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1. Introduction

As the development of industry, the influence of toxicant becomes more and more serious;
toxicant which was produced by water pollution, air pollution, heavy metal pollution and
organisms themselves, and so on, has great effects on the ecological communities.

Mathematical models which concerned with the influence of toxicant were first
studied by Hallam and his colleagues [1–3]. After that, Freedman and Shukla [4] studied
the single-species and predator-prey model; Chattopadhyay [5] and many scholars paid
attention to the competition model [6–10]; Ma et al. [11], Das et al. [12], and Saha and
Bandyopadhyay [13] laid emphasis on the predator-prey models. However, seldom did
scholars investigated the stage-structured models with toxicant effects; to the best of authors’
knowledge, only Xiao and Chen [14] explored a single-species model with stage-structured
and toxicant substance. It is well known that many species in the natural world have a
lifetime going through many stages, and in different stages, they have different reactions to
the environment. For example, the immature may be more susceptible to the toxicant than the
mature. Although there are many works on the stage-structured model (see [15–19] and the
references cited therein), seldom did scholars consider the influence of the toxicant substance
on the immature species.
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In this paper, we study the single-species model with simplified toxicant effect, and
we also take the commercially exploit into account. Since many species can be resources
as human food, harvesting has a great influence both on the species population and on
the economic revenue. There are many papers that deal with the effects of harvesting
[10, 12, 20–22]; such topics as the optimal harvesting policy and the bionomic equilibrium
are well studied by them. However, only recently scholars considered the ecosystem with
both harvesting and toxicant effects (see [10, 12]), while no scholar investigated the stage
structure population dynamics with both harvesting and toxicant effect.

We will study the following singe species stage structure ecosystem with both toxicant
effect and harvesting:

x′1(t) = ax2 − d1x1 − d2x
2
1 − βx1 − r1x

3
1,

x′2(t) = βx1 − b1x2 − c2Ex2,
(1.1)

where x1(t), x2(t) represent the population density of the immature and the mature at time t,
respectively, r1x

3
1 is the effects of toxicant on the immature, E is the harvesting effort, c2 is the

catchability coefficient. We assume that the immature is density restriction, toxicant affects
the immature population and only harvesting the mature species.

The paper is arranged as follows The stability property of equilibria is studied in the
next section, and the existence of the bionomic equilibrium is explored in Section 3. In order
to investigate the stability of the bionomic equilibrium and discuss how the population will
be changed according to the the variable harvest effects, we assume that the E′ is proportion
to the economic revenue [23], that is,

E′(t) = kE
(
p2c2x2 − c

)
. (1.2)

Sufficient condition which ensures the global stability of bionomic equilibrium is then
investigated in Section 4. The optimal harvesting policy is studied in Section 5 and some
numeric simulations are carried out in Section 6 to illustrate the feasibility of the main results.
We end this paper by a briefly discussion.

2. The Steady States and Stability

It can be calculated that system (1.1) has two possible equilibriums:

(i) the trivial Equilibrium E0(0, 0),

(ii) the equilibrium E∗(x∗1, x
∗
2), where

ax∗2 − d1x
∗
1 − d2x

∗2
1 − βx

∗
1 − r1x

∗3
1 = 0,

βx∗1 − b1x
∗
2 − c2Ex

∗
2 = 0.

(2.1)
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By simple calculation we have

x∗1 =
−d2 +

√
d2

2 + 4r1
(
aβ/(b1 + c2E) − d1 − β

)

2r1
, x∗2 =

β

b1 + c2E
x∗1. (2.2)

To ensure the positivity of the equilibrium E∗(x∗1, x
∗
2), we assume that

aβ > (b1 + c2E)
(
d1 + β

)
(2.3)

holds. We can see that x∗1, x
∗
2 decrease as r1 increases.

Next, we use the Jacobian matrix to determine the locally stability of the equilibriums.
By simple calculation, we see that the Jacobian matrix of system (1.1) is

[
−d1 − β − 2d2x1 − 3r1x

2
1 a

β −b1 − c2E

]

. (2.4)

For E0(0, 0), the characteristic equation is

λ2 +
(
d1 + β + b1 + c2E

)
λ +

(
d1 + β

)
(b1 + c2E) − aβ = 0. (2.5)

It is not hard to see that when aβ < (d1 + β)(b1 + c2E), (2.5) has two negative roots or two
complex roots with negative real parts; thus E0(0, 0) is locally asymptotically stable; when
aβ > (d1 + β)(b1 + c2E), E0(0, 0) is a saddle point.

