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1. Introduction

Modeling and analysis of the dynamics of biological populations by means of differential
equations is one of the primary concerns in population growth problems. A well-known and
extensively studied class of models in population dynamics is the Lotka-Volterra system
which models the interaction among various species. In the earlier literature most of the
discussions are devoted to coupled systems of two equations (cf. [1–11]). In the recent years,
attention has been given to reaction-diffusion systems with three population species, and the
main concerns in these works are the prey-predator and competition models with or without
time delays (cf. [12–24]). The purpose of this paper is to investigate the asymptotic behavior
of the time-dependent solution for a 3-species mutualism model, where the effect of diffusion
and time delays is both taken into consideration by obtaining existence of positive solution
for the corresponding inequalities. The system of equations under consideration is the Lotka-
Volterra 3-species mutualism model, where the population densities do not move across the
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boundary of a habitat, and time delays may appear in the opposing species; the densities of
three populations u, v,and w are governed by the following coupled equations:

∂u

∂t
− d1L1u = u

(
a1 − c1u + e1v + β1J2 ∗ v

)
,

∂v

∂t
− d2L2v = v

(
a2 + b2u − c2v + e2w + α2J1 ∗ u + β2J3 ∗w

)
,

∂w

∂t
− d3L3w = w

(
a3 + e3v − c3w + β3J2 ∗ v

)
(x ∈ Ω, t > 0),

(1.1)

with the boundary and initial conditions

∂u(x, t)
∂n

=
∂v(x, t)
∂n

=
∂w(x, t)
∂n

= 0 (x ∈ ∂Ω, t > 0),

u(x, t) = η1(x, t) (t ∈ I1), v(x, t) = η2(x, t) (t ∈ I2),

w(x, t) = η3(x, t) (t ∈ I3, x ∈ Ω).

(1.2)

Here Ω is a bounded domain in Rn with boundary ∂Ω, ∂/∂n denotes the outward normal
derivative on ∂Ω, and ηi(x, t) is a smooth function. The above problem (1.1)-(1.2) arises in
a simple food chain describing three interacting species in a spatial habitat Ω. For each i =
1, 2, 3, ai, ci are positive constants. bi, ei, αi, and βi are nonnegative constants with e∗i ≡ ei+βi >
0, b∗2 ≡ b2 + α2 > 0, and its respective diffusion rate is denoted by di. The real number ai
is the net birth rate of the ith species, and ci is its respective intraspecific competition. The
parameters bi, ei, αi and βi are interspecific cooperation. Li is a uniformly elliptic operator in
the form

Liu = −
N∑

j,k=1

a
(i)
j,k(x, t)

∂2u

∂xj∂xk
+

N∑

j=1

b
(i)
j (x, t)

∂u

∂xj
(i = 1, 2, 3) (1.3)

(cf. [1]). The functions Ji ∗ ui, i = 1, 2, 3, with (u1, u2, u3) = (u, v,w) are given either by the
discrete time delay

Ji ∗ ui = ui(t − τi, x), (1.4)

or by the continuous time delay

Ji ∗ ui =
∫ t

−τi
Ji(t − s)ui(s, x)ds, (1.5)

and the interval Ii is given by Ii = [−τi, 0], where τi > 0 is a constant representing the time
delay. It is allowed that the type of time delays and the values of τi may be different for
different ui. This consideration includes various combination of discrete and continuous time
delays for the species u, v, and w.
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Throughout the paper we assumed that the function Ji(t) is piecewise continuous in
R+ ≡ [0,+∞) and possesses the property

Ji(t) ≥ 0 for t ≥ 0, Ji(t) ≡ 0 for t > τi,
∫ τi

0
Ji(t)dt = 1 (i = 1, 2, 3).

(1.6)

The above property implies that for any constant function ui(t, x) = ρi, we have

∫ t

−τi
Ji(t − s)ui(s, x)ds = ρi (t ≥ 0). (1.7)

The same is obviously true if Ji ∗ ui is given by (1.4). It is also assumed that the domain
Ω is smooth and the coefficients a(i)

j,k
, b

(i)
j of Li are smooth functions in Ω (cf. [12]). In the

special case of the diffusion operator Liui = Di(x)D2ui, it suffices to assume that Di(x) is
strictly positive on Ω and in C1+α(Ω) for some α ∈ (0, 1). We allow Li = 0 (and without the
corresponding boundary condition) for some or all i. In particular, if Liui ≡ 0 for all i then the
equations in (1.1)-(1.2) are reduced to the ordinary differential system (with time delays)

du

dt
= u
(
a1 − c1u + e1v + β1J2 ∗ v

)
(t > 0),

dv

dt
= v
(
a2 + b2u − c2v + e2w + α2J1 ∗ u + β2J3 ∗w

)
(t > 0),

dw

dt
= w
(
a3 + e3v − c3w + β3J2 ∗ v

)
(t > 0),

u(t) = η1(t) (t ∈ I1), v(t) = η2(t) (t ∈ I2),

w(x, t) = η3(t) (t ∈ I3).

