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1. Introduction

The aim of this paper is to investigate the permanent property of the following nonau-
tonomous discrete n-species cooperation system with time delays and feedback controls of
the form:

xi(k + 1) = xi(k) exp

{
ri(k)

[
1 − xi(k − τii)

ai(k) +
∑n

j=1, j /= i bij(k)xj
(
k − τij

) − ci(k)xi(k − τii)
]

−di(k)ui(k) − ei(k)ui
(
k − ηi

)}
,

Δui(k) = −αi(k)ui(k) + βi(k)xi(k) + γi(k)xi(k − σi),

(1.1)

where xi(k) (i = 1, . . . , n) is the density of cooperation species xi, ui(k) (i = 1, . . . , n) is the
control variable (see [1, 2]).
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Throughout this paper, we assume the following.
(H1) ri(k), ai(k), bij(k), ci(k), di(k), ei(k), αi(k), βi(k), γi(k), i, j = 1, 2, . . . , n are all

bounded nonnegative sequences such that

0 < rli ≤ rui , 0 < ali ≤ aui , 0 < blij ≤ buij ,

0 < cli ≤ cui , 0 < dli ≤ dui , 0 ≤ eli ≤ eui ,

0 < αli ≤ αui < 1, 0 < βli ≤ βui , 0 < γli ≤ γui .

(1.2)

Here, for any bounded sequence {h(k)} and N = {0, 1, 2, . . .}, hu = supk∈N{h(k)} and hl =
infk∈N{h(k)}.

(H2) τij , ηi, σi, i, j = 1, 2, . . . , n are all nonnegative integers.
Let τ = max{τij , σi, ηi, i, j = 1, 2, . . . , n}; we consider (1.1) together with the following

initial conditions:

xi(θ) = ϕi(θ) ≥ 0, θ ∈N[−τ, 0] = {−τ,−τ + 1, . . . , 0}, ϕi(0) > 0,

ui(θ) = ψi(θ) ≥ 0, θ ∈N[−τ, 0] = {−τ,−τ + 1, . . . , 0}, ψi(0) > 0.
(1.3)

It is not difficult to see that the solutions of (1.1)–(1.3) are well defined for all k ≥ 0 and satisfy

xi(k) > 0, ui(k) > 0, for k ∈ Z, i = 1, 2, . . . , n, (1.4)

where Z is the set of integer numbers.
Recently, Chen [3] proposed and studied the permanence of system (1.1). Set

Mi1 =
exp

{
rui (τii + 1) − 1

}
clir

u
i

, Mi2 =

(
βui + γ

u
i

)
Mi1

αli
. (1.5)

Using the comparison theorem, he obtained the following result.

Theorem A (see [3]). Assume that (H1) and (H2) hold, and assume further that
(H3)

rli >
(
dui + e

u
i

)
Mi2, i = 1, 2, . . . , n (1.6)

holds, then system (1.1) is permanent.

However, as was pointed out by Fan and Wang [4], “if we use the method of
comparison theorem, then the additional condition, in some extent, is necessary. But for
the system itself, this condition may not necessary.” In [4], by establishing a new difference
inequality, Fan and Wang showed that feedback control has no influence on the permanence
of a single species discrete model. Their success motivated us to consider the persistent
property of system (1.1). Indeed, in this paper, we will develop the analysis idea of [3] and
apply the difference inequality obtained by Fan and Wang [4] to prove the following result.
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Theorem 1.1. Assume that (H1) and (H2) hold, then system (1.1) is permanent.

Remark 1.2. Theorem 1.1 shows that feedback control variables have no influence on the
permanent property of system (1.1). It is natural to askwhether the feedback control variables
have the influence on the stability property of the system or not. At present, we had difficulty
to give an affirm answer to this problem, and we will leave this in our future study.

We will prove Theorem 1.1 in the next section. For more works on cooperative system
and feedback control ecosystem, one could refer to [1–23] and the references cited therein.

2. Proof of Theorem 1.1

Now we state several lemmas which will be useful for the proof of our main result.

Lemma 2.1 (see [5, page 125]). Consider the first-order difference equation

y(k + 1) = Ay(k) + B, k = 1, 2, . . . , (2.1)

where A and B are positive constants. Assume that |A| < 1, for any initial value y(0), there exist a
unique solution y(k) of (2.1) which can be expressed as follows: y(k) = Ak(y(0) − y∗) + y∗, where
y∗ = B/(1 −A). Thus, for any solution {y(k)} of system (2.1), one has

lim
k→+∞

y(k) = y∗. (2.2)

Lemma 2.2 (see [5, page 241] (Comparison theorem)). Let k ∈ N+
k0

= {k0, k0 + 1, . . . , k0 +
l, . . .}, r ≥ 0. For any fixed k, g(k, r) is a nondecreasing function, and for k ≥ k0, the following
inequalities hold:

y(k + 1) ≤ g(k, y(k)),
u(k + 1) ≥ g(k, u(k)).

