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Copyright q 2009 Dağistan Simsek et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently, there has been a great interest in studying the periodic nature of nonlinear difference
equations. Although difference equations are relatively simple in form, it is, unfortunately,
extremely difficult to understand thoroughly the periodic behavior of their solutions. The
periodic nature of nonlinear difference equations of the max type has been investigated by
many authors. See, for example [1–24].

In this paper we study the behavior of the solutions of the following system of
difference equations:

xn+1 = max
{
A

xn
,
yn

xn

}
, yn+1 = max

{
A

yn
,
xn

yn

}
, (1.1)

where the constant A and the initial conditions are positive real numbers.
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2. Main Result

Definition 2.1. Fibonacci sequence is f1 = 1, f2 = 1 and for n ≥ 3, fn = fn−1 + fn−2.

Definition 2.2. The symbol [[ ]] symbolizes the greatest integer function.

Definition 2.3. The sequence of a(n) ≡ n(mod 2).

Definition 2.4. The sequence of

k(n) =

⎧⎨
⎩
n, n = 0, 2, 4, . . . ,

n + 1, n = 1, 3, 5, . . . .
(2.1)

Theorem 2.5. Let (xn, yn) be the solution of the system of difference equations (1.1) for A < x0 < y0

and y0/x0 > A.
If n ≥ 1, then

xn =

⎛
⎝Afk(n)−1−a(n)x

fk(n)
0

y
fk(n)
0

⎞
⎠

(−1)n

, (2.2)

y1 = x0/y0, and if n ≥ 2

yn =

⎛
⎝ y

fk(n−1)+1
0

Afk(n−1)+a(n)−1x
fk(n−1)+1
0

⎞
⎠

(−1)n

. (2.3)

Proof. Let y0 > A, then

x1 = max
{
A

x0
,
y0

x0

}
=

y0

x0
> A,

y1 = max
{
A

y0
,
x0

y0

}
=

x0

y0
< A,

x2 = max
{
A

x1
,
y1

x1

}
=

Ax0

y0
< A,

y2 = max
{
A

y1
,
x1

y1

}
=

x1

y1
=

y2
0

x2
0

> A,

x3 = max
{
A

x2
,
y2

x2

}
=

y2

x2
=

y3
0

Ax3
0

> A,

y3 = max
{
A

y2
,
x2

y2

}
=

A

y2
=

Ax2
0

y2
0

< A,
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x4 = max
{
A

x3
,
y3

x3

}
=

A2x3
0

y3
0

< A,

y4 = max
{
A

y3
,
x3

y3

}
=

x3

y3
=

y5
0

A2x5
0

> A,

x5 = max
{
A

x4
,
y4

x4

}
=

y4

x4
=

y8
0

A3x8
0

> A,

y5 = max
{
A

y4
,
x4

y4

}
=

A

y4
=

A3x5
0

y5
0

< A,

...

(2.4)

n ≥ 1 then

xn =

⎛
⎝Afk(n)−1−a(n)x

fk(n)
0

y
fk(n)
0

⎞
⎠

(−1)n

, (2.5)

y1 = x0/y0 then n ≥ 2,

yn =

⎛
⎝ y

fk(n−1)+1
0

Afk(n−1)+a(n)−1x
fk(n−1)+1
0

⎞
⎠

(−1)n

. (2.6)

Theorem 2.6. Let (xn, yn) be the solution of the system of difference equations (1.1) forA < y0 < x0.
x1 = x0/y0 and if n ≥ 2,

xn =

⎛
⎝Afk(n−1)+a(n)−1x

fk(n−1)+1
0

y
fk(n−1)+1
0

⎞
⎠

(−1)n

. (2.7)

If n ≥ 1, then

yn =

⎛
⎝ y

fk(n)
0

Afk(n)−1−a(n)x
fk(n)
0

⎞
⎠

(−1)n

. (2.8)

Proof. Similarly we can obtain the proof as the proof of Theorem 2.5.
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Theorem 2.7. Let (xn, yn) be the solution of the system of difference equations (1.1) for A < x0 < y0

and (y0/x0) > A.

(a) lim
n→∞

x2n = 0,

lim
n→∞

y2n = ∞.

(b) lim
n→∞

x2n+1 = ∞,

lim
n→∞

y2n+1 = 0.