For E∗(x∗1, x
∗
2), the characteristic equation is

λ2+
(
d1 + β + b1 + c2E + 2d2x

∗
1 + 3r1x

∗2
1

)
λ +

(
d1 + β + 2d2x

∗
1 + 3r1x

∗2
1

)
(b1 + c2E) − aβ = 0.

(2.6)

By applying (2.1), we have

(
d1 + β + 2d2x

∗
1 + 3r1x

∗2
1

)
(b1 + c2E) − aβ = (b1 + c2E)

(
d2x

∗
1 + 2r1x

∗2
1

)
> 0. (2.7)

Therefore, the characteristic equation of E∗(x∗1, x
∗
2) has two negative roots or two complex

roots with negative real parts; thus E∗(x∗1, x
∗
2) is locally asymptotically stable.

Following we will take the idea and method of Xiao and Chen [14] to investigate the
globally asymptotically stability property of the equilibriums, and we need to determine the
existence or nonexistence of the limit cycle in the first quadrant.

For E∗(x∗1, x
∗
2), it exists if aβ > (b1 + c2E)(d1 + β); in this case E0(0, 0) is a saddle

point; thus, E∗(x∗1, x
∗
2) is the unique stable equilibrium in the first quadrant if it exists. Let

AB be the line segment of L1 : x1 = p and BC the line segment of L2 : x2 = q, where
A(p, 0), B(p, q), C(0, q), and p, q are positive constants which satisfy p > x∗1, and

βp

b1 + c2E
< q <

p
(
d1 + β + d2p + r1p

2)

a
. (2.8)
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Figure 1: Trajectories enter rectangle OABCO from exterior to interior.

By simple calculation, we have

ẋ1|AB = ax2 − d1p − d2p
2 − βp − r1p

3|0≤x2≤q < 0,

ẋ2|BC = βx1 − (b1 + c2E)q|0≤x1≤p < 0.
(2.9)

Thus AB,BC are the transversals of system (1.1). It is no hard to check that OA,OC are the
transversals of system (1.1), and any trajectory enters region OABCO from its exterior to
interior (see Figure 1).

Denote

x′1(t) = ax2 − d1x1 − d2x
2
1 − βx1 − r1x

3
1 − c1Ex1 = P(x1, x2),

x′2(t) = βx1 − b1x2 − c2Ex2 = Q(x1, x2).
(2.10)

It is easy to see that

∂P

∂x1
+
∂Q

∂x2
= −d1 − β − 2d2x1 − 3r1x

2
1 − b1 − c2E < 0. (2.11)

By Poincare-Bendixson theorem, there are no limit cycles in the first quadrant; thus E∗(x∗1, x
∗
2)

is globally asymptotically stable if it exists.
For E0(0, 0), it is a unique equilibrium which is locally asymptotical stable if aβ <

(b1 + c2E)(d1 + β). Similarly to the above analysis we can show that E0(0, 0) is globally
asymptotically stable if aβ < (b1 + c2E)(d1 + β) holds.

Therefore, we have the following.

(i) If aβ < (d1 + β)(b1 + c2E), the trivial equilibrium E0(0, 0) is globally asymptotically
stable.

(ii) If aβ > (d1 + β)(b1 + c2E), the positive equilibrium E∗(x∗1, x
∗
2) is globally

asymptotically stable.
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We mention here that since condition (2.3) is independent of the toxicant of the system,
thus, the globally asymptotically stability of the systems is independent of the intensities of
toxicant, but from the expression of positive equilibrium we know that the density of both the
immature and the mature species decreases while the toxicant increases; specially, the density
of species will tend to indefinitely small if the toxicant substance is large enough.