(1.8)

Problem (1.8) and various similar problems have been investigated by many investigators in
the framework of ordinary differential systems (cf. [25–28] and references therein). It is to be
noted that if Δui /= 0 and αi = βi = 0 for every i then problem (1.1) is reduced to the following
3-species mutualism models without time delays:

u1t − d1Δu1 = u1(a1 − c1u1 + e1u2), in ΩT ,

u2t − d2Δu2 = u2(a2 + b2u1 − c2u2 + e2u3), in ΩT ,

u3t − d3Δu3 = u3(a3 + b3u2 − c3u3), in ΩT ,

u1(x, t) = u2(x, t) = u3(x, t) = 0, on ∂ΩT ,

ui(x, 0) = ui,0(x), for i = 1, 2, 3, in Ω,

(1.9)
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where the domains ΩT and ∂ΩT are defined as, respectively, Ω × (0, T) and ∂Ω × (0, T). Here
Ω is a bounded domain in RN with smooth boundary ∂Ω. T is the maximal existence time
of the solution. ui,0 is a smooth function satisfying the compatibility condition ui,0(x) = 0 for
x ∈ ∂Ω. The meaning of the parameters of systems (1.9) is as same as those of (1.1)-(1.2).
Kim and Lin [22] proved that global solutions of (1.9) exist if the intraspecific competitions
are strong; whereas blow-up solutions exist under certain conditions of that the intraspecific
competitions are weak, and [23] obtained the upper bound of blow-up rate for any N and
the lower bound of blow-up rate for N = 1. On the other hand, if e2 = β2 = 0 then it reduces
to the 2-species cooperating models, which have been extensively investigated in the current
literature (cf. [2, 10, 11] and references therein). Our conclusion about the global asymptotic
stability of a positive steady-state solution to system (1.1)-(1.2) is directly applicable to the
above special cases (see Corollary 3.2).

This work is motivated from the following two-prey one-predator model:

∂u

∂t
− L1u = a1(x)u

(
1 − u − b1v − c1w − β1J2 ∗ v − γ1J3 ∗w

)
,

∂v

∂t
− L2v = a2(x)v

(
1 − v − b2u − c2w − β2J1 ∗ u − γ2J3 ∗w

)
,

∂w

∂t
− L3w = a3(x)w

(
1 −w + b3u + c3v + β3J1 ∗ u + γ3J2 ∗ v

)
(x ∈ Ω, t > 0),

∂u

∂n
=
∂v(x, t)
∂n

=
∂w(x, t)
∂n

= 0 (x ∈ ∂Ω, t > 0),

u(x, t) = η1(x, t) (t ∈ I1), v(x, t) = η2(x, t) (t ∈ I2),

w(x, t) = η3(x, t) (t ∈ I3, x ∈ Ω),

(1.10)

and one-prey two-predator model

∂u

∂t
− L1u = a1(x)u

(
1 − u − b1v − c1w − β1J2 ∗ v − γ1J3 ∗w

)
,

∂v

∂t
− L2v = a2(x)v

(
1 − v + b2u − c2w + β2J1 ∗ u − γ2J3 ∗w

)
,

∂w

∂t
− L3w = a3(x)w

(
1 −w + b3u − c3v + β3J1 ∗ u − γ3J2 ∗ v

)
(x ∈ Ω, t > 0),

∂u

∂n
=
∂v(x, t)
∂n

=
∂w(x, t)
∂n

= 0 (x ∈ ∂Ω, t > 0),

u(x, t) = η1(x, t) (t ∈ I1), v(x, t) = η2(x, t) (t ∈ I2),

w(x, t) = η3(x, t) (t ∈ I3, x ∈ Ω)

(1.11)
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as well as three-species food-chain model

∂u

∂t
− L1u = a1(x)u

(
1 − u − b1v − c1w − β1J2 ∗ v − γ1J3 ∗w

)
,

∂v

∂t
− L2v = a2(x)v

(
1 − v + b2u − c2w + β2J1 ∗ u − γ2J3 ∗w

)
,

∂w

∂t
− L3w = a3(x)w

(
1 −w + b3u + c3v + β3J1 ∗ u + γ3J2 ∗ v

)
(x ∈ Ω, t > 0),

∂u

∂n
=
∂v(x, t)
∂n

=
∂w(x, t)
∂n

= 0 (x ∈ ∂Ω, t > 0),

u(x, t) = η1(x, t) (t ∈ I1), v(x, t) = η2(x, t) (t ∈ I2),

w(x, t) = η3(x, t) (t ∈ I3, x ∈ Ω).

(1.12)

Pao [29] obtained some simple and easily verifiable conditions for the existence and global
asymptotic stability of a positive steady-steady solution for each of the above three-model
problems.

