
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2009, Article ID 328479, 17 pages
doi:10.1155/2009/328479

Research Article
Periodic Solution of Second-Order
Hamiltonian Systems with a Change Sign
Potential on Time Scales

You-Hui Su1, 2 and Wan-Tong Li2

1 School of Mathematics and Physical Sciences, Xuzhou Institute of Technology,
Xuzhou, Jiangsu 221008, China

2 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

Correspondence should be addressed to You-Hui Su, suyouhui@xzit.edu.cn

Received 26 November 2008; Accepted 4 April 2009

Recommended by Yong Zhou

This paper is concerned with the second-order Hamiltonian system on time scales T of the form
uΔΔ(ρ(t))+μb(t)|u(t)|μ−2u(t)+∇H(t, u(t)) = 0, Δ-a.e. t ∈ [0, T]

T
, u(0)−u(T) = uΔ(ρ(0))−uΔ(ρ(T)) =

0, where 0, T ∈ T. By using the minimax methods in critical theory, an existence theorem of
periodic solution for the above system is established. As an application, an example is given to
illustrate the result. This is probably the first time the existence of periodic solutions for second-
order Hamiltonian system on time scales has been studied by critical theory.

Copyright q 2009 Y.-H. Su and W.-T. Li. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The theory of calculus on time scales was introduced by Stefan Hilger in his Ph.D. thesis in
1988 [1]. It cannot only unify discrete and continuous calculus but also exhibit much more
complicated dynamics on time scales [2–6]. In particular, dynamic equations on time scales
have many important applications, such as, in the study of biological, heat transfer, stock
market, and epidemic models [2, 5, 7–9]. Consequently, it has been attracted considerable
amount of interest and is now a hot topic of still fairly theoretical exploration in mathematics.

Recently, for the existence problems of positive solutions for dynamic equations on
time scales, some authors have obtained many results; for details, see [10–21] and the
references therein. To the best of our knowledge, there is no work on the existence of periodic
solutions for second-order Hamiltonian systems on time scales. In particular, there is very
little work [22–24] on the existence of solutions of dynamic equations on time scales by using
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critical theory. Now, it is natural to use critical theory to consider the existence of periodic
solutions for second-order Hamiltonian systems on time scales.

We make the blanket assumption that 0, T are points in T, for an interval (0, T)
T
, we

always mean (0, T) ∩ T. Other types of intervals are defined similarly. We say that a property
holds for Δ-a.e. t ∈ A ⊂ T or Δ-a.e. on A ⊂ T, whenever there exists a set E ⊂ A with null
Lebesgue Δ-measure such that this property holds for every t ∈ A \ E.We refer the reader to
[3, 24, 25] for a broad introduction on Lebesgue Δ-measure.

In this paper, motivated by references [26, 27], we consider the following second-order
Hamiltonian system on time scales T of the form

uΔΔ(ρ(t)
)
+ μb(t)|u(t)|μ−2u(t) +∇H(t, u(t)) = 0, Δ-a.e. t ∈ [0, T]

T
,

u(0) − u(T) = uΔ(ρ(0)) − uΔ(ρ(T)) = 0,
(1.1)

where T > 0, μ > 2, b ∈ C([0, T]
T
,R),H : [0, T]

T
× R

n → R, (t, x) → H(t, x) is measurable in
t for every x ∈ R

n and continuously differentiable in x for Δ-a.e. t ∈ [0, T]
T
and ∇H(t, u) =

DuH(t, u). By using the minimax methods in critical theory, we establish the existence of at
least one nonzero solution for the problem (1.1). Our results are even new for the special cases
of difference equation and include the results of Tang and Wu [27] for differential equation.
Moreover, we prove some lemmas, which will be very important in proving the existence
of periodic solutions in H1

T (T) spaces for many other second-order Hamiltonian systems on
time scales. As an application, an example is given to illustrate the result.

There is a solution u of problems (1.1); we mean u : Tκ → R
n which is delta

differential; uΔ and uΔΔ are both continuous Δ-a.e. on T
κ ∩Tκ, and u satisfies problems (1.1).

