4ε (ε > 0), to the suitable
term, we get

r ≥ 4A‖δttun‖2 +
λ

2

∫
Ω

(∣∣∣un+1
∣∣∣2 − |un|2)2

dx

− λ
2

Re
∫
Ω

∣∣∣2un+1 + un − un−1
∣∣∣2∣∣∣un+1 − un + δttun

∣∣∣2dx
− λRe

∫
Ω

(
un+1 + 2un − un−1

)(
un+1 + un

)(
un+1 − u

)
δttu

ndx

− 4λRe
∫
Ω

∣∣∣2un − un−1
∣∣∣2(un+1 − un

)
δttu

ndx

− λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2|δttun|2dx

≥ 4A‖δttun‖2 +
λ

2

∫
Ω

∣∣∣(un+1 + un
)(
un+1 − un

)∣∣∣2dx
− λ

4

∫
Ω

∣∣∣(un+1 + un
)(
un+1 − un

)∣∣∣2dx − λ
∫
Ω

∣∣∣un+1 + 2un − un−1
∣∣∣2|δttun|2dx

− λε1

∫
Ω

∣∣∣2un+1 + un − un−1
∣∣∣2∣∣∣un+1 − un

∣∣∣2dx
− λ

4ε1

∫
Ω

∣∣∣2un+1 + un − un−1
∣∣∣2|δttun|2dx

− λε2

∫
Ω

∣∣∣2un − un−1
∣∣∣2∣∣∣un+1 − un

∣∣∣2dx
− 4λ
ε2

∫
Ω

∣∣∣2un − un−1
∣∣∣2|δttun|2dx

− λ
∫
Ω

∣∣∣2un − un−1
∣∣∣2|δttun|2dx,

(3.18)

that is,

r ≥
{

4A − λmax
x∈Ω

∣∣∣un+1 + 2un − un−1
∣∣∣2 −max

x∈Ω

λ

4ε1

∣∣∣2un+1 + un − un−1
∣∣∣2

− 4λ
ε2

max
x∈Ω

∣∣∣2un − un−1
∣∣∣2 − λmax

x∈Ω

∣∣∣2un − un−1
∣∣∣2}‖δttun‖2

+ λ
∫
Ω

(
1
4

∣∣∣un+1 + un
∣∣∣2 − ε1

∣∣∣2un+1 + un − un−1
∣∣∣2 − ε2

∣∣∣2un − un−1
∣∣∣2)∣∣∣un+1 − un

∣∣∣2dx.
(3.19)
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We choose ε1, ε2 such that the integral term in the above estimate is nonnegative, then
constant A holds

4A ≥ λmax
x∈Ω

{∣∣∣un+1 + 2un − un−1
∣∣∣2 + 1

4ε1

∣∣∣2un+1 + un − un−1
∣∣∣2

+
4
ε2

∣∣∣2un − un−1
∣∣∣2 + ∣∣∣2un − un−1

∣∣∣2}.
(3.20)

Under condition (3.20) on A, we have

Ẽn+1 ≤ Ẽn. (3.21)

This completes the proof of this theorem.

3.2. Third-Order Scheme: BD3/EP3

A third-order scheme for solving the semiclassical limit of the defocusing nonlinear
Schrödinger equation can be constructed in a similar manner as used in the subsection.
Specifically, we can obtain the BD3/EP3 scheme in the following form:

iε
11un+1 − 18un + 9un−1 − 2un−2

6Δt
+
ε2

2
un+1
xx −A

(
un+1 − 3un + 3un−1 − un−2

)

− λ
∣∣∣3un − 3un−1 + un−2

∣∣∣2(3un − 3un−1 + un−2
)
= 0 (n ≥ 2),

(3.22)

where, in order to start the iteration, u1, u2 are calculated via a first- and second-order scheme,
respectively. The stability analysis of the scheme (3.22) requires some very detailed energy
estimates and will not be presented here. The numerical results obtained in the next section
indicate that the third-order time discretization of type (3.22) is also stable as long as the
constant A is sufficiently large. But comparing with the lower-order scheme, the influence on
the stability from A-item in the third-order scheme is not very notable.