Based on the above results, we are mainly interested in studying the asymptotic
behavior of the solution of (1.1)-(1.2). The corresponding steady-state problem is given by

−d1L1u = u
(
a1 − c1u + e1v + β1v

)
(x ∈ Ω),

−d2L2v = v
(
a2 + b2u − c2v + e2w + α2u + β2w

)
(x ∈ Ω),

−d3L3w = w
(
a3 + e3v − c3w + β3v

)
(x ∈ Ω),

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 (x ∈ ∂Ω).

(1.13)

It is clear that the above system has always the trivial solution (0, 0, 0) and various forms
of constant semitrivial solutions, that is, constant nonnegative solutions with at least one
component zero and one component positive. Our aim is to prove the existence and global
asymptotic stability of a positive constant steady-state solution in the mutualism model (with
respect to nonnegative initial perturbations). This global asymptotic stability result implies
that system (1.1)-(1.2) is permanent, the trivial and all forms of semitrivial solutions are
unstable, and the nonuniform steady-state solution does not exist.

This paper is arranged as follows. In Section 2, we give some preliminary results for
a more general time-delayed reaction-diffusion system. The main results and their proofs
are given in Section 3. Some numerical simulations are shown in Section 4 to illustrate our
theoretical analysis.
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Figure 1: The solution of system (4.1).



Discrete Dynamics in Nature and Society 7

2. Some Preliminary Results

To prove the main results in this paper we first give some preliminary results for a more
general time-delayed parabolic system in the form

∂ui
∂t
− Liui = fi(x, U, J ∗U) (x ∈ Ω, t > 0),

∂ui
∂n

= 0 (x ∈ ∂Ω, t > 0),

ui(x, t) = ηi(x, t) (x ∈ Ω, t ∈ Ii), i = 1, 2, . . . ,N,

(2.1)

where U = (u1, u2, . . . , uN), J ∗ U = (J1 ∗ u1, J2 ∗ u2, . . . , JN ∗ uN), and for each i =
1, 2, . . . ,N, fi(·, U, J ∗ U) is, in general, a nonlinear function of U and J ∗ U, and Li is a
uniformly elliptic operator in the form of (1.3). The components Ji ∗ ui of J ∗ U are given
by (1.4) for i = 1, 2, . . . , n0 and by (1.5) for i = n0 + 1, . . . ,N, where n0 is a nonnegative integer.
(The case n0 = 0 corresponds to (1.5) for every i = 1, 2, . . . ,N.)

By writing U and V in the split forms U ≡ (ui, [u]ai , [u]bi) and V ≡ ([v]ci , [v]di),
respectively, where ai, bi, ci, and di are nonnegative integers satisfying

ai + bi =N − 1, ci + di =N (i = 1, 2, . . . ,N), (2.2)

and [w]δi denotes a vector with δi components of w, we write fi(x,U, V ) in the form

fi(x,U, V ) = fi
(
x, ui, [u]ai , [u]bi , [v]ci , [v]di

)
for every i = 1, 2, . . . ,N. (2.3)

Definition 2.1. We say that the vector function F(·, U, V ) ≡ (f1(·, U, V ), f2(·, U, V ),
. . . , fN(·, U, V )) possesses a mixed quasimonotone property in a subset S of RN, if
for each i there exist nonnegative integers ai, bi, ci, and di satisfying (2.2) such that
fi(·, ui, [u]ai , [u]bi , [v]ci , [v]di) is nondecreasing in [u]ai , [v]ci and is nonincreasing in
[u]bi , [v]di for every U,V in S (cf. [1, 12]). In particular, if bi = di = 0 for all i then F(·, U, V )
is said to be quasimonotone nondecreasing in S. It is easily seen that the reaction functions in
the models (1.1) are quasimonotone nondecreasing in RN

+ .

Definition 2.2. For quasimonotone nondecreasing functions F(·, U, V ) we call a pair of smooth
functions Ũ ≡ (ũ1, ũ2, . . . , ũN), Û ≡ (û1, û2, . . . , ûN) coupled upper and lower solutions of
(2.1) if Ũ > Û and if

∂ũi
∂t
− Liũi ≥ fi

(
x, Ũ, J ∗ Ũ

)
(x ∈ Ω, t > 0),

∂ûi
∂t
− Liûi ≤ fi

(
x, Û, J ∗ Û

)
(x ∈ Ω, t > 0),

∂ũi
∂n
≥ 0 ≥ ∂ûi

∂n
(x ∈ ∂Ω, t > 0),

ũi(x, t) ≥ ηi(x, t) ≥ ûi(x, t) (x ∈ Ω, t ∈ Ii, i = 1, 2, . . . ,N),

(2.4)
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where inequality between vectors is in the componentwise sense. It is obvious that if Ũ ≡
M ≡ (M1,M2, . . . ,MN) and Û ≡ δ ≡ (δ1, δ2, . . . , δN) are constant vectors, then the above
inequalities become

fi(x,M,M) ≤ 0 (x ∈ Ω),

fi(x, δ, δ) ≥ 0 (x ∈ Ω),

Mi ≥ ηi(x, t) ≥ δi (x ∈ Ω, t ∈ Ii), i = 1, 2, . . . ,N.

