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1. Introduction

In recent years, considerable attention has been paid to study the dynamics of artificial neural
networks with fixed parameters because of their potential applications in the areas such as
signal and image processing, pattern recognition, parallel computations, and optimization
problems [1–10]. However, during the implementation on very scale integration chips, the
stability of a well-designed system may often be destroyed by its unavoidable uncertainty
due to the existence of modelling error, external disturbance, and parameter fluctuation. In
general, on other hand, a mathematical description is only an approximation of the actual
physical system and deals with fixed nominal parameters. Usually, these parameters are
not known exactly due to the imperfect identification or measurement, aging of components
and/or changes in the environmental condition. Thus, it is almost impossible to get an exact
model for the system due to the existence of various parameter uncertainties. So it is essential
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to introduce the robust technique to design a system with such uncertainty [11, 12]. If the
uncertainty of a system is only due to the deviations and perturbations of its parameters, and
if those deviations and perturbations are all bounded, then the system is called an interval
system [13–23]. Recently, Chen and Rong [23] considered a class of Cohen-Grossberg neural
networks (CGNNs) with time-varying delays. Several sufficient conditions were given to
ensure global exponential robust stability.

In a real world, strictly speaking, the diffusion phenomena could not be ignored in
neural networks and electric circuits once electrons transport in a nonuniform electromag-
netic field. Hence, it is essential to consider the state variables varying with the time and
space variables. The neural networks with diffusion terms can commonly be expressed by
partial differential equations. Recently, some authors have devoted to the study of reaction-
diffusion neural networks, for instance see [24–29] and references therein. In particular, more
recently, Liu et al. [27] andWang et al. [28], considered the global exponential robust stability
of a class of reaction-diffusion Hopfield neural networks with distributed delays and time-
varying delay, respectively. Song and Cao [29] have obtained the criteria to guarantee the
global exponential robust stability of a class of reaction-diffusion CGNNs with time-varying
delays and Neumann boundary condition. In [27–29], unfortunately, owing to the divergence
theorem employed, a negative integral term with gradient is left out in their deduction. As
a result, the global exponential robust stability criteria acquired by them do not contain a
diffusion term. In other words, the diffusion term does not take effect in their deduction and
sufficient conditions. The same case appears also in the other literatures [24–26].

Motivated by the above discussions, in this paper we will consider a class of reaction-
diffusion CGNNs with constant time delays and a boundary condition. We will construct a
appropriate Lyapunov functional to derive some new criteria ensuring the global exponential
robust stability for an equilibrium point of the delayed reaction-diffusion CGGNs with the
boundary condition. The present work differs from the paper [27–29] since (i) the diffusion
terms play an important role in the global exponential robust stability criteria in the paper,
(ii) the boundary condition of CGNNsmodel considered includes the Neumann type and the
Dirichlet type while the boundary condition of model in [27, 28] is the Neumann type. The
work will have significance impact on the design and applications of globally exponentially
robustly stable reaction-diffusion neural network with delays and is of great interest in many
applications.

The rest of this paper is organized as follows. In Section 2, model description and
preliminaries are given. In Section 3, several criteria are derived for the global exponential
robust stability for an equilibrium point of reaction-diffusion CGNNs with delays and the
boundary condition. Then, we give two examples and comparison to illustrate our criteria in
Section 4. Finally, in Section 5, some conclusions are made.

2. Model Description and Preliminaries

To begin with, we introduce some notations.

(i) Ω is an open bounded domain in R
m with smooth boundary ∂Ω, and mesΩ > 0 as

mesΩ denotes the measure of Ω. Ω = Ω ∪ ∂Ω.

(ii) L2(Ω) is the space of real Lebesgue measurable functions on Ω which is a Banach
space. Define the inner product 〈u, v〉 =

∫
Ωuvdx, for any u, v ∈ L2(Ω) and the

L2-norm ‖u‖2 := 〈u, u〉1/2, for u ∈ L2(Ω).
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(iii) H1(Ω) := {w ∈ L2(Ω), Diw ∈ L2(Ω)}, where Diw = ∂w/∂xi, 1 ≤ i ≤ m. H1
0(Ω) :=

the closure of C∞
0 (Ω) inH1(Ω).