(2.9)

Proof. (a) We obtain that

lim
n→∞

x2n = lim
n→∞

⎛
⎝Afk(2n)−1−a(2n)x

fk(2n)
0

y
fk(2n)
0

⎞
⎠

(−1)2n

= lim
n→∞

⎛
⎝Afk(2n)−1−a(2n)x

fk(2n)
0

y
fk(2n)
0

⎞
⎠

(−1)2k

= lim
n→∞

⎛
⎝Af2n−1−a(2n)xf2n

0

y
f2n
0

⎞
⎠

= 0,

lim
n→∞

y2n = lim
n→∞

⎛
⎝ y

fk(2n−1)+1
0

Afk(2n−1)+a(2n)−1x
fk(2n−1)+1
0

⎞
⎠

(−1)2n

= lim
n→∞

⎛
⎝ y

fk(2n−1)+1
0

Afk(2n−1)+a(2n)−1x
fk(2n−1)+1
0

⎞
⎠

(−1)2k

= lim
k→∞

⎛
⎝ y

f2n+1
0

Af2n−1xf2n+1
0

⎞
⎠

= ∞.

(2.10)

(b) Similarly we can obtain the proof of (b) as the proof of (a).
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Theorem 2.8. Let (xn, yn) be the solution of the system of difference equations (1.1) for A < y0 < x0

and (x0/y0) > A.

(a) lim
n→∞

x2n = ∞,

lim
n→∞

y2n = 0.

(b) lim
n→∞

x2n+1 = 0,

lim
n→∞

y2n+1 = ∞.

(2.11)

Proof. Similarly we can obtain the proof as the proof of Theorem 2.7.

Theorem 2.9. Let (xn, yn) be the solution of the system of difference equations (1.1) for 1 < x0 <
y0 < A.

If n ≥ 1, then

xn =
(

x0

Aa(n)

)(−1)n
. (2.12)

If n ≥ 1, then

yn =
(

y0

Aa(n)

)(−1)n
. (2.13)

Proof. Let

x1 = max
{
A

x0
,
y0

x0

}
=

A

x0
< A,

y1 = max
{
A

y0
,
x0

y0

}
=

A

y0
< A,

x2 = max
{
A

x1
,
y1

x1

}
=

Ax0

A
= x0 < A,

y2 = max
{
A

y1
,
x1

y1

}
=

A

y1
= y0 < A,

x3 = max
{
A

x2
,
y2

x2

}
=

A

x2
=

A

x0
< A,

y3 = max
{
A

y2
,
x2

y2

}
=

A

y2
=

A

y0
< A,

x4 = max
{
A

x3
,
y3

x3

}
=

A

x3
= x0 < A,
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y4 = max
{
A

y3
,
x3

y3

}
=

A

y3
= y0 < A,

x5 = max
{
A

x4
,
y4

x4

}
=

A

x4
=

A

x0
< A,

y5 = max
{
A

y4
,
x4

y4

}
=

A

y4
=

A

y0
< A,

...

(2.14)

n ≥ 1, then

xn =
(

x0

Aa(n)

)(−1)n
,

yn =
(

y0

Aa(n)

)(−1)n
.

(2.15)

Theorem 2.10. Let (xn, yn) be the solution of the system of difference equations (1.1) for 1 < x0 <
y0 < A.

(a) lim
n→∞

x2n = x0,

lim
n→∞

y2n = y0.

(b) lim
n→∞

x2n+1 =
A

x0
,

lim
n→∞

y2n+1 =
A

y0
.

(2.16)

Proof. (a) We obtain that

lim
n→∞

x2n = lim
n→∞

(
x0

Aa(2n)

)(−1)2n
= lim

n→∞

(
x0

A0

)(−1)2n
= lim

n→∞

(
x0

A0

)
= x0,

lim
n→∞

y2n = lim
n→∞

(
y0

Aa(2n)

)(−1)2n
= lim

n→∞

(
y0

A0

)(−1)2n
= lim

n→∞

(
y0

A0

)
= y0.

(2.17)

(b) Similarly we can obtain the proof of (b) as the proof of (a).

Lemma 2.11. Let (x0, y0) be the initial condition of (1.1) for 0 < x0 < 1 < y0 < A; there is at least
an i0 ∈ N such that every n ∈ N for n > i0, y0/x

n
0 > A.

Proof. We consider that x0 < 1 hence limn→∞(y0/x
n
0 ) = ∞ and that proofs the existing of i0

defined in hypothesis.
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Theorem 2.12. Let (xn, yn) be the solution of the system of difference equations (1.1) for 0 < x0 <
1 < y0 < A, and i0 is the number, defined by Lemma 2.11.

1 ≤ n ≤ i0

xn = Aa(n)(x0)(−1)
n

, (2.18)

1 ≤ n ≤ i0

yn = Aa(n)

(
y0

x
[[n/2]]
0

)(−1)n

, (2.19)

and when n > i0, the solutions will be different for every different constant A.