4. Full Discretization Scheme and Accuracy Tests

A complete numerical algorithm also requires a discretization strategy in space. Since Fourier
spectral method is one of the most suitable spatial approximation methods for periodic
problems [26–28], here we get the space discretization of semi-implicit scheme from different
time iteration schemes by this method.

Let

SN = span
{
ϕk(x) | −

N

2
≤ k ≤ N

2
− 1
}
. (4.1)
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We use the following Fourier transformations:

û(k, t) =
1
N

N−1∑
j=0

u
(
xj , t
)
e−ikxj , −N

2
≤ k ≤ N

2
− 1,

uN
(
xj , t
)
=

N/2−1∑
k=N/2

û(k, t)eikxj , 0 ≤ j ≤N − 1.

(4.2)

The expansion of (2.5) is required to satisfy the following weak form:

iε

(
un+1
N − unN

�t , v

)
− ε

2

2

(
un+1
Nx , vx

)
−A
(
un+1
N − unN, v

)
− λ
(∣∣unN∣∣2unN, v) = 0, ∀v ∈ SN.

(4.3)

Similarly, we have the full discretization Fourier spectral approximation of problem
(3.2):

iε

(
3un+1

N − 4unN + un−1
N

2Δt
, v

)
− ε

2

2

(
un+1
Nx , vx

)
−A
(
un+1
N − 2unN + un−1

N , v
)

− λ
(∣∣∣2unN − un−1

N

∣∣∣2(2unN − u
n−1
N

)
, v

)
= 0, ∀v ∈ SN.

(4.4)

The space discetization of BD3/EP3 (3.22) has a similar form.
It deserves to mention that the corresponding spectral coefficient ûn+1 can be fully

solved because all implicit items about un+1
N in (4.3) and (4.4) are linear.

Choosing test function v as the primary function e−ikx of SN , we obtain a system of
linear equations for each module k in Fourier space:

iε
ûn+1(k) − ûn(k)

�t − ε
2

2
k2ûn+1(k) −Aûn+1(k) = Aûn(k) + λ|ûn(k)|2ûn(k), (4.5)

The corresponding second-order BD2/EP2 scheme is as follows:

iε
3ûn+1(k) − 4ûn(k) + ûn−1(k)

2Δt
− ε

2

2
k2ûn+1(k) −Aûn+1(k)

= A
(

2ûn(k) − ûn−1(k)
)
+ λ
∣∣∣2ûn(k) − ûn−1(k)

∣∣∣2(2ûn(k) − ûn−1(k)
)
= 0.

(4.6)

Visibly solving (4.5) and (4.6) is efficient because we can solve the system of linear equations
determined by (4.5) and (4.6) through obtaining the inverse of a simple diagonal matrix.
For the problem of fully discretization (4.5) and (4.6) we derive two theorems similar to the
energy inequalities in Theorems 2.1 and 3.3 (its proof will be omitted here).
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Table 1: Stability comparison with different A and ε when λ = ε.

ε A BD1/EP1 BD2/EP2 BD3/EP3

ε = 0.1

A = 0 Δtc ≈ 0.29 Δtc ≈ 0.18 Δtc ≈ 0.05
A = 0.1 Δtc ≈ 1 Δtc ≈ 0.8 Δtc ≈ 0.1
A = 0.5 Δtc ≈ 2 Δtc ≈ 1 Δtc ≈ 0.3
A = 1 Δtc ≈ 3 Δtc ≈ 2 Δtc ≈ 0.5