(iv) Let C := C([0,+∞)×Ω,Rn) be the Banach space of continuous functions which map
[0,+∞) × Ω into R

n with the norm ‖u‖2 = (
∑n

i=1 ‖ui‖22)1/2 for u = (u1, . . . , un)
T ∈ C,

where ‖ui‖2 = (
∫
Ω|ui|2dx)1/2, i = 1, . . . , n.

(v) Let C1 := C([−τ, 0] × Ω,Rn) be the Banach space of bounded continuous functions
which map [−τ, 0] ×Ω into R

n with the following norm: ‖φ‖τ := sups∈[−τ, 0]‖φ(s)‖2,
for any φ(s) = (φ1(s), . . . , φn(s))

T ∈ C1, where ‖φ(s)‖C1 = (
∑n

i=1

∫
Ω|φi(s)|2dx)1/2.

Consider the following reaction-diffusion CGNNswith interval coefficients and delays
on Ω:

∂ui(t, x)
∂t

=
m∑

l=1

∂

∂xl

(
dil
∂ui(t, x)
∂xl

)
− ai(ui(t, x))

×
⎡

⎣bi(ui(t, x))−
n∑

j=1

sijfj
(
uj(t, x)

)−
n∑

j=1

tijgj
(
gj
(
t − τij , x

))
+Ii

⎤

⎦, (t, x) ∈ [0,+∞) ×Ω,

(2.1)

for i = 1, . . . , n, x = (x1, . . . , xm)
T ∈ Ω is space variable, ui(t, x) corresponds to the

state of the ith unit at time t and in space x; dil > 0, for i = 1, . . . , n, l = 1, . . . , m,
corresponds to the transmission diffusion coefficient along the ith neuron, di = min1≤l≤m{dil}
for i = 1, . . . , n; ai(ui(t, x)) represents an amplification function; bi(ui(t, x)) is an appropriate
behavior function; sij , tij denote the connection strengths of the jth neuron on the ith neuron,
respectively; gj(uj(t, x)), fj(uj(t, x)) denote the activation functions of jth neuron at time t
and in space x; τij(0 < τij ≤ τ) corresponds to the transmission delay along the axon of the
jth unit from the ith unit. Ii is the constant input from outside of the network.

Throughout this paper, we assume the following.

(H1) Each function ai(ξ) is positive, continuous, and bounded, that is, there exist
constants ai, ai such that 0 < ai ≤ ai(ξ) ≤ ai <∞, for ξ ∈ R, i = 1, . . . , n.

(H2) Each function bi(ξ) ∈ C1(R,R) and b′i(ξ) ≥ bi ≥ 0 is locally Lipschitz continuous.

(H3) The activation functions fj(ξ) and gj(ξ) satisfy Lipschitz condition, that is, there
exist two positive diagonal matrices F = diag(F1, . . . , Fn) and G = diag(G1, . . . , Gn)
such that

∣∣fj(ξ1) − fj(ξ2)
∣∣ ≤ Fj |ξ1 − ξ2|,

∣∣gj(ξ1) − gj(ξ2)
∣∣ ≤ Gj |ξ1 − ξ2|, (2.2)

for all ξ1, ξ2 ∈ R(ξ1 /= ξ2), j = 1, . . . , n.

Remark 2.1. The activation functions fj and gj , j = 1, . . . , n, are typically assumed to be
sigmoidal which implies that they are monotone, bounded, and smooth. However, in this
paper, we only need the previous weaker assumptions.
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We assume that the nonlinear delayed systems (2.1) are supplemented with the
boundary condition:

B[ui(t, x)] = 0, for (t, x) ∈ [−τ,+∞) × ∂Ω, i = 1, . . . , n, (2.3)

where B[ui(t, x)] = ui(t, x) is said the Dirichlet boundary condition, B[ui(t, x)] =
∂ui(t, x)/∂m is said the Neumann boundary condition, where ∂ui(t, x)/∂m = (∂ui(t, x)/∂x1,
. . ., ∂ui(t, x)/∂xm)

T denotes the outward normal derivative on ∂Ω.
Systems (2.1) are equipped with the initial condition:

ui(s, x) = φi(s, x), for (s, x) ∈ [−τ, 0] ×Ω, i = 1, . . . , n, (2.4)

where φ := (φ1, . . . , φn)
T ∈ C.

