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1. Introduction

Recently, there are many results of impulsive stability for delay systems as impulses can make
unstable systems stable and stable systems unstable after impulse effects; see [1-21] and
references therein. The problem of stabilizing the solutions by imposing proper impulsive
control for delayed system now attracts more and more authors’ attentions; see [22-26].
For example, in [22, 26], the authors have investigated impulsive stabilization of second-
order differential equations with finite delay. The main tools used are Lyapunov functionals,
stability theory, and control by impulses. In [23], by employing the Razumikhin technique
and Lyapunov functions, several global exponential stability criteria are established for
general impulsive differential equations with finite delay. However, not much has been
developed in the direction of the stabilization theory of impulsive functional differential
systems, especially for infinite delays of impulsive functional differential systems. This is
due to some theoretical and technical difficulties; see [14, 16-21, 24]. In [24], Luo and Shen
studied impulsive stabilization of functional differential equations with infinite delay. By
using Lyapunov functions and Razumikhin techniques, some Razumikhin type theorems on
uniform asymptotical stability are obtained. However, to the best of the authors” knowledge,
there is little work on the impulsive exponential stabilization of functional differential
systems with infinite delay.
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The aim of this work is to establish a criterion on the impulsive exponential
stabilization of functional differential systems with infinite delay by using Lyapunov
functions and the Razumikhin technique. Our result shows that functional differential
equations with infinite delay may be exponentially stabilized by impulses. Moreover, to
some degree, the result we obtained is less conservative and more feasible than that given
in [23].

This paper is organized as follows. In Section 2, we introduce some notations and
definitions. Section 3 is devoted to the main results, and a numerical example is given to
demonstrate the effectiveness of our result. In the last section, concluding remarks are given
in Section 4.

2. Preliminaries

Let R denote the set of real numbers, R, the set of nonnegative real numbers, and R” the n-
dimensional real space equipped with the Euclidean norm || - ||. Forany t > {p > 0 > —a > —co,
let f(t,x(s)) where s € [t —a,t] or f(t,x(-)) be a Volterra type functional. In the case when
a = +oo, the interval [t — a, t] is understood to be replaced by (—oo, t].

Consider the following impulsive functional differential systems:

x'(t) = f(tx(), t>ty, t#k,
(2.1)
Axlyy, = Ik<tk,xt;>, k=1,2...,

where the impulse times t satisfy 0 < g < #; < -+ < fx < -+, Iimg_, otk = +00, and x’
denotes the right-hand derivative of x. f € C([tx-1,tx) x C,R"), f(t,0) = 0. C is an open
set in PC([-a,0],R"), where PC([-a,0],R") = {¢ : [-a,0] — R" is continuous everywhere
except at finite number of points tx, at which ¢s(t;) and ¢s(t,) exist and ¢s(t;) = ¢s(t) }. Define
PCB(t) = {x € C : x is bounded}. For ¢ € PCB(t), the norm of ¢ is defined by |¢| =
sup_,.p.le(0)|. For any o > 0, let PCBs(c) = {¢¢ € PCB(0) : |l¢|| < 6}. Let Ky = {a €
C(R,,R,) | a(0) =0and a(t) > 0fort > 0and ais strictly increasing in t}.

Foreachk =1,2..., Ii(t,x) € C([ty, 0) x R",R"), I;(t,0) = 0, and for any p > 0, there
exists a p; > 0 (0 < p1 < p) such that x € S(p;) implies that x + Ix(tx,x) € S(p), where
S(p) = {x: Ixll < p,x € ).

For any given o > ty, system (2.1) is supplemented with initial conditions of the form

Xo = ¢, (2.2)

where ¢ € PC([-a,0],R").