(2.5)

Notice that the boundary inequalities in (2.4) are trivially satisfied. For a given pair of
constant vectors M, δ satisfying (2.5) we set

S ≡ {U ∈ C(Ω) : δ ≤ U ≤M}, (2.6)

where C(Ω) denotes the set of continuous functions on Ω. In the following we give our basic
hypotheses on F(·, U, V ) with V ≡ J ∗U.

(H) The function F(·, U, V ) is quasimonotone nondecreasing forU,V ∈ S, and for each
i,fi(·, U, V ) satisfies the Lipschitz condition

∣∣fi(x,U, V ) − fi
(
x,U′, V ′

)∣∣ ≤ Ki

(∥∥U −U′
∥∥ +
∥∥V − V ′

∥∥) (
U,U′, V, V ′ ∈ S

)
, (2.7)

where Ki is a positive constant, and ‖w‖ = |w1|+ |w2|+ · · ·+ |wN | for w ∈ RN(| · | is a maximum
norm).

It is clear that if there exists a positive constant vector M = (M1,M2, . . . ,MN) and a
zero vector o = (0, 0, . . . , 0) such that

fi(x,M,M) ≤ 0 (x ∈ Ω),

fi(x, o, o) ≥ 0 (x ∈ Ω), i = 1, 2, . . . ,N,
(2.8)

then the pairs Ũ = M, Û = o are coupled upper and lower solutions of (2.1) whenever Mi ≥
ηi(x, t) ≥ 0. By an application of [12, Theorem 2.1] we have the following global existence
result.

Lemma 2.3. Let Ũ ≡ M ≡ (M1,M2, . . . ,MN), Û ≡ δ ≡ (δ1, δ2, . . . , δN) be a pair of constant
vectors satisfying (2.5) and M ≥ δ, and let hypothesis (H) hold. Then for any η(x, t) in S, problem
(2.1) has a unique global solution U(x, t) ∈ S for all t ≥ 0. In particular, if condition (2.8) holds
for every M ≥ o then problem (2.1) has a unique bounded nonnegative global solution whenever
η(x, t) ≥ o.
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Figure 2: The solution of system (4.2).



10 Discrete Dynamics in Nature and Society

In system (2.1) if fi is given in the form

fi(x,U, V ) = uif∗i (x,U, V ), i = 1, 2, . . . ,N, (2.9)

then the pairs Ũ =M, Û = o satisfy (2.8) whenever

f∗i (x,M,M) ≤ 0 (x ∈ Ω), i = 1, 2, . . . ,N. (2.10)

Moreover, by the positivity lemma for the linear scalar parabolic problem

∂Wi

∂t
− LiWi =Wif

∗
i (x,U, V ) (x ∈ Ω, t > 0),

∂Wi

∂n
= 0 (x ∈ ∂Ω, t > 0),

Wi(x, 0) = ηi(x, 0) x ∈ Ω, i = 1, 2, . . . ,N,

(2.11)

where U ≡ U(x, t) is the solution of (2.1), the solution Wi ≡Wi(x, t) is positive in (0,+∞) ×Ω
whenever ηi(x, 0) ≥ 0 and not identical 0 (cf. [1]). Since for each i the solution component
ui ≡ ui(x, t) is also a solution of (2.11) the uniqueness property of Wi ensures that ui(x, t) =
Wi(x, t) > 0 in (0,+∞) ×Ω. This observation leads to the following.

Lemma 2.4. Let fi(x,U, V ) be given by (2.9) and satisfy hypothesis (H), and let M ≡
(M1,M2, . . . ,MN) be a constant vector satisfying (2.10). Then for any nontrivial nonnegative
ηi(x, t) ≤Mi problem (2.1) has a unique bounded positive solution u(x, t) in (0,+∞) ×Ω.

To investigate the asymptotic behavior of the solution of (2.1), we consider the special
case

fi(x,U, V ) = gi(U,V ), i = 1, 2, . . . ,N, (2.12)

where gi(U,V ) is not explicitly dependent on x. The corresponding steady-state problem of
(2.1) is given by

−Liui = gi(U,V ) (x ∈ Ω),

∂ui
∂n

= 0 (x ∈ ∂Ω, ), i = 1, 2, . . . ,N,
(2.13)
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Assume that G(U,V ) ≡ (g1(U,V ), . . . , gN(U,V )) is quasimonotone nondecreasing in S. Then

by using U
(0)

=M,U(0) = δ as a pair of coupled initial iterations we construct two sequences

{U
(m)
} ≡ {u1, . . . , uN}, {U(m)} ≡ {u1, . . . , uN} from the linear iteration process

−Liu(m)
i +Kiu

(m)
i = Kiu

(m−1)
i + gi

(
u
(m−1)
1 , . . . , u

(m−1)
N , J ∗ u(m−1)