3. Bionomic Equilibrium

For simplicity, we assume that the harvesting cost is a constant. Let c be the constant fishing
cost per unit effort, and let p2 be the constant price per unit biomass of the mature. The net
revenue of harvesting at any time is given by:

P(x1, x2, E) = p2c2Ex2 − cE. (3.1)

A bionomic equilibrium is both a biological equilibrium and a economic equilibrium, the
biological equilibrium is given by x′1(t) = x′2(t) = 0, and the economic equilibrium occurs
when the economic rent is P = 0, thus the bionomic equilibrium E(x1∞, x2∞, E∞) satisfying

ax2∞ − d1x1∞ − d2x
2
1∞ − βx1∞ − r1x

3
1∞ = 0, (3.2)

βx1∞ − b1x2∞ − c2x2∞E∞ = 0, (3.3)

p2c2x2∞ − c = 0. (3.4)

From (3.4) we get x2∞ = c/p2c2. Combining (3.4) and (3.2) we can obtain that x1∞ is one of
the roots of the following equation:

r1x
3
1 + d2x

2
1 +

(
d1 + β

)
x1 −

ac

p2c2
= 0. (3.5)

Denoting f(x) = r1x
3 + d2x

2 + (d1 + β)x −
ac

p2c2
, we have

f(0) = − ac

p2c2
< 0, f(+∞) = +∞, f ′(x) > 0 (x ∈ [0,∞)). (3.6)

Hence, by the continuity of f(x), there exists exactly one root in (0,+∞). From (3.3) and (3.4),
to ensure the positivity of E∞, one needs

x1∞ >
b1c

βp2c2
, (3.7)
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Thus we need to find a solution of f(x) in (b1c/βp2c2,+∞). Since (3.6) always holds, we only
need

f

(
b1c

βp2c2

)
< 0. (3.8)

Thus, there exists a unique bionomic equilibrium if inequality (3.8) holds.
The existence of the bionomic equilibrium means that (i) Harvesting efforts E > E∞

cannot be maintained all the time, it will decrease because the total cost of harvesting exceed
the total revenues; (ii) E < E∞ cannot be maintained indefinitely, harvesting is profitable in
this occasion, and it will make the harvesting effort increases. Hence, the harvesting effort
is always oscillating around E∞. However, there is no answer about whether it will become
stable or not because of the complex changing of E.

4. Globally Stability of the Bionomic Equilibrium

In this section, we study system (1.1) with variable harvest effects; sufficient condition for the
globally asymptotically stability of the bionomic equilibrium will be derived. We assume that
E′(t) = kE(p2c2x2 − c); then system (1.1) becomes

x′1(t) = ax2 − d1x1 − d2x
2
1 − βx1 − r1x

3
1,

x′2(t) = βx1 − b1x2 − c2Ex2,

E′(t) = kE
(
p2c2x2 − c

)
.

(4.1)

System (4.1) has three possible equilibrium:

(i) the trivial equilibrium V0(0, 0, 0),

(ii) equilibrium in the absence of harvesting V1(x̃1, x̃2, 0), where

x̃1 =
−d2 +

√
d2

2 + 4r1
(
βa/b1 − d1 − β

)

2r1
, x̃2 =

β

b1
x̃1,

(4.2)

and for the positiveness of x̃1, x̃2, we need

βa >
(
d1 + β

)
b1, (4.3)

(iii) the interior equilibrium E(x1∞, x2∞, E∞), which is the bionomic equilibrium in
Section 3; it exists if (3.8) holds.

For V0(0, 0, 0), the characteristic equation is given by

(λ + kc)
((
λ + d1 + β

)
(λ + b1) − βa

)
= 0. (4.4)
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It is easy to see that all of the roots of (4.4) are negative if βa < b1(d1 +β) holds; thus V0(0, 0, 0)
is locally asymptotically stable if βa < b1(d1 + β), and unstable if βa > b1(d1 + β).

For V1(x̃1, x̃2, 0), the characteristic equation is given by

(
λ − k

(
p2c2x̃2 − c

))((
λ + d1 + β + 2d2x̃1 + 3r1x̃

2
1

)
(λ + b1) − aβ

)
= 0. (4.5)

It is no hard to see that V1(x̃1, x̃2, 0) is locally asymptotically stable if p2c2x̃2 − c < 0, and
unstable if p2c2x̃2 − c > 0.

From the condition for the stability of V0, V1, we can see that low birth rate can make
the population be driven to extinction, high harvesting cost has negative effect on fishing
effort, and it can make the harvesting effect approach zero.