In this paper, we assume that the solution for the initial problem (2.1)-(2.2) does exist
and is unique which will be written in the form x(t, o0, ¢); see [1, 4, 13]. Since f(t,0) =
0,I(t,0) =0,k =1,2,..., then x(t) = 0 is a solution of (2.1)-(2.2), which is called the trivial
solution. In this paper, we always assume that the solution x(t, o, ¢) of (2.1)-(2.2) can be
continued to oo from the right of o.

We introduce some definitions as follows.
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Definition 2.1 (see [1]). The function V : [-a,o0) x C — R, belongs to class vy if

(i) V is continuous on each of the sets [tx-1,tx) x C and lim ) é(tw)V(t, @) =V(t,¢)
exists;

(ii) V(t,x) is locally Lipschitzian in x and V'(t,0) = 0.

Definition 2.2 (see [1]). Let V € vy, for any (t,¢) € [ti-1,tx) x C, the upper right-hand Dini
derivative of V (t, x) along the solution of (2.1)-(2.2) is defined by

D'V (&, (0)) = lim sup L\ 9O +hf (1)) V(L g(©0))

. (2.3)
h—0* h

Definition 2.3 (see [1]). Assume that x(t) = x(t,0, ¢) is the solution of (2.1)-(2.2) through
(0, ¢). Then the trivial solution of (2.1)-(2.2) is said to be exponentially stable if for any & >
0, o > tg, there exist constants . > 0 and 6 = 6(¢) > 0 such that ¢ € PCBs(o) implies
lx(®)| < e e, t>o0.

3. Main Results

In this section, we shall develop Lyapunov-Razumikhin methods and establish some
theorems which provide sufficient conditions for exponential stability of the trivial solution
of (2.1)-(2.2).

Theorem 3.1. Assume that there exist functions V. € vy, w € Ky and positive constants
p.ci, 1, Pk 20, k€ Zy and y € (1, M*], M* > 1 such that the following conditions hold:

(@) crllxIT < V(t, x) <w(|x])), (tx) € [-a, 00) x S(p),
(ii) for any o > ty and ¢ € PC([-a,0],S(p)), zfye)‘(t"’)V(t,(p(O)) >V(Et+06,¢(0)), —a<
0<0, t#tx, k € Z,, then

D™V (t,¢(0)) <pV(t¢(0)), (3.1)

(iii) for all (tx,¢) € Ry x PC([-a,0],5(p1)), V(tk, ¢p(0) + Ik (tk, ) < BV (t,, ¢(0)), k €
L., where Py satisfies T2, max{piM*,1} < o,

(iv) t -t <Iny/(p + 1), k € Z,,

then the trivial solution of (2.1)-(2.2) is exponentially stable with the approximate exponential
convergence rate /1.

Proof. From condition (iii), there exists constant M > 0 such that

ﬁ max{fM*, 1} < M. (3.2)
k=1
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For any € € (0, p1), we choose 6 = 6(¢) > 0 such that w(6) < (M*M) ' min{ci€", €}. Then, for
any o > ty, let x(t) = x(t, 0, $) be a solution of (2.1)-(2.2) through (o, ¢). We shall show for
any ¢ € PCBs(0)

x| <e-eWnED > g (33)

For convenience, suppose V (t) = V(t,x(t)) and

V(o) = max{ sup V(o + 6,(/;(9)),M*V(0)}. (3.4)

-a<0<0

Since ¢ € PCBs(0), we have V(o) < M*w(5).
Suppose that o € [t-1,t), | € Z.. Next we prove for t € [0, t;) U [tk, trs1), kK >1,

k
V() < V(o) <H max{p;M*,1 }>e-ﬂ<t-0>, t>o. (3.5)
s=l
First, it is clear that for t € [0 — a, 0]

allx®|T< V() < V(o) < M*w(8) < M min{cie, e} < c1€', (3.6)

which implies ||x(t)|| <€ < p1, t € [0 —a,0].
We next claim that (3.5) holds for all t € [0, t;), that is,