Given boundary condition (2.3) and initial function (2.4), the existence on the
solutions of systems (2.1), the reader can refer to [18]. We denote the solution by u(t, φ, x) :=
(u1(t, φ, x), . . . , un(t, φ, x))

T and sometimes it is denoted by u(t, x), u(t) or u for short when
there is no risk of confusion.

Lemma 2.2. Under assumptions (H1)–(H3), system (2.1) has a unique equilibrium point, if

(H4) bi > Σn
j=1(s

∗
ijFj + t

∗
ijGj), for i = 1, . . . , n.

As for the proof of Lemma 2.2, the reader can refer to [21, 28]. Here, we omit it.

Definition 2.3. An equilibrium point u∗ of system (2.1)–(2.4) is said to be globally
exponentially stable on L2-norm, if there exist constant η > 0 andM ≥ 1 such that

‖u(t, x) − u∗‖2 ≤M
∥∥φ − u∗∥∥τe−ηt ∀t ≥ 0, (2.5)

where ‖φ − u∗‖τ = sup−τ≤s≤0‖φ(s, x) − u∗‖2.

Definition 2.4. Let sij ≤ sij ≤ sij , s∗ij = max(|sij |, |sij |), tij ≤ tij ≤ tij , t∗ij = max(|tij |, |tij |),
Ii ≤ Ii ≤ Ii, I∗i = max(|Ii|, |Ii|), τi = max(|τij |). An equilibrium point u∗ of system (2.1)–
(2.4) is said to be globally exponentially robustly stable if its equilibrium point u∗ is globally
exponentially stable for all sij ≤ sij ≤ sij , tij ≤ tij ≤ tij , Ii ≤ Ii ≤ Ii, τij ≤ τij ≤ τij , for
i, j = 1, . . . , n.

Lemma 2.5 (Poincaré inequality [30–32]). Let Ω be a bounded domain of R
m with a smooth

boundary ∂Ω of class C2 by Ω. v(x) is a real-valued function belonging toH1
0(Ω) and B[v(x)]|∂Ω =

0. Then

λ1

∫

Ω
|v(x)|2dx ≤

∫

Ω
|∇v(x)|2dx, (2.6)
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which λ1 is the lowest positive eigenvalue of the Laplacian with boundary condition

−Δψ(x) = λψ(x), x ∈ Ω,

B
[
ψ(x)

]
= 0, x ∈ ∂Ω.

(2.7)

Regarding the proof of Lemma 2.5, we refer to any textbook on partial differential
equations. For example, [30, 31] or [32] are good standard references.

Remark 2.6. (i) When Ω is bounded or at least bounded in one direction, not only limited
to a rectangle domain, inequality (2.6) holds. (ii) The lowest positive eigenvalue λ1 of the
Laplacian is sometimes known as the first eigenvalue. Determining the lowest eigenvalue λ1
is, in general, a very hard task that depends upon the geometry of the domain Ω. Certain
special cases are tractable, however. For example, let the Laplacian on Ω = {(x1, x2)T ∈ R

2 |
0 < x1 < a, 0 < x2 < b}, if B[v(x)] = v(x) or B[v(x)] = ∂v(x)/∂m, then λ1 = (π/a)2 +
(π/b)2 or λ1 = min{(π/a)2, (π/b)2}, respectively. (iii) Although the eigenvalue λ1 of the
laplacian with the Dirichlet boundary condition on a generally bounded domain Ω cannot
be determined exactly, a lower bound of it may nevertheless be estimated by λ1 ≥ (m2/(m +
2))((2π)2/ωm−1)(1/V )2/m, where ωm−1 is a surface area of the unit ball in R

m, V is a volume
of domain Ω [33].

3. Main Results

Theorem 3.1. Let hypotheses (H1)–(H4) hold. Assume further that

(A1) 2(diλ1 + aibi) > ai
∑n

j=1(s
∗
ijFi + t∗ijGi) +

∑n
j=1 aj(s

∗
jiFj + t∗jiGj), for i = 1, . . . , n, then

equilibrium point u∗ of system (2.1) with (2.3) and (2.4) is globally exponentially robust
stable for each constant input I ∈ R

n.