(2.3)

If y(k0) ≤ u(k0), then y(k) ≤ u(k) for all k ≥ k0.

Lemma 2.3 (see [6, Theorem 2.1]). Consider the following single species discrete model:

N(k + 1) =N(k) exp
(
r(k)

(
1 − N(k)

h(k)

))
, (2.4)

where {r(k)} and {h(k)} are strictly positive sequences of real numbers defined for k ∈ N =
{0, 1, 2, . . .} and 0 < hl ≤ hu, 0 < rl ≤ ru. Any solution of system (2.4) with initial conditionN(0) >
0 satisfies m ≤ lim infk→+∞N(k) ≤ lim supk→+∞N(k) ≤ M, where M = (hu/ru) exp(ru −
1), m = hl exp(ru(1 −M/hl)).

Lemma 2.4 (see [7]). Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp{a(k) − b(k)x(k)}, k ≥N0, (2.5)
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lim supk→+∞x(k) ≤ x∗, and x(N0) > 0, where a(k) and b(k) are nonnegative sequences bounded
above and below by positive constants andN0 ∈N. Then

lim inf
k→+∞

x(k) ≥ min

{
al

bu
exp

{
al − bux∗

}
,
al

bu

}
. (2.6)

Lemma 2.5 (see [4]). Assume that A > 0 and y(0) > 0. Further suppose that

(i)

y(n + 1) ≤ Ay(n) + B(n), n = 1, 2, . . ., (2.7)

then for any integer k ≤ n, y(n) ≤ Aky(n − k) +∑k−1
i=0 A

iB(n − i − 1). Especially, ifA < 1
and B is bounded above with respect toM, then lim supt→+∞y(n) ≤M/(1 −A);

(ii)

y(n + 1) ≥ Ay(n) + B(n), n = 1, 2, . . ., (2.8)

then for any integer k ≤ n, y(n) ≥ Aky(n − k) +∑k−1
i=0 A

iB(n − i − 1). Especially, ifA < 1
and B is bounded below with respect tom∗, then lim inft→+∞y(n) ≥ m∗/(1 −A).

Lemma 2.6. Let (x(k), u(k))T = (x1(k), . . . , xn(k), u1(k), . . . , un(k))
T be any positive solution of

system (1.1), there exists a positive constantM, which is independent of the solution of system (1.1),
such that

lim sup
k→+∞

xi(k) ≤M; lim sup
k→+∞

ui(k) ≤M, i = 1, 2, . . . , n. (2.9)

Proof. Let (x(k), u(k))T = (x1(k), . . . , xn(k), u1(k), . . . , un(k))
T be any positive solution of

system (1.1); similarly to the proof of Theorem 2.1 in [3], we have

lim sup
k→+∞

xi(k) ≤Mi1, lim sup
k→+∞

ui(k) ≤Mi2, (2.10)

where Mi1, Mi2, i = 1, 2, . . . , n are defined by (1.5). In fact, from the ith equation of (1.1), it
follows that

xi(k + 1) ≤ xi(k) exp{ri(k)}. (2.11)

Let xi(k) = exp{Ni(k)}, then (2.11) is equivalent to

Ni(k + 1) −Ni(k) ≤ ri(k). (2.12)
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Summing both sides of (2.12) from k − τii to k − 1 leads to

k−1∑
j=k−τii

(
Ni

(
j + 1

) −Ni

(
j
)) ≤

k−1∑
j=k−τii

ri
(
j
) ≤ rui τii. (2.13)

We obtain thatNi(k − τii) ≥Ni(k) − rui τii and hence,

xi(k − τii) ≥ xi(k) exp
{−rui τii}. (2.14)

Substituting (2.14) to the ith equation of (1.1), it immediately follows that

xi(k + 1) ≤ xi(k) exp[ri(k)(1 − ci(k)xi(k − τii))]
≤ xi(k) exp

[
ri(k)

(
1 − ci(k)xi(k) exp

{−rui τii})]. (2.15)

By applying Lemmas 2.2 and 2.3 to (2.15), we have

lim sup
k→+∞

xi(k) ≤
exp

{
rui (τii + 1) − 1

}
clir

u
i

=Mi1. (2.16)

For any small enough ε > 0, it follows from (2.16) that there exists enough large K1 such that

xi(k) ≤Mi1 + ε, for k ≥ K1. (2.17)