ε = 0.01

A = 0 Δtc ≈ 0.09 Δtc ≈ 0.01 Δtc ≈ 0.001
A = 0.1 Δtc ≈ 0.5 Δtc ≈ 0.1 Δtc ≈ 0.002
A = 0.5 Δtc ≈ 1 Δtc ≈ 1 Δtc ≈ 0.008
A = 1 Δtc ≈ 2 Δtc ≈ 1 Δtc ≈ 0.01

ε = 0.001

A = 0 Δtc ≈ 0.05 Δtc ≈ 0.003 Δtc ≈ 0.0001
A = 0.1 Δtc ≈ 0.5 Δtc ≈ 0.01 Δtc ≈ 0.0004
A = 0.5 Δtc ≈ 1 Δtc ≈ 0.1 Δtc ≈ 0.009
A = 1 Δtc ≈ 2 Δtc ≈ 1 Δtc ≈ 0.001

Table 2: Numerical errors obtained by using the BD1/EP1, BD2/EP2, and BD3/EP3 with λ = ε = 0.0025
and N = 256.

A Δt BD1/EP1 BD2/EP2 BD3/EP3

A = 0

Δt = 0.01 0.498E − 2 unstable unstable
Δt = 0.005 0.25E − 2 0.86E − 4 unstable
Δt = 0.0025 0.13E − 2 0.26E − 4 unstable
Δt = 0.00125 0.70E − 3 0.71E − 5 unstable

A = 0.1

Δt = 0.01 0.23E − 2 0.35E − 3 unstable
Δt = 0.005 0.13E − 2 0.97E − 4 unstable
Δt = 0.0025 0.71E − 3 0.27E − 4 0.23E − 5
Δt = 0.00125 0.38E − 3 0.76E − 5 0.36E − 6

A = 0.5

Δt = 0.01 0.57E − 2 0.41E − 3 0.31E − 3
Δt = 0.05 0.29E − 2 0.12E − 3 0.47E − 4

Δt = 0.0025 0.15E − 2 0.34E − 4 0.71E − 5
Δt = 0.00125 0.77E − 3 0.87E − 5 0.98E − 6

Theorem 4.1. Consider the numerical scheme (4.3), if

A ≥ λ
2
∣∣unN∣∣2 + λ

4

∣∣∣un+1
N + unN

∣∣∣2, (4.7)

the solution of (4.3) satisfies

E
(
un+1
N

)
≤ E
(
unN
)
, ∀n ≥ 0, (4.8)

where

E
(
unN
)
=
ε2

2
∥∥unNx

∥∥2 +
λ

2
∥∥unN∥∥4

L4 . (4.9)



Discrete Dynamics in Nature and Society 15

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ

t = 0.5, ε = 0.0025

−8 −6 −4 −2 0 2 4 6 8

x

A = 0,Δt = 0.001
A = 0.1,Δt = 0.01

0

1

2

3

4

5

6

7
×10−5

t = 0.5, ε = 0.0025

J

−8 −6 −4 −2 0 2 4 6 8

x

A = 0,Δt = 0.001
A = 0.1,Δt = 0.01

(a)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ

t = 1.5, ε = 0.0025

−8 −6 −4 −2 0 2 4 6 8

x

A = 0,Δt = 0.001
A = 0.1,Δt = 0.01

0

1

2

3

4

5

6

7
×10−5

t = 1.5, ε = 0.0025

J

−8 −6 −4 −2 0 2 4 6 8

x

A = 0,Δt = 0.001
A = 0.1,Δt = 0.01

(b)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ρ

t = 10, ε = 0.0025

−8 −6 −4 −2 0 2 4 6 8

x

A = 0,Δt = 0.002
A = 0.1,Δt = 0.02

1

1.5

2

2.5

3

3.5

4
×10−6

t = 10, ε = 0.0025

J

−8 −6 −4 −2 0 2 4 6 8

x

A = 0,Δt = 0.002
A = 0.1,Δt = 0.02

(c)

Figure 1: Continued.
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Figure 1: Numerical solutions for the strong O(1) defocusing nonlinearity by using ED2/EP2. λ = 1, ε =
0.0025, N = 256. “−“: (A,Δt) = (0, 0.001), (0, 0.002), “+ + +”, “∗ ∗ ∗”: (A,Δt) = (0.1, 0.01), (0.1, 0.02). (a)
t = 0.5, (b) t = 1.5, (c) t = 10, (d) t = 20.