Proof. Let yi(t) = ui(t) − u∗. yi(t) is denoted by yi for short. From (2.1), we obtain

∂yi
∂t

=
m∑

l=1

∂

∂xl

(
dil
∂yi
∂xl

)
− ai(ui)

⎡

⎣b̃i
(
yi
) −

n∑

j=1

sij f̃j
(
yj
) −

n∑

j=1

tij g̃j
(
yj
(
t − τij

))
⎤

⎦, (3.1)

for (t, x) ∈ [0,+∞) ×Ω, i = 1, . . . , n, where

b̃i
(
yi
)
= bi

(
yi + u∗i

) − bi
(
u∗i
)
, f̃j

(
yj
)
= fj

(
yj + u∗j

)
− fj

(
u∗j
)
,

g̃j
(
yj
)
= gj

(
yj + u∗j

)
− gj

(
u∗j
)
,

(3.2)

for i, j = 1, . . . , n.
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Taking the inner product of both sides of (3.1) with yi, we get

1
2
d

dt

∥
∥yi

∥
∥2
2 =

∫

Ω
yi

m∑

l=1

∂

∂xl

(
dil
∂yi
∂xl

)
dx +

∫

Ω
yiai(ui)

n∑

j=1

sij f̃j
(
yj
)
dx

−
∫

Ω
yiai(ui)b̃i

(
yi
)
dx +

∫

Ω
yiai(ui)

n∑

j=1

tij g̃j
(
yj
(
t − τij

))
dx,

(3.3)

for t ∈ [0,+∞), i = 1, . . . , n.
From the boundary condition (2.3), Gauss formula and Lemma 2.2, we have

∫

Ω
yi

m∑

l=1

∂

∂xl

(
dil
∂yi
∂xl

)
dx = −

∫

Ω

m∑

l=1

dil

(
∂yi
∂xl

)2

dx

≤ −di
∫

Ω

m∑

l=1

(
∂yi
∂xl

)2

dx = −di
∫

Ω

∣∣∇yi
∣∣2dx

≤ −λ1di
∫

Ω
y2
i dx = −λ1di

∥∥yi
∥∥2
2.

(3.4)

From assumption (H2), we get

∫

Ω
yiai(ui)b̃i

(
yi
)
dx ≥

∫

Ω
aibi

∣∣yi
∣∣2dx ≥ aibi

∥∥yi
∥∥2
2. (3.5)

From assumptions (H1) and (H3), we obtain

∫

Ω
yiai(ui)

n∑

j=1

sij f̃j
(
yj
)
dx ≤

n∑

j=1

∫

Ω
s∗ijaiFj

∣∣yi
∣∣∣∣yj

∣∣dx ≤
n∑

j=1

s∗ijaiFj
∥∥yi

∥∥
2

∥∥yj
∥∥
2. (3.6)

By the same way, we have

∫

Ω
yiai(ui)

n∑

j=1

tij g̃j
(
yj
(
t − τij

))
dx ≤

n∑

j=1

t∗ijaiGj

∥∥yi
∥∥
2

∥∥yj(t − τij)
∥∥
2. (3.7)

Combining (3.4)–(3.7) into (3.3), we obtain

d

dt

∥∥yi
∥∥2
2 ≤ −2(diλ1 + aibi

)∥∥yi
∥∥2
2 + 2

n∑

j=1

s∗ijaiFj
∥∥yi

∥∥
2

∥∥yj
∥∥
2 + 2

n∑

j=1

t∗ijaiGj

∥∥yi
∥∥
2

∥∥yj(t − τij)
∥∥
2,

(3.8)

for t ∈ [0,+∞).
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According to (A1), we can choose a sufficiently small μ > 0 such that

2
(
diλ1 + aibi

) − μ −
n∑

j=1

ai
(
s∗ijFi + t

∗
ijGi

)
−

n∑

j=1

aj
(
s∗jiFj + t

∗
jiGje

μτ
)
> 0. (3.9)

Now consider the Lyapunov functional V (t) defined by

V (t) =
n∑

i=1

⎡

⎣
∥
∥yi

∥
∥2
2e

μt + ai
n∑

j=1

t∗ijGj

∫ t

t−τij
eμ(s+τij )