V() < V(0)e 9, telot). (3.7)
In order to do this, let
V(t)ett2), t>oc,
I'(t) = (3.8)
V(t), c-a<t<o,

then it is obvious that I'(t) > V(¢) forall t > 0 — a.
Next we prove I'(t) < V(o) for t € [o,t;), which implies that (3.5) holds for t € [o, #;).
Suppose that this assertion is false, then there exists some t € [0, t;) such that I'(t) > V(o).
Let

P = inf{t € o) | T(t) > \7(0)}, (3.9)

then in view of I'(¢) = V(0) < M* 'V (o) < V(0), we get

tre(ot), TE)=V(o), T <V(o), telor). (3.10)
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Considering (3.6), we also obtain
V() <T(t) < V(o) Vte[o-a,t). (3.11)

On the other hand, considering y € (1, M*], we get

I =V(o)> 1\7(0),
’ (3.12)

I'(0) = V(o) < A}Ij/(o) < %‘7(0).
So we can define
*k * 1
= sup{t € [ot]|T(t) < ;V(o)}, (3.13)
which implies that
1~ 1~
€ [o,1), ;V(G) =TI(), ?V(G) <I(t), te (] (3.14)
It follows from (3.11) that
YV)e't® =yT(t) > V(o) > V(s), o-a<s<t te[t* ] (3.15)

Using condition (ii), the inequality D*V (t) < pV () holds for all t € [t**,t*]. Hence, we obtain
for t € [t t*]
D*T(t) = D*V(t)e"" + AV (£)e )
= DTV (1) + AV (1))
<PV () + AV (1) (3.16)
= V(e (p + 1)
< (p+M)I().

From (iv), we define 7 = maxkez, {tk —tk-1}, then7(p + 1) <Iny.
Thus, we have

p r(t) V(o)
f dr(s) _ f ds _ f 48 S iny > 7p + A7, (3.17)
prx F(S) r(+) S (1/)/)\7(0) s
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However,

) g (* P
j — SI (p+1)ds SI (p+A)ds=1p+ At (3.18)
T(#*) S o P

This is a contradiction. Therefore, we obtain I'(t) < \7(0'), t € [0, 1), which implies that (3.5)
holds for all ¢ € [o, ;).
Meanwhile, we get for t € [0, )

allx|' < V() < V(o)e ™) < V(o) < M*w(6) < M~ min{cie, e} < 1", (3.19)

which implies that x(¢;) € S(p1), x(t;) € S(p).
Furthermore, note that

V(t) <AV(E) < BV (0)e o), (3:20)
we next prove
V(t) < max{fM*, 1}V (0)e™),  te [t t), (3.21)
which is equal to prove
[(t) < max{M*, 1}V (0), te€ [k, tr). (3.22)

Suppose that this assertion is not true, then there exists some t € [t;,t.1) such that I'(t) >
max{pM*, 1}V (o).
Let

t = inf{ te [t t) | T(E) > max{le*,l}f/(o)}. (3.23)

Then we know

€ (t,t), T(t*) =max{M*,1}V(0), T(t) <max{fM*,1)V(0), te [t,t*).

(3.24)
Also, in view of the fact I'(t) < \7(0') fort € [0 — a, ), we obtain
[ (t) < max{fM*,1}V(0) Vte [o-a,t?). (3.25)
Note that y € (1, M*], then we have
[(t*) = max{M*, 1}V (o) > %max{ﬂlM*, 1}V (o), (3.26)

I(t) < BV (o)™ < BV (o) < %ﬁlM*\N/(o) < %max{ BM*, 1}V (o). (3.27)
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So we can define

£ = sup{t €[4, ]| T() < %max{ﬂlM*,l}V(U)}.