Proof. Let y0 < A, then

x1 = max
{
A

x0
,
y0

x0

}
=

A

x0
> 1,

y1 = max
{
A

y0
,
x0

y0

}
=

A

y0
> 1,

x2 = max
{
A

x1
,
y1

x1

}
=

A

x1
= x0 < 1,

y2 = max
{
A

y1
,
x1

y1

}
=

x1

y1
=

y0

x0
> 1,

x3 = max
{
A

x2
,
y2

x2

}
=

A

x2
=

A

x0
> 1,

y3 = max
{
A

y2
,
x2

y2

}
=

A

y2
=

Ax0

y0
,

x4 = max
{
A

x3
,
y3

x3

}
=

A

x3
= x0 < 1,

y4 = max
{
A

y3
,
x3

y3

}
=

x3

y3
=

y0

x2
0

,

x5 = max
{
A

x4
,
y4

x4

}
=

A

x4
=

A

x0
> 1,

y5 = max
{
A

y4
,
x4

y4

}
=

A

y4
=

Ax2
0

y0
,

(2.20)



8 Discrete Dynamics in Nature and Society

1 ≤ n ≤ i0,

xn = Aa(n)(x0)(−1)
n

,

yn = Aa(n)

(
y0

x
[[n/2]]
0

)(−1)n

.
(2.21)

Lemma 2.13. Let (x0, y0) be the initial condition of (1.1) for 0 < y0 < 1 < x0 < A; there is at least
an i0 ∈ N such that every n ∈ N for n > i0, x0/y

n
0 > A.

Proof. Similarly we can obtain the proof as the proof of Lemma 2.11.

Theorem 2.14. Let (xn, yn) be the solution of the system of difference equations (1.1) for 0 < y0 <
1 < x0 < A, and i0 is the number, defined by Lemma 2.13.

1 ≤ n ≤ i0

xn = Aa(n)

(
x0

y
[[n/2]]
0

)(−1)n

, (2.22)

1 ≤ n ≤ i0

yn = Aa(n)(y0
)(−1)n

, (2.23)

and when n > i0, the solutions will be different for every different constant A.

Proof. Similarly we can obtain the proof of be as the proof of Theorem 2.12.

Lemma 2.15. Let (x0, y0) be the initial condition of (1.1) for 0 < y0 < x0 < 1; there is at least an
i0 ∈ N such that every n ∈ N for n > i0, (x0/y0)

n > A.

Proof. We consider that y0 < x0 hence limn→∞(x0/y0)
n = ∞ and that proofs the existing of i0

defined in hypothesis.

Theorem 2.16. Let (xn, yn) be the solution of the system of difference equations (1.1) for 0 < y0 <
x0 < 1, A > 1, and i0 is the number, defined by Lemma 2.15.

x1 = A/x0 and if 1 < n ≤ i0,

xn = Aa(n)
(
x0

y0

)[[n/2]](−1)n
, (2.24)

y1 = A/y0, and if 1 < n ≤ i0,

yn = Aa(n)
(
y0

x0

)(−1)n
, (2.25)

and when n > i0, the solutions will be different for every different constant A.
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Proof. Let y0 < A, then

x1 = max
{
A

x0
,
y0

x0

}
=

A

x0
> 1,

y1 = max
{
A

y0
,
x0

y0

}
=

A

y0
> 1,

x2 = max
{
A

x1
,
y1

x1

}
=

y1

x1
=

x0

y0
> 1,

y2 = max
{
A

y1
,
x1

y1

}
=

x1

y1
=

y0

x0
< 1,

x3 = max
{
A

x2
,
y2

x2

}
=

A

x2
=

Ay0

x0
,

y3 = max
{
A

y2
,
x2

y2

}
=

A

y2
=

Ax0

y0
> 1,

x4 = max
{
A

x3
,
y3

x3

}
=

y3

x3
=

x2
0

y2
0

> 1,

y4 = max
{
A

y3
,
x3

y3

}
=

A

y3
=

y0

x0
< 1,

(2.26)

n > 1 then

xn = Aa(n)
(
x0

y0

)[[n/2]](−1)n
, (2.27)

n ≥ 1 then

yn = Aa(n)
(
y0

x0

)(−1)n
. (2.28)

Lemma 2.17. Let (x0, y0) be the initial condition of (1.1) for 0 < y0 < x0 < 1; there is at least an
i0 ∈ N such that every n ∈ N for n > i0, (y0/x0)

n > A.

Proof. Similarly we can obtain the proof as the proof of Lemma 2.15.

Theorem 2.18. Let (xn, yn) be the solution of the system of difference equations (1.1) for 0 < x0 <
y0 < 1, A > 1, and i0 is the number, defined by Lemma 2.17.

x1 = A/x0, and if 1 < n ≤ i0,

xn = Aa(n)
(
x0

y0

)(−1)n
, (2.29)
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y1 = A/y0, and if 1 < n ≤ i0,

yn = Aa(n)
(
y0

x0

)[[n/2]](−1)n
, (2.30)

and when n > i0, the solutions will be different for every different constant A.

Proof. Similarly we can obtain the proof as the proof of Theorem 2.16, which completes the
proofs of theorems.
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