∥
∥yj(s)

∥
∥2
2ds

⎤

⎦. (3.10)

By calculating the upper right Dini derivativeD+V (t) of V (t) along the solutions of (3.1), we
get

D+V (t) = eμt
n∑

i=1

⎧
⎨

⎩
μ
∥∥yi

∥∥2
2 +

d

dt

∥∥yi
∥∥2
2 + ai

n∑

j=1

t∗ijGje
μτij

∥∥yj(t)
∥∥2
2

− ai
n∑

j=1

t∗ijGj

∥∥yj(t − τij)
∥∥2
2

⎫
⎬

⎭

≤ eμt
n∑

i=1

⎧
⎨

⎩
[−2(diλ1 + aibi

)
+ μ

]∥∥yi
∥∥2
2

+ 2
n∑

j=1

s∗ijaiFj
∥∥yi

∥∥
2

∥∥yj
∥∥
2 + 2

n∑

j=1

t∗ijaiGj

∥∥yi
∥∥
2

∥∥yj(t − τij)
∥∥2
2

+ ai
n∑

j=1

t∗ijGje
μτij

∥∥yj
∥∥2
2 − ai

n∑

j=1

t∗ijGj

∥∥yj(t − τij)
∥∥2
2

⎫
⎬

⎭

≤ eμt
n∑

i=1

⎧
⎨

⎩
[−2(diλ1 + aibi

)
+ μ

]∥∥yi
∥∥2
2

+
n∑

j=1

s∗ijaiFj
∥∥yi

∥∥2
2 +

n∑

j=1

s∗ijaiFj
∥∥yj

∥∥2
2

+
n∑

j=1

t∗ijaiGj

∥∥yi
∥∥2
2 +

n∑

j=1

t∗ijaiGj

∥∥yj(t − τij)
∥∥
2

+ ai
n∑

j=1

t∗ijGje
μτij

∥∥yj
∥∥2
2 − ai

n∑

j=1

t∗ijGj

∥∥yj(t − τij)
∥∥2
2

⎫
⎬

⎭
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≤ eμt
n∑

i=1

⎧
⎨

⎩

⎡

⎣−2(diλ1 + aibi
)
+ μ + ai

⎛

⎝
n∑

j=1

s∗ijFj +
n∑

j=1

t∗ijGj

⎞

⎠

⎤

⎦
∥
∥yi

∥
∥2
2

+

⎛

⎝
n∑

j=1

s∗ijaiFj +
n∑

j=1

t∗ijaiGje
μτij

⎞

⎠
∥
∥yj

∥
∥2
2

⎫
⎬

⎭

≤ eμt
n∑

i=1

⎧
⎨

⎩

⎡

⎣−2(diλ1 + aibi
)
+ μ + ai

⎛

⎝
n∑

j=1

s∗ijFj +
n∑

j=1

t∗ijGj

⎞

⎠

⎤

⎦
∥
∥yi

∥
∥2
2

+

⎛

⎝
n∑

j=1

s∗jiajFi +
n∑

j=1

t∗jiajGie
μτ

⎞

⎠
∥
∥yi

∥
∥2
2

⎫
⎬

⎭

= eμt
n∑

i=1

⎧
⎨

⎩
−2(diλ1 + aibi

)
+ μ + ai

n∑

j=1

⎛

⎝s∗ijFj +
n∑

j=1

t∗ijGj

⎞

⎠

+
n∑

j=1

aj
(
s∗jiFi + t

∗
jiGie

μτ
)
⎫
⎬

⎭

∥∥yi
∥∥2
2,

(3.11)

for t ∈ [0,+∞). Hence

∥∥y(t)
∥∥2
2e

μt ≤ V (t) ≤ V (0), for t ∈ [0,+∞). (3.12)

Note that

V (0) =
n∑

i=1

⎡

⎣
∥∥yi(0)

∥∥2
2 + ai

n∑

j=1

t∗ijGj

∫0

−τij
eμ(s+τij)

∥∥yj(s)
∥∥2
2ds

⎤

⎦

≤
⎡

⎣1 +
1
μ
max
1≤i≤n

⎧
⎨

⎩

n∑

j=1

ajt
∗
jiGiτjie

μτji

⎫
⎬

⎭

⎤

⎦
n∑

i=1

∥∥yi
∥∥2
τ .