Then, we obtain

€ [h,17), T() = %max{ﬁlM*J}f/(o),

r(t) > %max{ﬁlM*,l}\N/(o), te (1],

Thus, combining (3.25), we get

YV (£)e'=? = yT'(t)
> max{pM*, 1}\7(0)
> I(s)
>V(s), o-a<s<t te[t"t].
Similarly, by assumptions (ii), (iv), as the proof of (3.16), we can obtain

D'T(t) < (p+M)I(t), tel[t™ ]

Consequently, we have

t dr(s) _Ir(t*) ds _J-max{ﬂ,M*,l}f/(a)
e T'(s) r(+) S (1/y) max{pM*1} V(o) S
where 7 = maxyez, {fk — ti-1}-

However, we note

I dr(s) T(t) ds P +T
= — < =
,[t** I'(s) J‘F(t**) s J‘t** (p+)ds = pr+d

which is a contradiction. So (3.21) holds.
Note that

V(tl+1) < ,Bl+1v(tl_+1) < ﬂl+1 max{ﬂlM*/ 1}‘7(0)6_)‘““1_0)'

Similarly, we can prove

V(t) < max{f M* - max{fM*, 1}, max{fM*, 1}}V(0)e™ ), t€ [t tia),

—SZIH}’>pT+J\T,

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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that is,
V(t) < max{fM*, 1} max{f1M*, 1}V (0)e 2, t € [ti, b)) (3.36)

By simple induction hypothesis, we may prove that for t € [0, ;) U [, tks1), kK> 1,

k
V(t) < V(o) <H max{fsM*, 1}>e‘*<f“’), t>o. (3.37)

s=1

Hence, (3.5) holds. ~
Under the help of conditions (i), (iii), and the definition of V (o), we arrive at

ciflx|" < V (t)

k
< V(o) <H max{f;M*,1 }> e Mt-0)
s=1

k
< w(6)M* <H max{fsM", 1 }>e‘*“‘”’ (3.38)

s=1
< w(6)M*Me -0
< min{cie, e}e 9

<celet9) >0,
which implies that
x| < e-e"Wmto) >4 (3.39)

Therefore, (3.3) holds. The proof of Theorem 3.1 is therefore complete. 0

Remark 3.2. In Theorem 3.1, the impulsive condition is not straightforward to be verified. To
simplify the result, we introduce some more testable conditions.

Corollary 3.3. Assume that there exist functions V. € vy, w € K, and positive constants
M*,p,c1,m,\, B >0, k € Z, and y € (1,eM'] such that conditions (i), (ii), (iv) in Theorem 3.1
hold, moreover, suppose that

(iii’) for all (tx, ¢) € Ry x PC([-a,0],S(p1)), V (tk, ¢(0) + Ik (tx, ) < PV (£, (0)), k €
Z., where P > e”™" and there exists a constant M > 0 such that

SInfe+ (n-l+ )M <M Vn>l, l€Z., (3.40)
k=1

then the trivial solution of (2.1)-(2.2) is exponentially stable with the approximate exponential
convergence rate \/1].
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Especially, let y = M*, fx = 1/y > 0 in Theorem 3.1, then we can obtain the following
results whose proof is similar and thus omitted.

Corollary 3.4. Assume that there exist functions V € vy, w € Ky and constants p,c1,1,y > 1, A >
0 such that the following conditions hold:

@) allx® <Vt x) <w(||x]l), (t,x) € [~a,0) x S(p);
(ii) for any o > ty and ¢ € PC([-a,0],S(p)), if ye*® 2V (t,¢(0)) > V (t + 6,¢(0)), —a¢ <
0<0, t#ty, k € Zy, then D*V(t,¢s(0)) < pV (¢, ¢:(0));
(iii) for all (tx, ¢) € Ry x PC([~a,0],5(p1)), V (tk, ¢r(0) + Ik (tx, ¢v)) < (1/y)V(t, ¢(0)), k €
Zy;
(V) b — s <Iny/(p+4), k € Zs,

then the trivial solution of (2.1)-(2.2) is exponentially stable with the approximate exponential
convergence rate /1.