Theorem 4.2. If

A ≥ λ
4

max
x∈Ω

{∣∣∣un+1
N + 2unN − u

n−1
N

∣∣∣2 + c1

∣∣∣2un+1
N + unN − u

n−1
N

∣∣∣2 + c2

∣∣∣2unN − un−1
N

∣∣∣2}, (4.10)

then the solution of (4.4) satisfies

Ẽ
(
un+1
N

)
≤ Ẽ
(
unN
)
, ∀n ≥ 0, (4.11)

where c1, c2 is positive constant and

Ẽn =
ε2

2

(∥∥unNx

∥∥2 +
∥∥∥2unNx − u

n−1
Nx

∥∥∥2
)
+ 2A

∥∥∥unN − un−1
N

∥∥∥2
+
λ

2

(∥∥unN∥∥4
L4 +

∥∥∥2unN − u
n−1
N

∥∥∥4

L4

)
.

(4.12)

Then we investigate the stability properties of different schemes by numerical
experiments, where special attention will be paid to the improvements of stability caused
by the A-item. In the computation we choose Ω = [−4, 4] or Ω = [−8, 8] as the domain of
computation, and choose random number as the initial condition. First, we define Δtc as the
largest time step which makes the computation stable; that is, when the time step is larger
than Δtc the numerical solution will “blow up.” For different A, Table 1 lines up the values
of Δtc in the Fourier spectral schemes of (2.5), (3.2), and (3.22), respectively, and the Fourier
module used in the computation is N = 256. From observing the data in Table 1, we draw the
following conclusion.

When λ = ε is large, we see that the Δtc is also large. Since all standard semi-implicit
schemes are stable, small A-item is not necessarily required. When λ = ε is small, smaller
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Figure 2: Numerical solutions of Example 5.1 by ED2/EP2 for the weak O(ε) defocusing nonlinearity
(ε = 0.04). (a) Position density ρ at t = 0.5 (before breaking), at t = 1.5 (after breaking), at t = 10. (b)
Current density J at t = 0.5 (before breaking), at t = 1.5 (after breaking), at t = 10. (c) Evolution of the
position density ρ (left) and the current density J (right).

time step is needed to satisfy the requirement of stability if we use a standard semi-implicit
approach. This phenomenon is prominent especially for the case of higher-order or very
small ε. For the first-order scheme BD1/EP1, just as proved in Theorem 2.1, when A is large
enough the unconditional stability of the computational process can be guaranteed. For the
second-order scheme, A-item improves the stability obviously. Comparing with the case of
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Figure 3: Numerical solutions of Example 5.1 by ED2/EP2 for the weak O(ε) defocusing nonlinearity
(ε = 0.01). (a) Position density ρ at t = 0.5 (before breaking), at t = 1.5 (after breaking), at t = 10. (b)
Current density J at t = 0.5 (before breaking), at t = 1.5 (after breaking), at t = 10. (c) Evolution of the
position density ρ (left) and the current density J (right).

A = 0, about 10 times time-step is allowed when we use A-item. For the third-order scheme,
although the effect of adding A-item is not very obvious, adding the A-item scheme is still
effective in improving the stability and enlarging the time step to a certain extent.

Now we turn to time accuracy comparison. Since the exact solution of (1.1) is
unknown, we use numerical results of the BD2/EP2 with Δt = 10−5, ε = 0.0025 and N = 1024
as the “exact” solution. We discuss it in the following two cases.
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Figure 4: Numerical solutions of Example 5.1 by ED2/EP2 for the weak O(ε) defocusing nonlinearity
(ε = 0.0025).