(3.13)

DenoteM > 0 and

M2 = 1 +
1
μ
max
1≤i≤n

⎧
⎨

⎩

n∑

j=1

ajt
∗
jiGiτjie

μτji

⎫
⎬

⎭
, (3.14)

whereM > 0, thenM ≥ 1. So

∥∥y(t)
∥∥2
2 ≤M2∥∥φ − u∗∥∥2

τe
−μt for t ∈ [0,+∞), (3.15)
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that is,

‖u(t) − u∗‖2 ≤M
∥
∥φ − u∗∥∥τe−(1/2μt) for t ∈ [0,+∞). (3.16)

Since all the solutions of system (2.1)–(2.4) tend to u∗ exponentially as t → +∞ for any values
of the coefficients in system (2.1) with (2.3)-(2.4), that is, the system described by (2.1) with
(2.3)-(2.4) has a unique equilibriumwhich is globally exponentially robust stable on L2-norm
and the theorem is proved.

Remark 3.2. In the deduction for Theorem 3.1, by Lemma 2.5, we have obtained
−di

∫
Ω|∇yi|2dx ≤ −λ1di‖yi(t)‖22 (see (3.4)). This is an important step. As a result, the condition

of Theorem 3.1 includes the diffusion terms.
Changing a little the Lyapunov functional (3.10) by

V (t) =
n∑

i=1

⎡

⎣
∥∥yi

∥∥2
2e

μt + ai
n∑

j=1

tijG
2
j

∫ t

t−τij
eμ(s+τij )

∥∥yj(s)
∥∥2
2ds

⎤

⎦, (3.17)

and using the similar way of the proof of Theorem 3.1, we derive another new criterion.

Theorem 3.3. Under assumptions (H1)–(H4), if, in addition

(A2) 2(diλ1+aibi) >
∑n

j=1 ai(s
∗
ij+t

∗
ij)+

∑n
j=1 aj(s

∗
jiF

2
j +t

∗
jiG

2
j ), for i = 1, . . . , n, then equilibrium

point u∗ of system (2.1) with (2.3)-(2.4) is globally exponentially robust stable for each
constant input I ∈ R

n.

For system (2.1), when the strength of the neuron interconnections sij and tij (i, j =
1, . . . , n) is fixed constant matrices, the following result is obvious from Theorems 3.1 and 3.3.

Corollary 3.4. Under assumptions (H1)–(H4), if any one of the following condition is true:

(A3) 2(diλ1 + aibi) > ai
∑n

j=1(sijFi + tijGi) +
∑n

j=1 aj(sjiFj + tjiGj),

(A4) 2(diλ1+aibi) > ai
∑n

j=1(sij+tij)+
∑n

j=1 aj(sjiF
2
j +tjiG

2
j ), for i = 1, . . . , n, then equilibrium

point u∗ of system (2.1) with (2.3)-(2.4) is globally exponentially stable.

Remark 3.5. When ai(ui(t, x)) = 1, bi(ui(t, x)) = biui(t, x), i = 1, . . . , n, then system (2.1)
reduces to the following reaction-diffusion cellular neural network:

∂ui(t, x)
∂t

=
m∑

l=1

∂

∂xl

(
dil
∂ui(t, x)
∂xl

)

−
⎡

⎣biui(t, x)−
n∑

j=1

sijfj
(
uj(t, x)

)−
n∑

j=1

tijgj
(
gj
(
t−τij , x

))
+Ii

⎤

⎦, (t, x) ∈ [0,+∞)×Ω,

(3.18)

for i = 1, . . . , n.



10 Discrete Dynamics in Nature and Society

From Theorems 3.1 and 3.3, we have the following results.