This, together with (n + i)th equation of (1.1), leads to

Δui(k) ≤ −αi(k)ui(k) +
(
βi(k) + γi(k)

)
(Mi1 + ε), for k ≥ K1 + τ. (2.18)

And so,

ui(k + 1) ≤
(
1 − αli

)
ui(k) +

(
βui + γ

u
i

)
(Mi1 + ε), for k ≥ K1 + τ. (2.19)

Notice that 0 < 1 − αli < 1; it follows from (2.19) and Lemmas 2.1 and 2.2 that
lim supk→+∞ui(k) ≤ (βui + γ

u
i )(Mi1 + ε)/αli. Let ε → 0 in above inequality, then

lim sup
k→+∞

ui(k) ≤
(
βui + γ

u
i

)
Mi1

αli
=Mi2. (2.20)

SetM = maxi{Mi1,Mi2}. The conclusion of Lemma 2.6 holds. The proof is complete.
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Lemma 2.7. Let (x(k), u(k))T = (x1(k), . . . , xn(k), u1(k), . . . , un(k))
T be any positive solution of

system (1.1), there exists a positive constant m, which is independent of the solution of system (1.1),
such that

lim inf
k→+∞

xi(k) ≥ m; lim inf
k→+∞

ui(k) ≥ m. (2.21)

Proof. Let (x(k), u(k))T = (x1(k), . . . , xn(k), u1(k), . . . , un(k))
T be a solution of system (1.1)

satisfying the initial condition (1.3). From Lemma 2.6, there exists a K1 such that for all k ≥
K1, xi(t) ≤ 2Mi1, ui(k) ≤ 2Mi2. Thus, for k > K1 + τ , from the ith equation of system (1.1), it
follows that

xi(k + 1) ≥ xi(k) exp
{
ri(k)

(
1 − xi(k − τii)

ali
− cui xi(k − τii)

)
− 2

(
dui + e

u
i

)
Mi2

}

≥ xi(k) exp
{
rli

(
1 − 2Mi1

ali
− 2cui Mi1

)
− 2

(
dui + e

u
i

)
Mi2

}

≥ xi(k) exp
{
−2r

l
iMi1

ali
− 2rli c

u
i Mi1 − 2

(
dui + e

u
i

)
Mi2

}

def= xi(k) exp{ζi}.

(2.22)

Obviously, ζi is a negative constant. Let xi(k) = exp{Ni(k)}, the above inequality is
equivalent to

Ni(k + 1) −Ni(k) ≥ ζi. (2.23)

Summing both sides of (2.23) from k −m to k − 1 leads to
∑k−1

j=k−m(Ni(j + 1) −Ni(j)) ≥ ζim,
and so,Ni(k −m) ≤Ni(k) − ζim, therefore,

xi(k −m) ≤ xi(k) exp{−ζim}. (2.24)

Specially, we have

xi(k − σi) ≤ xi(k) exp{−ζiσi} ≤ xi(k) exp{−ζiτ},

xi(k − τii) ≤ xi(k) exp{−ζiτii} ≤ xi(k) exp{−ζiτ},

xi
(
k − ηi

) ≤ xi(k) exp
{−ζiηi} ≤ xi(k) exp{−ζiτ}.

(2.25)
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Substituting the first inequality into the (n + i)th equation of system (1.1) leads to

ui(k + 1) ≤ (1 − αi(k))ui(k) + βi(k)xi(k) + γi(k)xi(k) exp{−ζiτ}

≤
(
1 − αli

)
ui(k) + βui xi(k) + γ

u
i xi(k) exp{−ζiτ} = Aiui(k) + Bixi(k),

(2.26)

where Ai = 1 − αli, Bi = βui + γui exp{−ζiτ}. Then Lemma 2.5 and (2.24) imply that, for any
integer s ≤ k,

ui(k) ≤ As
i ui(k − s) +

s−1∑
j=0

Bixi
(
k − j − 1

)

≤ As
i ui(k − s) +

s−1∑
j=0

Bi exp
{−ζi(j + 1

)}
xi(k).

(2.27)

Note that 0 < 1−αli < 1 and for enough large k, s, which satisfy k−s ≥ K1, then ui(k−s) ≤ 2M
and lims→+∞As

i = 0. Thus, for k, s → +∞ and k − s ≥ K1, 0 ≤ As
i ui(k − s) ≤ 2As

iM → 0.
Then, there exists a positive integer K2 > K1 such that for any positive solution of system
(1.1), 2(dui +e

u
i )A

s
iM ≤ (1/2)rli , for all s ≥ K2 and i = 1, 2, . . . , n. In fact, we could chooseK2 =

maxi{| lnCi/ lnAi|}, where Ci = (1/2)rli/2M(dui + e
u
i ), i = 1, 2, . . . , n. Fix K2, for k > K2 +K1,

we get

ui(k) ≤ AK2
i ui(k −K2) +

K2−1∑
j=0

Bixi
(
k − j − 1

)

≤ 2AK2
i M +

K2−1∑
j=0

Bi exp
{−ζi(j + 1

)}
xi(k)

def= 2AK2
i M +Dixi(k).