Case 1 (weak O(ε) cubic defocusing nonlinearity). We set λ = ε, the final time t = 10. Table 2
shows the L2-errors obtained, at the same time we derive the rate of convergence about time
by the following formulation:

log(Ei/Ei+1)
log(Δti/Δti+1)

, (4.13)

where Ei is the L2-error when using time-step Δti, the rate may be verified experimentally
by solving a problem on a sequence of finer and finer partitions and approximation. From
Table 2, we can easily calculate r(BD1/EP1) ≈ 1, r(BD2/EP2) ≈ 2, r(BD3/EP3) ≈ 3, which
is coincident with our theoretical conclusion.
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Figure 5: Numerical solutions of Example 5.1 by ED2/EP2 for the weak O(ε) defocusing nonlinearity
(ε = 0.000625).

Case 2 (strong O(1) cubic defocusing nonlinearity). Figure 1 shows the position density ρ
and the current density J for ε = 0.0025, Ω = [−8, 8] with different values of (A,Δt) =
(0, 0.001), (0.1, 0.01); (0, 0.002), (0.1, 0.02) and in different time t = 0.5, 1.5, 10, 20. It is observed
that there is a good agreement between the numerical results obtained by using standard
semi-implicit time-stepping method (i.e., A = 0) with small Δt and the modified method
(3.2) with larger Δt.

It is seen that once the methods are stable, the expected order of convergence (in time)
is obtained, and larger time-steps can be used by adding an A-term.

5. Numerical Examples

In this section, we present the numerical results by simulating the semiclassical limit of
defocusing nonlinear Schrödinger equations. The simulations are carried out in the domain
Ω = [−4, 4] or Ω = [−8, 8], where periodic boundary conditions are used in the spatial
directions. The second-order schemes (BD2/EP2), that is, (3.2) are used in our simulations.
In the following computations we let N = 256. The initial condition (1.1) is always chosen in
the classical WKB form:

u0(x, t = 0) = u0(x) = A0(x)eiS0(x)/ε =
√
ρ0(x)eiS0(x)/ε. (5.1)

The analytic solutions of the semiclassical limit are available from [29] and are used
for numerical simulations.
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Figure 6: Numerical solutions of Example 5.2 by ED2/EP2 for the weak O(ε3/2) defocusing nonlinearity
(ε = 0.04). (a) Position density ρ at t = 0.5 (before breaking), at t = 1.5 (after breaking), at t = 10. (b)
Current density J at t = 0.5 (before breaking), at t = 1.5 (after breaking), at t = 10. (c) Evolution of the
position density ρ (left) and the current density J (right).

Example 5.1 (weak O(ε) cubic defocusing nonlinearity). The initial condition is taken as

A0(x) = e−x
2
, S0(x) = −

x2

2
+ εe−2x2

ln
1
ε
, x ∈ R. (5.2)
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Figure 7: Numerical solutions of Example 5.2 by ED2/EP2 for the weak O(ε3/2) defocusing nonlinearity
(ε = 0.01).

We choose these initial data for this example such that the weak limits of the position
density ρ and current density J can be obtained analytically [29]. The weak limits ρ0, J0 of ρ,
J , respectively, as ε → 0, are given in [29], for example, before breaking

ρ0(x, t) =
1

1 − te
−2x2/1−t, J0(x, t) = − x

(1 − t)2
e−2x2/1−t, 0 ≤ t < 1. (5.3)

When t → 1, they are singular distributions (“δ-like”). Figures 2, 3, 4, and 5 show variations
of the numerical results about the position density ρ and current density J for different ε =
0.04, 0.01, 0.0025, 0.000625 at t = 0.5 (before breaking), at t = 1.5 (after breaking) and at t = 10.
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Figure 8: Numerical solutions of Example 5.2 by ED2/EP2 for the weak O(ε3/2) defocusing nonlinearity
(ε = 0.0025).
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Figure 9: Numerical solutions of Example 5.2 by ED2/EP2 for the weak O(ε3/2) defocusing nonlinearity
(ε = 0.000625).