Corollary 3.6. Under assumptions (H3) and (H4), if, in addition, any one of the following condition
is true:

(A3) 2(diλ1 + bi) >
∑n

j=1(s
∗
ijFi + t

∗
ijGi) +

∑n
j=1(s

∗
jiFj + t

∗
jiGj),

(A4) 2(diλ1 + bi) >
∑n

j=1(s
∗
ij + t

∗
ij) +

∑n
j=1(s

∗
jiF

2
j + t∗jiG

2
j ), for i = 1, . . . , n, then equilibrium

point u∗ of system (3.18) with (2.3) and (2.4) is globally exponentially robust stable for
each constant input I ∈ R

n.

Remark 3.7. When dil = 0, then system (2.1) reduces to the following systemwithout diffusive
terms:

∂ui(t)
∂t

= −ai(ui(t))
⎡

⎣bi(ui(t)) −
n∑

j=1

sijfj
(
uj(t)

) n∑

j=1

tijgj
(
gj
(
t − τij

))
+ Ii

⎤

⎦, (3.19)

for t ≥ 0, i = 1, . . . , n.

From Theorems 3.1 and 3.3, we have the following results.

Corollary 3.8. Under assumptions (H1)–(H4), if, in addition, any one of the following condition
holds:

(A5) 2aibi >
∑n

j=1 ai(sijFi + tijGi) +
∑n

j=1 aj(sjiFj + tjiGj),

(A6) 2aibi >
∑n

j=1 ai(sij + tij) +
∑n

j=1 aj(sjiF
2
j + tjiG

2
j ), for i = 1, . . . , n, then equilibrium point

u∗ of system (3.19)with (2.4) is globally exponentially robust stable for each constant input
I ∈ R

n.

Remark 3.9. From Theorems 3.1 and 3.3, Corollary 3.8, we see that condition (A5) or condition
(A6) imply (A1) and (A2), respectively, conversely, if conditions (A1) and (A2) hold, (A5)
and (A6) do not certainly hold. This show that the reaction-diffusion terms have play an
important role in the globally exponentially robust stability to a reaction-diffusion neural
network.

4. Examples and Comparison

In order to illustrate the feasibility of the previous established criteria in the preceding
sections, we provide concrete two examples. Although the selection of the coefficients and
functions in the examples is somewhat artificial, the possible application of our theoretical
theory is clearly expressed.
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Example 4.1. Consider the following reaction-diffusion CGNNs on Ω = {x = (x1, x2, x3)
T ∈

R
3 | x2

1 + x
2
2 + x

2
3 < 1}:

∂

∂t

[
u1(t)

u2(t)

]

=

⎡

⎢⎢
⎢
⎣

0.65
∂u1(t)
∂x1

0.72
∂u1(t)
∂x2

0.65
∂u1(t)
∂x3

0.82
∂u2(t)
∂x1

0.65
∂u2(t)
∂x2

0.71
∂u2(t)
∂x3

⎤

⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

∂

∂x1
∂

∂x2
∂

∂x3

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

−
[
1 + 0.2 cosu1(t, x) 0

0 1 + 0.2 sinu2(t, x)

]

×
{[

I1

I2

]

+

[
1.2 0

0 1.2

][
u1(t)

u2(t)

]

−
[
s11 s12

s21 s22

][
sinu1(t)

cosu2(t)

]

−
[
t11 t12

t21 t22

][
tanh

(
u1
(
t − τ1j

))

tanh
(
u2
(
t − τ2j

))

]}

, (t, x) ∈ [0,+∞) ×Ω,

ui(t) = 0, (t, x) ∈ [0,+∞) × ∂Ω, i = 1, 2,

ui(s) = φi(s), (s, x) ∈ [−1, 0] ×Ω, i = 1, 2,

(4.1)

where tanh(x) = (ex − e−x)/(ex + e−x), s11 ∈ [1/5, 1/4], s12 ∈ [1/20, 1/16], s21 ∈ [−1/4, 1/17],
s22 ∈ [−1/4,−1/12], t11 ∈ [1/6, 1/4], t12 ∈ [1/20, 1/6], t21 ∈ [−1/4,−1/12], t22 ∈ [1/3, 1/2],
I1 ∈ [−1/5, 1], I1 ∈ [−1/5, 3/5], τ11 ∈ [0.3, 0.8], τ12 ∈ [0.4, 1], τ21 ∈ [0.1, 0.6], and τ22 ∈ [0.2, 0.9].