Now, we present some basic definitions which can be found in [3–5, 28]. Another
excellent source on dynamical systems on measure chains is the book [6].

A time scale T is a nonempty closed subset of R. For t ∈ T, the forward and back jump
operators σ, ρ : T → T are well defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}. (1.2)

In this definition, one puts inf ∅ := supT and sup ∅ := infT , where ∅ denotes the empty set.
A point t ∈ T is called left-dense if ρ(t) = t, left-scattered if ρ(t) < t, right-dense if σ(t) = t,
and right-scattered if σ(t) > t.

If T has a right-scattered minimumm, define Tκ = T − {m}; otherwise, set Tκ = T.
If T has a left-scatteredmaximumM, define T

κ = T−{M}; otherwise, set T
κ = T. The forward

graininess is μ(t) := σ(t) − t. Similarly, the backward graininess is ν(t) := t − ρ(t).
If f : T → R is a function and t ∈ T

κ, then the delta derivative [4] of f at the point t
is defined to be the number fΔ(t) (provided it exists) with the property that, for any ε > 0,
there is a neighborhoodU ⊂ T of t such that

∣∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)
∣∣∣ ≤ ε|σ(t) − s|, ∀ s ∈ U. (1.3)
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If f : T → R and t ∈ Tκ, then the nabla derivative of f at the point t is defined
by the number f∇(t) (provided it exists) with the property that, for any ε > 0, there is a
neighborhoodU ⊂ T of t such that

∣
∣
∣f
(
ρ(t)
) − f(s) − f∇(t)

(
ρ(t) − s)

∣
∣
∣ ≤ ε

∣
∣ρ(t) − s∣∣, ∀ s ∈ U. (1.4)

We refer the reader to [25] for measure on time scales; absolutely continuous on time
scales can be found in [29]. We now provide the definition in [24, 30] and simply summarize
the main points, which also be described in [31].

Let a := inf{s : s ∈ T} and b := sup{s : s ∈ T}, defined a function E : [a, b] → R by

E(t) := sup{s ∈ T : s ≤ t}, t ∈ [a, b]. (1.5)

Now, suppose that f : T
κ → R is arbitrary function, if f ◦ E is measurable on the real

interval [a, b) in the usual Lebesgue senses, then we say f is measurable; if f ◦E is integrable
on the real interval [a, b) in the usual Lebesgue senses, then we say f is integrable. Let L1(T)
denote the set of such integrable functions on T. Furthermore, for any f ∈ L1(T), we defined
the integral of f by

∫ t

s

fΔ :=
∫ t

s

f ◦ Edτ for s, t ∈ T, (1.6)

with the norm defined by

∥∥f
∥∥
L1(T) =

∫b

a

∣∣f
∣∣Δ for f ∈ L1(T). (1.7)

We use the notation
∫ t
sfΔ to denote the Lebesgue integral of a function f between s, t ∈ T

(when it is defined). That is, we use the same notation for the Lebesgue-type integral defined
in [24, 30] as is commonly used in the time scale literature for a Riemann-type integral
defined in terms of antiderivatives. A detailed discussion of the Lebesgue-type integral and
it’s relationship with the usual time scale integral is given in [24, 30]. With the Lebesgue
integral defined, denote

L2(T) :=
{
f ∈ L1(T) : |f |2 ∈ L1(T)

}
,

∥∥f
∥∥
L2(T) =

(∫b

a

|f |2Δ
)1/2

for f ∈ L2(T).
(1.8)

It is shown in [31] that L2(T) is completed with respect to the norm ‖f‖L2(T).
Next, define the norm ‖ · ‖ on C1

rd(T) by

∥∥f
∥∥ =
(∥∥f

∥∥2
L2(T) +

∥∥∥fΔ
∥∥∥
2

L2(Tκ)

)1/2

for f ∈ C1
rd(T). (1.9)
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The space H1(T) is the completion of C1
rd(T) with respect to the norm ‖ · ‖ (see [31,

Definition 4.1 and Remark 4.2]). The space H1(T) is a time scale analog to the usual Sobolev
spaceH1(I) on a real interval I.