For E(x1∞, x2∞, E∞), the characteristic equation is

λ3 +Uλ2 + Vλ + L = 0, (4.6)

where

U = b1 + c2E∞ + d1 + β + 2d2x1∞ + 3r1x
2
1∞ > 0,

V = (b1 + c2E∞)
(
d1 + β + 2d2x1∞ + 3r1x

2
1∞

)
+ c2

2kp2x2∞E∞ − aβ

= (b1 + c2E∞)
(
d2x1∞ + 2r1x

2
1∞

)
+ c2

2kp2x2∞E∞ > 0,

L = c2
2kp2x2∞E∞

(
d1 + β + 2d2x1∞ + 3r1x

2
1∞

)
> 0.

(4.7)

By Routh-Hurwitz criterion, all roots of (4.6) have negative real parts if and only if

U > 0, L > 0, UV > L. (4.8)

By simple calculation, we know that condition (4.8) holds always, Thus, E(x1∞, x2∞, E∞) is
locally asymptotically stable.

For the global stability of E(x1∞, x2∞, E∞), we construct the following Lyapunov
function:

V = x1 − x1∞ − x1∞ ln
x1

x1∞
+
(
x2 − x2∞ − x2∞ ln

x2

x2∞

)
+ n

(
E − E∞ − ln

E

E∞

)
. (4.9)
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The time derivative of V along the positive solution of system (4.1) is

V̇ =
x1 − x1∞

x1
x′1(t) +

x2 − x2∞
x2

x′2(t) + n
E − E∞
E

E′(t)

=
x1 − x1∞

x1

{
a(x2 − x2∞) −

(
d1 + β

)
(x1 − x1∞) − d2

(
x2

1 − x
2
1∞

)
− r1

(
x3

1 − x
3
1∞

)}

+
x2 − x2∞

x2

{
β(x1 − x1∞) − b1(x2 − x2∞) − c2(Ex2 − E∞x2∞)

}

+ nk
E − E∞
E

E
{
p2c2(x2 − x2∞)

}

= − (x1 − x1∞)2

x1

{
d1 + β + d2(x1 + x1∞) + r1

(
x2

1 + x1x1∞ + x2
1∞

)}

− (x2 − x2∞)2

x2
(b1 + c2E∞) +

(
a

x1
+
β

x2

)
(x1 − x1∞)(x2 − x2∞)

+
(
−c2 + nkp2c2

)
(x2 − x2∞)(E − E∞).

(4.10)

Let nkp1 = 1, then we have

V̇ = − (x1 − x1∞)2

x1

{
d1 + β + d2(x1 + x1∞) + r1

(
x2

1 + x1x1∞ + x2
1∞

)}

− (x2 − x2∞)2

x2
(b1 + c2E∞) +

(
a

x1
+
β

x2

)
(x1 − x1∞)(x2 − x2∞).

(4.11)

If inequality

1
x1x2

(
d1 + β + d2(x1 + x1∞) + r1

(
x2

1 + x1x1∞ + x2
1∞

))
(b1 + c2E) >

1
4

(
a

x1
+
β

x2

)2
(4.12)

holds, then V̇ (t) < 0 in set Ω = {x1 > 0, x2 > 0}. Set

g(x1, x2) = x1x2

(
d1 + β + d2(x1 + x1∞) + r1

(
x2

1 + x1x1∞ + x2
1∞

))
(b1 + c2E)

− 1
4
(
ax2 + βx1

)2
,

(4.13)

then (4.12) holds in set Ω if g(x1, x2) > 0. By applying (3.2) and (3.3), we have

g(x1, x2) =
1
2
aβx1x2 + x1x2

(
d1x1 + r1x

2
1 + r1x1x1∞

)
(b1 + c2E) −

1
4
a2x2

2 −
1
4
β2x2

1. (4.14)
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If x1 ≥ x2, then

g(x1, x2) ≥
1
2
aβx2

2 + x
2
2

(
d1x2 + r1x

2
2 + r1x2x1∞

)
(b1 + c2E) −

1
4

(
a2 + β2

)
x2

1. (4.15)

Thus, we can get that if

x2 ≤ x1 < h2(x2) (4.16)

holds, then g(x1, x2) > 0, where

h2(x2) = x2

√√
√2aβ + 4

(
d1x2 + r1x

2
2 + r1x2x1∞

)
(b1 + c2E∞)

a2 + β2
. (4.17)

If x1 < x2, by the same way above, we can get the other sufficient condition for g(x1, x2) > 0,
that is,

x1 < x2 < h1(x1), (4.18)

where

h1(x1) = x1

√√
√2aβ + 4

(
d1x1 + r1x

2
1 + r1x1x1∞

)
(b1 + c2E∞)

a2 + β2
. (4.19)

Therefore, if (4.16) or (4.18) holds, then V̇ (t) < 0 and the bionomic equilibrium is globally
asymptotically stable.