This model satisfies assumptions (H1)–(H4) in this paper with λ1 ≥ 0.5387, d1 = d2 =
0.65, a1 = a2 = 1.2, a1 = a2 = 0.8, b1 = b2 = 1.2, F1 = F2 = G1 = G2 = 1, S∗ = (s∗ij)n×n =
[ 1/4 1/16

1/4 1/4

]
, T ∗ = (t∗ij)n×n =

[ 1/4 1/16

1/4 1/2

]
, τ = 1, I∗1 = 1, I∗2 = 3/5. It is easily computed that

2.6204

2.6204

}

= 2
(
diλ1 + aibi

)
> ai

n∑

j=1

(
s∗ijFi + t

∗
ijGi

)
+

n∑

j=1

aj
(
s∗jiFj + t

∗
jiGj

)
=

⎧
⎨

⎩

1.9500, i = 1,

2.5500, i = 2.
(4.2)

From Theorem 3.1, we know that model (4.1) has a unique equilibrium point which is
globally exponentially robustly stable.

Remark 4.2. It should be noted that

2.4 = 2a2b2 ≯ a2
n∑

j=1

(
s∗2jF2 + t∗2jG2

)
+

n∑

j=1

aj
(
s∗j2Fj + t

∗
j2Gj

)
= 2.5500. (4.3)

From Corollary 3.8, the corresponding delayed differential equation of system (4.1) without
reaction-diffusion terms is not certainly robustly stable, as we can see in Example 4.1,
reaction-diffusion terms do contribute to the exponentially robust stability of system (4.1).
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Example 4.3. For the model in Example 4.1, if the diffusion operator, Ω, and the boundary
condition are replaced by, respectively,

⎡

⎢
⎢
⎢
⎣

2
∂u1(t)
∂x1

1.2
∂u1(t)
∂x2

1.2
∂u2(t)
∂x1

2
∂u2(t)
∂x2

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

∂

∂x1

∂

∂x2

⎤

⎥
⎥
⎥
⎦
, Ω =

{
(x1, x2)T ∈ R

2 | 0 < xi < π, i = 1, 2
}
, (4.4)

and the Neumann boundary condition

∂ui(t)
∂m

= 0, (t, x) ∈ [0,+∞) × ∂Ω, i = 1, 2, (4.5)

the remainder parameters unchanged. According to Remark 2.1, we see that λ1 = 2. By
Theorem 3.1, using the same way with Example 4.1, we see that model (4.1) has a unique
equilibrium point which is globally exponentially robustly stable.

Remark 4.4. Song and Cao have considered reaction-diffusion CGNNs with the Neumann
boundary condition and obtained the criteria of the globally exponentially robust stability
unique equilibrium point for CGNN, that is, [29, Theorem 1]. We notice that [29, Theorem
1] is irrelevant to the reaction-diffusion terms. In principal, [29, Theorem 1] could be
applied to analyze the globally exponentially robust stability for the system in Example 4.2.
Unfortunately, [29, Theorem 1] is not applicable to ascertain the globally exponentially robust
stability for the system in Example 4.2, since (according to the symbols in this paper)

⎡

⎢⎢⎢
⎣

a1b1

a1
0

0
a2b2

a1

⎤

⎥⎥⎥
⎦
− S∗F − T ∗G =

⎡

⎢⎢
⎣

1
6

−1
8

−1
2

− 1
12

⎤

⎥⎥
⎦ (4.6)

is not anM-matrix, where F = diag{F1, F2}, G = diag{G1, G2}.

5. Conclusion

In this paper, we have proposed several sufficient condition for the globally exponentially
robustly stability of equilibrium point for the reaction-diffusion CGNNs with constant time
delays. All the criteria are established by constructing suitable Lyapunov functionals, without
assuming the monotonicity and differentiability of activation functions and the symmetry of
connection matrices. The space domain that CGNNs model is on is relatively general, the
boundary condition of CGNNs model includes the Dirichlet and the Neumann. In particular,
Poincaré inequality is used and all the criteria obtained depend on reaction-diffusion terms,
this is a preeminent feature that distinguishes our research from the previous research
on delayed neural network with reaction diffusion. Numerical examples are presented to
illustrate the feasibility of this method.
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