1 , . . . , J ∗ u(m−1)
N

)
,

−Liu(m)
i +Kiu

(m)
i = Kiu

(m−1)
i + gi

(
u
(m−1)
1 , . . . , u

(m−1)
N , J ∗ u(m−1)

1 , . . . , J ∗ u(m−1)
N

)
,

∂u
(m)
i

∂n
=
∂u

(m)
i

∂n
= 0 (i = 1, 2, . . . ,N),

(2.14)

where Ki is the Lipschitz constant in (2.7). It is clear that the sequences {U
(m)
}, {U(m)} are

well defined. Since the initial iterations in (2.14) are the constant vectors M,δ and gi(U,V ) is
independent of xwheneverU and V are constants we conclude from the uniqueness property
of solution for linear boundary-value problems that the solutions u(m)

i , u
(m)
i of (2.14) are

constants and are given by

u
(m)
i = u(m−1)

i +
1
Ki
gi
(
u
(m−1)
1 , . . . , u

(m−1)
N , u

(m−1)
1 , . . . , u

(m−1)
N

)
,

u
(m)
i = u(m−1)

i +
1
Ki
gi
(
u
(m−1)
1 , . . . , u

(m−1)
N , u

(m−1)
1 , . . . , u

(m−1)
N

)
(i = 1, 2, . . . ,N).

(2.15)

It is easy to show from the quasimonotone nondecreasing property of G(U,V ) that the
sequences u(m)

i , u
(m)
i possess the monotone property

δ ≤ U(m) ≤ U(m+1) ≤ U
(m+1)

≤ U
(m)
≤M (m = 1, 2, . . .) (2.16)

(cf. [12]). The above property implies that the constant limits

lim
m→∞

U
(m)

= ρ, lim
m→∞

U(m) = ρ (2.17)

exist and satisfy the relation δ ≤ ρ ≤ ρ ≤ M. Letting m → ∞ in (2.15) shows that ρ and ρ

satisfy the equations

gi
(
ρ, ρ
)
= 0, gi

(
ρ, ρ
)
= 0 (i = 1, 2, . . . ,N). (2.18)

It is easy to verify that the limits ρ and ρ are maximal and minimal solutions of systems
(2.13) in S, respectively, furthermore, if ρ = ρ(≡ ρ∗) then ρ∗ is the unique solution in S (cf.
[1, 12]). In the latter case, the time-dependent solution of (2.1) (with fi(x,U, V ) given by
(2.12)) converges to ρ∗ as t → ∞ (cf. [12]). To summarize the above conclusions we have the
following.
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Lemma 2.5. Let the conditions in Lemma 2.3 be satisfied with respect to the function given by
(2.12).Then

(i) the sequences {U
(m)
}, {U(m)} given by (2.14) with U

(0)
= M, U(0) = δ are constant

functions and converge monotonically to their respective constant limits ρ and ρ that satisfy
(2.18);

(ii) for any m ∈ N, if U(m) ≤ η(x, t) ≤ U
(m)

, then the constant pairs Ũ = U
(m)
, Û = U(m)

are also coupled upper and lower solutions of (2.1), and the problem (2.1) has a unique

positive solution U(x, t) such that U(m) ≤ U(x, t) ≤ U
(m)

and ρ ≤ u(x, t) ≤ ρ, as t →
∞ (x ∈ Ω);

(iii) if ρ = ρ(≡ ρ∗) then ρ∗ is the unique solution of (2.13) in S, and for any initial function
η(x, t) ∈ S the corresponding solutionU(x, t) of (2.1) converges to ρ∗as t → ∞.

In Lemma 2.5 the convergence of the time-dependent solution U(x, t) to ρ∗ is for the
class of initial functions in S. For arbitrary nontrivial nonnegative initial functions we have
the following result from [12].

Lemma 2.6. Let the conditions in Lemma 2.5 be satisfied, and letU ≡ (u1, u2, . . . , uN) be the solution
of (2.1) corresponding to an arbitrary nontrivial nonnegative η(x, t). Assume that ρ = ρ(≡ ρ∗) and
there exists t∗ > 0 such that

δi ≤ ui(x, t) ≤Mi for t∗ − τi ≤ t ≤ t∗, x ∈ Ω, (i = 1, 2, . . . ,N). (2.19)

ThenU(x, t)converges to ρ∗as t → ∞.

To prove the existence and uniqueness of constant positive solution of the steady-state
problem (1.13) we also need the following result.

Lemma 2.7. Let ai > 0, bi > 0, ci > 0 (i = 1, 2, 3). If a1b2c3 − a2b1c3 − a1b3c2 > 0 then the
inequalities

a1x − b1y > 0,

−a2x + b2y − c2z > 0,

−b3y + c3z > 0

(2.20)

have a positive solution(ρ1, ρ2, ρ3).