(2.28)

And so, for k > K2 +K1 + τ , we have

ui
(
k − ηi

) ≤ 2AK2
i M +Dixi

(
k − ηi

)
. (2.29)
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Substituting (2.28) and (2.29) into the ith equation of system (1.1), this together with (2.25)
leads to (note that 2(dui + e

u
i )A

K2
i M ≤ (1/2)rli)

xi(k + 1) ≥ xi(k) exp
[
ri(k)

(
1 −

(
1

ali
+ cui

)
exp{−ζiτ}xi(k)

)

−di(k)
(
2AK2

i M +Dixi(k)
)
− ei(k)

(
2AK2

i M +Dixi
(
k − ηi

))]

≥ xi(k) exp
[
ri(k)

(
1 −

(
1

ali
+ cui

)
exp{−ζiτ}xi(k)

)

−di(k)
(
2AK2

i M +Dixi(k)
)
− ei(k)

(
2AK2

i M +Di exp{−ζiτ}xi(k)
)]

= xi(k) exp

[(
ri(k) − 2(di(k) + ei(k))2A

K2
i M

)

−
(
ri(k)

(
1

ali
+ cui

)
exp{−ζiτ} + di(k)Di + ei(k)Di exp{−ζiτ}

)
xi(k)

]

≥ xi(k) exp
[(
rli − 2

(
dui + e

u
i

)
2AK2

i M
)

−
(
rui

(
1

ali
+ cui

)
exp{−ζiτ} + dui Di + eui Di exp{−ζiτ}

)
xi(k)

]

≥ xi(k) exp
[
1
2
rli − Eixi(k)

]
,

(2.30)

where Ei = rui (1/a
l
i + c

u
i ) exp{−ζiτ} + dui Di + eui Di exp{−ζiτ}.

By applying Lemma 2.4 to (2.30), it immediately follows that

lim inf
k→+∞

xi(k) ≥ mi1. (2.31)

wheremi1 = min{(1/2)r li/Ei, ((1/2)rli/Ei) exp{(1/2)rli − EiM}}.
From (2.31), we know that there exists enough large K3 > K2 +K1 + τ such that

xi(k) ≥ 1
2
mi1, for k ≥ K3 + τ. (2.32)

This together with the (n + i)th equation of (1.1) leads to

Δui(k) ≥ −αi(k)ui(k) + 1
2
(
βi(k) + γi(k)

)
mi1, for k ≥ K3 + τ. (2.33)
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And so,

ui(k + 1) ≥ (
1 − αui

)
ui(k) +

1
2

(
βli + γ

l
i

)
mi1, for k ≥ K3 + τ. (2.34)

Noticing that 0 < 1 − αui < 1 and applying Lemmas 2.1 and 2.2 to (2.34), we have

lim inf
k→+∞

ui(k) ≥
(1/2)

(
βli + γ

l
i

)
mi1

αui

def= mi2. (2.35)

Setting m = mini{mi1, mi2}, the conclusion of Lemma 2.7 follows. This ends the proof of
Lemma 2.7.

Proof of Theorem 1.1. Lemmas 2.6 and 2.7 show that under the assumptions (H1) and (H2), for
any positive solution (x(k), u(k)) = (x1(k), . . . , xn(k), u1(k), . . . , un(k))

T of system (1.1), one
has

m ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤M,

m ≤ lim inf
k→+∞

ui(k) ≤ lim sup
k→+∞

ui(k) ≤M,
(2.36)

where m and M are independent of the solution of system (1.1), thus, system (1.1) is
permanent. This ends the proof of Theorem 1.1.

3. Conclusions

Stimulated by the works of Fan andWang [4], in this paper, we revisit the model proposed by
Chen [3]. We showed that condition (H3) in [3] is not necessary to ensure the permanence of
the system, which means that feedback control variables have no influence on the persistent
property of system (1.1).

Acknowledgments

The authors are grateful to anonymous referees for their excellent suggestions, which greatly
improved the presentation of the paper. Also, this work was supported by the Foundation of
Education Department of Fujian Province (JA08253).