Example 5.2 (weak O(ε3/2) cubic defocusing nonlinearity, with λ = ε3/2). The initial condition
is taken as

A0(x) = e−x
2
, S0(x) = −

x2

2
, x ∈ R. (5.4)

The semiclassical limits of the position density ρ and current density J are given analytically
in [29]. For convenience, we only calculate the variations about the position density ρ and
current density J for ε = 0.04, 0.01, 0.0025, 0.000625 at t = 0.5 (before breaking), t = 1.5 (after
breaking), and t = 10, respectively, (Figures 6, 7, 8, and 9). The computation scheme we used
is BD2/EP2 with N = 256,Δt = 0.0001, A = 0.05.
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Figure 10: Numerical solutions of Example 5.3 by ED2/EP2 for the strong O(1) cubic defocusing
nonlinearity (λ = 1), ε = 0.04.

Example 5.3 (strong O(1) cubic defocusing nonlinearity, λ = 1). The initial condition is taken
as

A0(x) =

⎧⎨
⎩

1 − |x|, |x| < 1,

0, otherwise,
S0(x) = −ln

(
ex + e−x

)
, x ∈ R. (5.5)

These initial data are not analytic at x = 0 and x = ±1. Resolving the solution for nonanalytic
conditions is a challenging task. For numerical study of NLSs with cubic defocusing
nonlinearity and analytic initial data, we refer to [17, 18, 20, 30]. To test the numerical method,
for each fixed ε = 0.04, 0.01, 0.0025, 0.000625 (Figures 10, 11, 12, and 13), we compute the
numerical solution with N = 512,Δt = 0.0001, A = 0.005.

6. Conclusions

The semiclassical limit of the defocusing nonlinear Schrödinger equation presents a great
computational challenge. Not only is the numerical method required to resolve the solution
accurately, but also required to have high resolution ratio in temporal and spatial directions
due to its high oscillation of solutions. In this work, a large time-stepping spectral
approximation for the semiclassical limit of the defocusing nonlinear schrödinger equation is
studied. It is demonstrated that the classical semi-implicit method can be further improved
by simply adding a linear term consistent with the truncation errors in time direction.
This treatment can be used to increase the time-step size and computational stability. Our
numerical results show that: this method is very effective in capturing oscillatory solutions
of the NLS for small ε. We believe that the method presented here is a tool of great value
and can be used to learn more about the structure of the solutions of limiting behavior for



Discrete Dynamics in Nature and Society 25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ρ

t = 0.5, ε = 0.01

−4 −3 −2 −1 0 1 2 3 4

x

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ρ

t = 1.5, ε = 0.01

−4 −3 −2 −1 0 1 2 3 4

x

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ρ

t = 10, ε = 0.01

−4 −3 −2 −1 0 1 2 3 4

x

(a)

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

J

t = 0.5, ε = 0.01

−4 −3 −2 −1 0 1 2 3 4

x

−20

−15

−10

−5

0

5
×10−3

J

t = 1.5, ε = 0.01

−4 −3 −2 −1 0 1 2 3 4

x

−20

−15

−10

−5

0

5
×10−3

J

t = 10, ε = 0.01

−4 −3 −2 −1 0 1 2 3 4

x

(b)

0

0.5

1

1.5

8 6
4

2 0t

ρ

ε = 0.01

−4
−2

0
2

4

x

−0.05
−0.04
−0.03
−0.02
−0.01

0
0.01

t

J

ε = 0.01

6

2
4

0−4 −2 0 2 4

x

(c)

Figure 11: Numerical solutions of Example 5.3 by ED2/EP2 for the strong O(1) cubic defocusing
nonlinearity (λ = 1), ε = 0.01.

the semiclassical limit of the defocusing nonlinear schrödinger equation and some other
numerical simulations.
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