Proof. With the inequalities (2.20) exists a positive solution if and only if there exist positive
constants λ1, λ2, λ3 such that the following equations:

a1x − b1y = λ1,

−a2x + b2y − c2z = λ2,

−b3y + c3z = λ3

(2.21)
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have a positive solution. Let A =

( a1 −b1 0

−a2 b2 −c2

0 −b3 c3

)

, we have |A| > 0. From the Cramer theorem,

the solutions of (2.21) are as follows:

x =
λ1

∣
∣
∣

b2 −c2

−b3 c3

∣
∣
∣ − λ2

∣
∣
∣
−b1 0

−b3 c3

∣
∣
∣ + λ3

∣
∣
∣
−b1 0

b2 −c2

∣
∣
∣

|A|

=
λ1(b2c3 − b3c2) + λ2b1c3 + λ3b1c3

|A| ,

y =
−λ1

∣
∣
∣

−a2 −c2

0 c3

∣
∣
∣ + λ2

∣
∣
∣
a1 0

0 c3

∣
∣
∣ − λ3

∣
∣
∣
a1 0

−a2 −c2

∣
∣
∣

|A|

=
λ1a2c3 + λ2a1c3 + λ3a1c2

|A| ,

z =
λ1

∣∣∣
−a2 b2

0 −bc3

∣∣∣ − λ2

∣∣∣
a1 −b1

0 −b3

∣∣∣ + λ3

∣∣∣
a1 −b1

0 −b3

∣∣∣

|A|

=
λ1a2b3 + λ2a1b3 + λ3(a1b2 − a2b1)

|A| .

(2.22)

Let λ1 = λ3 = 1, λ2 = max{(1 − b1c3 − b2c3 + b3c2)/b1c3, (1 − a1b2 + a2b1 − a2b3)/a1b3, 1},
then with the equations (2.21) exists a positive solution (ρ1, ρ2, ρ3). Therefore the inequalities
(2.20) have a positive solution.

3. The Main Theorems and Proof

To prove the main results in this paper, we apply Lemmas 2.3–2.7 for the models in (1.1)-
(1.2) with U = (u, v,w) by constructing a suitable pair of constant upper and lower solutions
Ũ = M and Û = δ. This is equivalent to show that M and δ satisfy condition (2.5) for the
reaction functions fi(x,U, V ).

Theorem 3.1. Let e∗i ≡ ei + βi > 0 (i = 1, 2, 3) and b∗2 ≡ b2 + α2 > 0. If c1c2c3 − c1e
∗
2e
∗
3 − e∗1b

∗
2c3 > 0,

then the following statements hold true.

(i) The steady-state problem (1.9) has a unique constant positive solution.

(ii) For any nontrivial nonnegative (η1, η2, η3), problems (1.1)-(1.2) have a unique nonnega-
tive global solution (u, v,w), and the solution is uniformly boundary in Ω × [0,∞).

(iii) The positive constant solution ρ∗of the steady-state problem (1.9) is globally asymptotic
stable.
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Figure 3: The solution of system (4.3).

Proof. (i)Since the boundary conditions are Neumann type, we seek a pair of positive constant
vectors M = (M1,M2,M3), δ = (δ1, δ2, δ3) satisfying

M1
(
a1 − c1M1 + e∗1M2

)
≤ 0 ≤ δ1

(
a1 − c1δ1 + e∗1δ2

)
,

M2
(
a2 + b∗2M1 − c2M2 + e∗2M3

)
≤ 0 ≤ δ2

(
a2 + b∗2δ1 − c2δ2 + e∗2δ3

)
,

M3
(
a3 + e∗3M2 − c3M3

)
≤ 0 ≤ δ3

(
a3 + e∗3δ2 − c3δ3

)
,

∂δi
∂n
≤ 0 ≤ ∂Mi

∂n
(i = 1, 2, 3).

(3.1)
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Figure 4: The solution of system (4.4).
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It is clear that the boundary conditions are satisfied, and from the positive property ofMi and
δi that condition (3.1) is satisfied if

(
a1 − c1M1 + e∗1M2

)
≤ 0 ≤

(
a1 − c1δ1 + e∗1δ2

)
,

(
a2 + b∗2M1 − c2M2 + e∗2M3

)
≤ 0 ≤

(
a2 + b∗2δ1 − c2δ2 + e∗2δ3

)
,

(
a3 + e∗3M2 − c3M3

)
≤ 0 ≤

(
a3 + e∗3δ2 − c3δ3

)
.

(3.2)

We construct the following inequalities:

c1x − e∗1y > 0,

−b∗2x + c2y − e∗2z > 0,

−e∗3y + c3z > 0.