The globally asymptotically stability of the bionomic equilibrium means that
harvesting effect E which changes along (1.2) will make system (4.1) drive to the “bionomic
equilibrium” and keep stable in the bionomic equilibrium.

5. Optimal Harvesting Policy

In this section, we study the optimal harvesting policy of system (1.1), and we consider the
following present value J of a continuous time-stream:

J =
∫∞

0
P(x1, x2, E, t)e−δtdt, (5.1)

where P is the net revenue given by P(x1, x2, E, t) = p2c2Ex2 − cE, and δ denotes the
instantaneous annual rate of discount; the aim of this section is to maximize J subjected to
state equation (1.1). Firstly we construct the following Hamiltonian function:

H =
(
p2c2x2 − c

)
Ee−δt + λ1

(
ax2 − d1x1 − d2x

2
1 − βx1 − r1x

3
1

)
+ λ2

(
βx1 − b1x2 − c2Ex2

)
,

(5.2)
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where λ1(t), λ2(t) are the adjoint variables, E is the control variable satisfying the constraints
0 ≤ E ≤ Emax, and φ(t) = e−δt(p2c2x2 −c)−λ2c2x2 is called the switching function [23]. We aim
to find an optimal equilibrium (x1δ, x2δ, Eδ) to maximize Hamiltonian H; since Hamiltonian
H is linear in the control variable E, the optimal control can be the extreme controls or the
singular controls; thus, we have

E = Emax, when φ(t) > 0, that is, when λ2(t)eδt < p2 −
c

c2x2
;

E = 0, when φ(t) < 0, that is, when λ2(t)eδt > p2 −
c

c2x2
.

(5.3)

When φ(t) = 0, that is,

λ2(t)eδt = p2 −
c

c2x2
, or

∂H

∂E
= 0. (5.4)

In this case, the optimal control is called the singular control [23], and (5.4) is the necessary
condition for the maximization of Hamiltonian H. By Pontrayagin’s maximal principle, the
adjoint equations are

dλ1

dt
= −∂H

∂x1
= λ1

(
d1 + 2d2x1 + β + 3r1x

2
1

)
− λ2β,

dλ2

dt
= −∂H

∂x2
= −p2c2Ee

−δt + λ2(b1 + c2E) − λ1a.

(5.5)

From (5.4) and (5.5), we have

dλ1

dt
− Bλ1 = Ae−δt, (5.6)

where B = d1 + 2d2x1 + β + 3r1x
2
1, A = β(c/c2x2 − p2). We can calculate that

λ1 = − A

B + δ
e−δt. (5.7)

Substituting (5.7) into the second equation of (5.5), we get

dλ2

dt
−Gλ2 = De−δt, (5.8)

where G = b1 + c2E, D = −p2c2E +A/(B + δ). Therefore, we have

λ2 = − D

G + δ
e−δt. (5.9)

It is obviously that λ1(t), λ2(t) are bounded as t → ∞.
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Substituting (5.9) into (5.4), we obtain

p2 −
c

c2x2
= − D

G + δ
. (5.10)

Our purpose is to find an optimal equilibrium solution; so we have

x1δ = x∗1 =
−d2 +

√
d2

2 + 4r1
(
aβ/(b1 + c2E) − d1 − β

)

2r1
, x2δ = x∗2 =

β

b1 + c2E
x∗1. (5.11)

By (5.10) and (5.11), we can get x1δ, x2δ, and Eδ. Thus, the optimal policy is

E =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Emax, when λ2(t)eδt < p2 −
c

c2x2
,

Eδ, when λ2(t)eδt = p2 −
c

c2x2
,

0, when λ2(t)eδt > p2 −
c

c2x2
.