Remark 3.5. If a < +oo, then the exponential stability of system (2.1)-(2.2) has been
investigated extensively in [23] under the following assumptions (where the definition of
| a*/ c1,¢, -)L/ T, dkr see [23])

(i) cillx|IP < V(t x) < c|lx||P, for any t € R, and x € R";
(i) D*V(t,9(0)) < cV(t¢(0)), for all t € [tx1,tk), k € Z,, whenever gV (t,¢(0)) <
V(t+s,¢(s)) for s € [-7,0], where g > max{e®°,e*'% } is a constant;
(iii) V (t, (0) + Ik (tk, ) < diV (tk, ¢(0)), where di > 0,k € Z., are constants;
(iv) T <t —tp1 < afand In(dy) + (A + ¢)a* < —A(tke1 — tk), k € Z,.

It is easily seen that these conditions are more restrictive than ones given in Theorem 3.1.
For example, let dy = d(constant), tx.1 — tx = 1, then it is necessary that condition In(d) <
—(L+c)a* — A holds (see [23]). Note in our Corollary 3.4, we only require that In(d) < -\ —¢,
where here y =1/d, p = c in Theorem 3.1. Moreover, we see that condition tx.1 —tx > 7 is not
necessary in our results, which are milder than the restrictions in [23].

Remark 3.6. To author’s knowledge, there is little work on exponential stability of impulsive
differential systems with infinite delay with D*V > 0. Our result allows for significant
increases in V between impulses as long as the decreases of V at impulse times balance it
properly, which shows that differential equations with infinite delay may be exponentially
stabilized by impulses.

In the following, an example is given to demonstrate the effectiveness of our result.

Example 3.7. Consider the following equations:

0
x(t) = <% + %e‘“”)x(t) - % e O lx(t+5s)ds, t>0, t#k,

x(k) = M%x(k‘), k=12, (3.41)

Xg = @.
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Choose V (t) = x2, we easily observe =2, ¢1 =1, w(s) = 2, b —tg =T =1 Let y=e A=
0.2, p=2/5+2/18+ (24/e)/15. It is easy to check that 7(p + 1) = 0.37 <1 =1Iny.

Suppose that ¢ = t; = 0, then in view of Corollary 3.3, ye!®* )V (t,¢(0)) > V(t +
0,¢(60)), 6 <0, implies that v/ee®|x(t)| > [x(t + 6)|, 6 <0.

Hence,

D'V (t,x(-)) = 2x(¢) { (é +

<2x%(b)

< 2x2(t) 4

< 2x%(t)

<pV(t).

(
(

1

— 4+ —+

5

1
5

1

5

1 —0.1t 1
=+ Ee + 15

1
rLemy.

1 1 (°
Ee”'“) x(t) e Olix(t+ s)ds}

15 B

0
f ES_O‘lt\/Eeo'ltdS}

—0o0

0
\1/—55 esds}

(3.42)

1

B

15

}

18

Besides, V (k) = x%(k) = (1/e)x*(k™) = (1/y)V (k7).

By Corollary 3.3, the trivial solution of (3.41) is exponentially stable with the
approximate exponential convergence rate 0.1. Taking initial values: ¢ = 10e**,t < 0. The
numerical simulations are illustrated in Figures 1 and 2.

Remark 3.8. From above example, we see that the trivial solution of system (3.41) without
impulses is unstable. However, after impulsive control, the trivial solution becomes
exponentially stable. This implies that differential systems with infinite delay may be
exponentially stabilized by impulses and impulses can make unstable systems stable.
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4. Conclusions

In this paper, we study exponential stability of impulsive differential systems with infinite
delay. A new sufficient criterion ensuring exponential stability is gained by using the
Razumikhintechnique and Lyapunov functions. Our result shows that differential equations
with infinite delay may be exponentially stabilized by impulses. Also, the result here (with
a < +oo) is discussed from the point of view of its comparison with the earlier result. An
example is given to illustrate the feasibility of the result.
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