(3.3)

Let A =

⎛

⎝
c1 −e∗1 0

−b∗2 c2 −e∗2
0 −e∗3 c3

⎞

⎠, we have |A| > 0. Since e∗i ≡ ei + βi > 0 (i = 1, 2, 3) and b∗2 ≡ b2 + α2 > 0,

from the Lemma 2.7 the inequalities (3.3) have a positive solution (λ1, λ2, λ3). By choosing
M = (M1,M2,M3) = (Pλ1, Pλ2, Pλ3), δ = (δ1, δ2, δ3) = (γλ1, γλ2, γλ3), where P and γ are
a sufficiently large and small positive constant, respectively, we see that all the inequalities
in (3.2) are satisfied. That is, M and δ is a pair of positive constant upper-lower solution
of (1.1)-(1.2). By Lemma 2.5 the sequences governed by (2.14) with the reaction function
(f1, f2, f3) given by (1.1) converge monotonically, respectively, to some constant limits ρ ≡
(ρ1, ρ2, ρ3), ρ ≡ (ρ

1
, ρ

2
, ρ

3
) that satisfy

ρ1

(
a1 − c1ρ1 + e

∗
1ρ2

)
= 0, ρ

1

(
a1 − c1ρ

1
+ e∗1ρ2

)
= 0,

ρ2

(
a2 + b∗2ρ1 − c2ρ2 + e

∗
2ρ3

)
= 0, ρ

2

(
a2 + b∗2ρ1

− c2ρ
2
+ e∗2ρ3

)
= 0,

ρ3

(
a3 + e∗3ρ2 − c3ρ3

)
= 0, ρ

3

(
a3 + e∗3ρ2

− c3ρ
3

)
= 0.

(3.4)

Let ρi = ρi − ρi (i = 1, 2, 3). Then by the positivity of ρi and ρ
i
, a subtraction of the above pairs

of equations, leads to

c1ρ1 − e∗1ρ2 = 0,

−b∗2ρ1 + c2ρ2 − e∗2ρ3 = 0,

−e∗3ρ2 + c3ρ3 = 0.

(3.5)

Since these equations are equivalent to Aρ = 0, where A is coefficient matrix and ρ is the
column vector (ρ1, ρ2, ρ3)

T , we conclude from the nonsingular property of A that ρ = o. This
proves ρ = ρ(≡ ρ∗) and ρ∗ is the unique positive solution of (1.13) in S.
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(ii)It is obvious that the pairs M = (M1,M2,M3) = (Pλ1, Pλ2, Pλ3), δ = (δ1, δ2, δ3) =
(0, 0, 0) satisfy all the equalities in (3.1). By Lemma 2.3 and the arbitrariness of P, problems
(1.1)-(1.2) have a unique bounded nonnegative global solution (u, v,w) for any nontrivial
nonnegative (η 1,η 2,η 3).

(iii)Lemma 2.5 ensures that for any initial function η(x, t) ≡ (η1(x, t), η2(x, t), η3(x, t))
with γ(λ1, λ2, λ3) ≡ δ ≤ η(x, t) ≤ M ≡ P(λ1, λ2, λ3), where P and γare a
sufficiently large and small positiveconstants, respectively, the corresponding solution
U(x, t) ≡ (u(x, t), v(x, t), w(x, t)) of (1.1)-(1.2) converges to ρ∗ as t → ∞. To show
this convergence property for an arbitrary nontrivial nonnegative η(x, t), we observe
from Lemma 2.4, the arbitrary smallness of γ and the arbitrary largeness of P that
there exists t0 > 0 such that δ ≤ U(x, t) ≤ M on [t0,∞) × Ω. The upper and
lower bounds of U(x, t) show that there exists t∗ > 0 such that condition (2.19) is
satisfied for U ≡ (u1, u2, u3) = (u, v,w). The conclusion of U(x, t) → ρ∗ as t →
∞ follows from Lemma 2.6. We next consider the stability of U(x, t). We observe from
Lemma 2.5 that for any U(ρ∗, ε) there exists δ > 0 such that U(x, t) ∈ U∗ ≡
U(ρ∗, δ) ⊆ (U(m), U

(m)
) ⊂ U(ρ∗, ε) as initial function η(x, t) ∈ U∗. This completes the

proof.

Corollary 3.2. All the results of Theorem 3.1 hold true if di = 0 for some or all i. In particular, these
results hold true for the ordinary differential system (1.8). They are also true if the reaction functions
involve no time delays.

Proof. This follows from the argument in the proof of Theorem 3.1 by letting di = 0 (and
without the corresponding boundary condition) and by letting τi = 0 (i = 1, 2, 3), respectively.

Remark 3.3. Our model and result are different from the existence ones such as those of Pao
[29] and Kim and Lin [22, 23]. In some sense, we enrich the results of the 3-specics Lotka-
Volterra reaction-diffusion systems.