(5.12)

Again, from (5.10) we have

P =
(
p2c2x2 − c

)
E = −Dc2x2

G + δ
E. (5.13)

When δ → ∞, P ∼ o(δ−1). Therefore, δ = 0 leads to the maximization of P .

6. Number Simulations

In the following examples, we take the parameters values as a = 2, d1 = 0.1, d2 = 0.1, c2 =
0.2, b1 = 0.1, and β = 0.2. We will see how the system behavior is while the toxicant effect
changes.

Example 6.1. E = 1; in this case, aβ = 0.4 > 0.09 = (d1 + β)(b1 + c2E). From the
results in Section 2, we know that for a given r1, the system admits a unique global stable
positive equilibrium. Indeed, considering system (1.1) and the initial conditions (6, 2), (5, 10),
and (1, 5), respectively, we can see that

(i) r1 = 0, E∗(10.33, 6.89) is global stable;

(ii) r1 = 0.01, E∗(6.33, 4.22) is global stable (Figure 2);

(iii) r1 = 1, E∗(0.97, 0.65) is global stable (see Figure 3);

(iv) r1 = 100, E∗(0.01, 0.07) is global stable (Figure 4).

Example 6.2. k = 0.1, p2 = 2, c = 0.2, δ = 0.01, and E′(t) = 0.1E(0.4x2−0.2). Considering system
(4.1) with initial condition (2, 3, 3), (4, 5, 6), and (1, 1, 1), we have the following.
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Figure 2: Solution curves of system (1.1) with the parameters given by Example 6.1 when r1 = 0.01.
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Figure 3: Solution curves of system (1.1) with the parameters given by Example 6.1 when r1 = 1.

(i) r1 = 0; the bionomic equilibrium E(2, 0.5, 3.5) is globally stable (Figure 5). The
optimal equilibrium (10.32, 6.87, 1) is far away from the bionomic equilibrium.

(ii) r1 = 1; the bionomic equilibrium E(0.87, 0.5, 1.24) is globally stable (Figure 6). The
optimal equilibrium is (1.26, 1.28, 0.49).

(iii) r1 = 10; the bionomic equilibrium E(0.44, 0.5, 0.38) is globally stable (Figure 7). The
optimal equilibrium is (0.51, 0.74, 0.18).
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Figure 4: Solution curves of system (1.1) with the parameters given by Example 6.1 when r1 = 100.
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Figure 5: Solution curves of system (4.1) with the parameters given by Example 6.2 when r1 = 0.

(iv) r1 = 100; both the bionomic equilibrium E(0.2, 0.5,−0.08) and the optimal
equilibrium (0.20, 0.44,−0.046) are unfeasible.

From the above examples we can found the following phenomena:

(i) Increasing of toxicant will make the population of both mature and immature
decrease.
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Figure 6: Solution curves of system (4.1) with the parameters given by Example 6.2 when r1 = 1.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

t

x
,y
,a

nd
E

y

E

x

Figure 7: Solution curves of system (4.1) with the parameters given by Example 6.2 when r1 = 10.

(ii) The bionomic equilibrium exists and globally stable both in the absence of toxicant
and in the present of toxicant; however, with the increase of toxicant, the immature
population x1∞ and the harvesting effect E decrease while the mature population
x2∞ remains as the same.

(iii) The bionomic equilibrium and the optimal equilibrium will become unfeasible if
the toxicant is large enough.
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(iv) The immature, mature populations, and the harvesting effect in the optimal
equilibrium are decreasing as the toxicant is increasing.

(v) The optimal equilibrium becomes more and more close to the bionomic equilibrium
as the toxicant effect increases.

7. Discussion

In this paper, we consider the single-species stage structure model incorporating both
toxicant and harvesting, and we assume that only the immature affected by the toxicant.

Firstly, we explore the local and global stability properties of the equilibria of
the system. Next, we investigate the existence and stability properties of the bionomic
equilibrium. Finally, the optimal harvesting is studied, and it is found that there exists
two optimal equilibria when the toxicant varies in a certain set. Some numeric examples
to illustrate how the equilibrium (include bionomic equilibrium and optimal equilibrium)
changes with the toxicant are also given.

Nevertheless, as we know, the immature needs a certain time to develop to mature
stage, the model incorporating time delay may be more reasonable and worth further study,
and we leave this for future study.
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