References

[1] M. Fan, K. Wang, P. J. Y. Wong, and R. P. Agarwal, “Periodicity and stability in periodic n-
species Lotka-Volterra competition system with feedback controls and deviating arguments,” Acta
Mathematica Sinica, vol. 19, no. 4, pp. 801–822, 2003.

[2] H.-F. Huo and W.-T. Li, “Positive periodic solutions of a class of delay differential system with
feedback control,” Applied Mathematics and Computation, vol. 148, no. 1, pp. 35–46, 2004.

[3] F. Chen, “Permanence of a discrete N-species cooperation system with time delays and feedback
controls,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 23–29, 2007.



10 Discrete Dynamics in Nature and Society

[4] Y.-H. Fan and L.-L. Wang, “Permanence for a discrete model with feedback control and delay,”
Discrete Dynamics in Nature and Society, vol. 2008, Article ID 945109, 8 pages, 2008.

[5] L. Wang and M. Q. Wang, Ordinary Difference Equation, Xinjiang University Press, Xinjiang, China,
1991.

[6] Z. Zhou and X. Zou, “Stable periodic solutions in a discrete periodic logistic equation,” Applied
Mathematics Letters, vol. 16, no. 2, pp. 165–171, 2003.

[7] F. Chen, “Permanence for the discrete mutualismmodel with time delays,”Mathematical and Computer
Modelling, vol. 47, no. 3-4, pp. 431–435, 2008.

[8] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, vol. 74 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

[9] F. Chen, X. Liao, and Z. Huang, “The dynamic behavior of N-species cooperation system with
continuous time delays and feedback controls,” Applied Mathematics and Computation, vol. 181, no.
2, pp. 803–815, 2006.

[10] P. Weng, “Existence and global stability of positive periodic solution of periodic integrodifferential
systems with feedback controls,” Computers & Mathematics with Applications, vol. 40, no. 6-7, pp. 747–
759, 2000.

[11] Y. Xiao, S. Tang, and J. Chen, “Permanence and periodic solution in competitive systemwith feedback
controls,”Mathematical and Computer Modelling, vol. 27, no. 6, pp. 33–37, 1998.

[12] K. Gopalsamy and P. X. Weng, “Feedback regulation of logistic growth,” International Journal of
Mathematics and Mathematical Sciences, vol. 16, no. 1, pp. 177–192, 1993.

[13] F. Chen, “Global asymptotic stability in n-species non-autonomous Lotka-Volterra competitive
systems with infinite delays and feedback control,” Applied Mathematics and Computation, vol. 170,
no. 2, pp. 1452–1468, 2005.

[14] F. Yin and Y. Li, “Positive periodic solutions of a single species model with feedback regulation and
distributed time delay,” Applied Mathematics and Computation, vol. 153, no. 2, pp. 475–484, 2004.

[15] F. Chen, “Permanence in nonautonomous multi-species predator-prey system with feedback
controls,” Applied Mathematics and Computation, vol. 173, no. 2, pp. 694–709, 2006.

[16] F. Chen, “Permanence for the discrete mutualismmodel with time delays,”Mathematical and Computer
Modelling, vol. 47, no. 3-4, pp. 431–435, 2008.

[17] X. Liao, S. Zhou, and Y. Chen, “Permanence and global stability in a discrete n-species competition
system with feedback controls,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1661–
1671, 2008.

[18] S. Lu, “On the existence of positive periodic solutions to a Lotka Volterra cooperative population
model with multiple delays,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 6, pp.
1746–1753, 2008.

[19] Z. Liu, R. Tan, Y. Chen, and L. Chen, “On the stable periodic solutions of a delayed two-species model
of facultative mutualism,” Applied Mathematics and Computation, vol. 196, no. 1, pp. 105–117, 2008.

[20] Z. Liu and L. Chen, “Periodic solutions of a discrete time nonautonomous two-species mutualistic
system with delays,” Advances in Complex Systems, vol. 9, no. 1-2, pp. 87–98, 2006.

[21] Y. Li and H. Zhang, “Existence of periodic solutions for a periodic mutualism model on time scales,”
Journal of Mathematical Analysis and Applications, vol. 343, no. 2, pp. 818–825, 2008.

[22] H. Wu, Y. Xia, and M. Lin, “Existence of positive periodic solution of mutualism system with several
delays,” Chaos, Solitons & Fractals, vol. 36, no. 2, pp. 487–493, 2008.

[23] Y. Xia, J. Cao, and S. S. Cheng, “Periodic solutions for a Lotka-Volterra mutualism systemwith several
delays,” Applied Mathematical Modelling, vol. 31, no. 9, pp. 1960–1969, 2007.