4. Numerical Simulations

In this section, we give numerical simulations supporting our theoretical analysis. As an
example, we consider system (1.1) with different diffusion rates di, birth rate ai, and time
delays τi, that is, the following systems:

∂u

∂t
− uxx = u(t, x)

[
1 − u(t, x) + 1

2
v(t, x) +

1
2
v(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂v

∂t
− vxx = v(t, x)

[
1 +

1
2
u(t, x) − 3v(t, x) +

1
2
w(t, x),

+
1
2
u(t − 0.1, x) +

1
2
w(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂w

∂t
−wxx = w(t, x)

[
1 +

1
2
v(t, x) −w +

(
1
2
v(t − 0.1, x)

)]
(2π > x > 0, t > 0),
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∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 (t > 0, x = 0, 2π),

u(t, x) = v(t, x) = w(t, x) = (1 + 10t)
[
1 − sin

(
x +

π

2

)]
(t, x) ∈ [−0.1, 0] × [0, 2π]. (4.1)

∂u

∂t
− uxx = u(t, x)

[
1 − u(t, x) + 1

2
v(t, x) +

1
2
v(t − 0.01, x)

]
(2π > x > 0, t > 0),

∂v

∂t
− vxx = v(t, x)

[
1 +

1
2
u(t, x) − 3v(t, x) +

1
2
w(t, x),

+
1
2
u(t − 0.01, x) +

1
2
w(t − 0.01, x)

]
(2π > x > 0, t > 0),

∂w

∂t
−wxx = w(t, x)

[
1 +

1
2
v(t, x) −w +

1
2
v(t − 0.01, x)

]
(2π > x > 0, t > 0),

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 (t > 0, x = 0, 2π),

u(t, x) = v(t, x) = w(t, x) = (1 + t)
[
1 − sin

(
x +

π

2

)]
(t, x) ∈ [−0.01, 0] × [0, 2π].

(4.2)

∂u

∂t
− uxx = u(t, x)

[
1 − u(t, x) + 1

2
v(t, x) +

1
2
v(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂v

∂t
− vxx = v(t, x)

[
2 +

1
2
u(t, x) − 3v(t, x) +

1
2
w(t, x),

+
1
2
u(t − 0.1, x) +

1
2
w(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂w

∂t
−wxx = w(t, x)

[
3 +

1
2
v(t, x) −w +

1
2
v(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 (t > 0, x = 0, 2π),

u(t, x) = v(t, x) = w(t, x) = (1 + 10t)
[
1 − sin

(
x +

π

2

)]
(t, x) ∈ [−0.1, 0] × [0, 2π].

(4.3)

∂u

∂t
− uxx = u(t, x)

[
1 − u(t, x) + 1

2
v(t, x) +

1
2
v(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂v

∂t
− 2vxx = v(t, x)

[
1 +

1
2
u(t, x) − 3v(t, x) +

1
2
w(t, x),

+
1
2
u(t − 0.1, x) +

1
2
w(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂w

∂t
− 3wxx = w(t, x)

[
1 +

1
2
v(t, x) −w +

1
2
v(t − 0.1, x)

]
(2π > x > 0, t > 0),

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 (t > 0, x = 0, 2π),

u(t, x) = v(t, x) = w(t, x) = (1 + 10t)
[
1 − sin

(
x +

π

2

)]
(t, x) ∈ [−0.1, 0] × [0, 2π].

(4.4)
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By using the classical implicit format solving the partial differential equations and the
method of steps for differential difference equations and employing the software package
MATLAB7.0, we can solve the numerical solutions of systems (4.1), (4.2), (4.3), and (4.4)
which are shown respectively in Figures 1, 2, 3, and 4.

5. Conclusions

It is well known that the analysis of stability for a system of delay reaction-diffusion
multispecies model is quite difficult since the reaction among multispecies is more complex.
Therefore, the works on this subject are very rare. A detailed analysis on the stability for a
two-prey one-predator model, one-prey two-predator model, and three-species food-chain
model with delay and diffusion was given by Pao [29], and he obtained some simple and
easily verifiable conditions for the existence and global asymptotic stability of a positive
steady-state solution for each of the three model problems.

In this paper, based on the ideas of Pao [12], we have considered a delay cooperative
three-species system with Neumann boundary condition. It is shown that the system
has a positive equilibrium under some certain conditions. We have obtained the similar
conclusions to those of Pao [29]. More precisely, we have obtained the following results.

(a) The steady-state problem (1.9) has a unique constant positive solution if c1c2c3 −
c1e

∗
2e
∗
3 − e∗1b

∗
2c3 > 0.

(b) For any nontrivial nonnegativ (η1, η2, η3), problems (1.1)-(1.2) have a unique
nonnegative global solution (u, v,w), and the solution is uniformly boundary in Ω × [0,∞).

(c) The positive constant solution ρ∗ of the steady-state problem (1.9) is globally
asymptotic stable.

The condition c1c2c3 − c1e
∗
2e
∗
3 − e∗1b

∗
2c3 > 0 involves only the reaction rate constants,

which shows that the diffusion rates di, the birth rate ai, and time delays τi do not bring effect
on permanence of one species as well as contribution to its extinction. The result of global
asymptotic stability implies that the three-species model system coexists, is permanent, and
the trivial and all semitrivial solutions are unstable.
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