We refer the reader to [32] for an introduction on basic properties of Sobolev’s spaces
on bounded time scales.

Remark 1.1. If we replace u : T → R with u : T → R
n, then the above discussion still holds.

The rest of the paper is organized as follows. In Section 2, we list some lemmas, which
are important in proving the existence of periodic solutions. By applying these lemmas, we
establish the existence of periodic solutions for problem (1.1). In the final section, an example
is given to illustrate our main result.

2. Some Lemmas

In this section, to interpret Hamiltonian systems on time scales in a functional-analytic
setting, we introduce some lemmas, which will be used in the rest of the paper and be very
important in proving the existence of periodic solutions in H1

T (T) spaces for second-order
Hamiltonian systems on time scales.

LetH1
T (T) be the Hilbert space given by

H1
T (T) =

{
u : [0, T]

T
−→ R

n | u is absolutely continuous, u(0) = u(T) ,

uΔ(t) ∈ L2([0, T]
Tκ
,Rn)

}
,

(2.1)

with the norm defined by

‖u‖ =

(∫T

0
|u(t)|2Δ +

∫T

0
|uΔ(t)|2Δ

)1/2

for u ∈ H1
T (T). (2.2)

Moreover, we define

‖u‖L1(T) =
∫T

0
|u(t)|Δ, ‖u‖L2(T) =

(∫T

0
|u(t)|2Δ

)1/2

, ‖u‖∞ = sup
t∈[0,T]

T

|u|. (2.3)

We also define inner product onH1
T (T) by

(u, v) =
∫T

0

[
u(t) · v(t) + uΔ(t) · vΔ(t)

]
Δ. (2.4)

For u ∈ H1
T (T), let

u(t) =
1
T

∫T

0
u(t)Δ, ũ(t) = u(t) − u(t), (2.5)
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and let H̃1
T (T) be the subspace ofH

1
T (T) given by H̃1

T (T) = {u ∈ H1
T (T) | u(t) = 0}.

In the following, we will prove several lemmas which are very important in proving
the existence of periodic solutions for problem (1.1).

Lemma 2.1. Let p ∈ R be such that p ≥ 1. Then, for every q ∈ [1,+∞), the immersion H1
T (T) ↪→

Lq(T) is compact.

Proof. The proving is similar to the way as in proving of [32, Corollary 3.11], and we omit it
here.

The following two Lemmas are an immediate consequence of the [23, Proposition 3.6]
(see also [23, Corollary 3.9]).

Lemma 2.2. let {um}m∈N
⊂ H1

T (T) and u ∈ H1
T (T). If {um}m∈N

converges weakly in H1
T (T) to u,

then {um}m∈N
converges uniformly to u on [0, T]

T
.

Lemma 2.3. If u ∈ H1
T (T), then

‖u‖∞ ≤ c1‖u‖. (2.6)

In particular, if
∫T
0u(t)Δ = 0, then

‖u‖∞ ≤ T1/2
∥∥∥uΔ(t)

∥∥∥
L2(T)

. (2.7)

Lemma 2.4. Let L : [0, T]
T
× R

n × R
n → R, (t, x, y) → L(t, x, y) be measurable in t for each

[x, y] ∈ R
n × R

n and continuously differentiable in [x, y] for Δ-a.e. t ∈ [0, T]
T
. If there exist a ∈

C(R+,R+), b1 ∈ L1([0, T]
T
,R+), and c ∈ L2([0, T]

T
,R+), such that, for Δ-a.e. t ∈ [0, T]

T
and each

[x, y] ∈ R
n × R

n, one has

∣∣L
(
t, x, y

)∣∣ ≤ a(|x|)
(
b1(t) +

∣∣y
∣∣2
)
,

∣∣DxL
(
t, x, y

)∣∣ ≤ a(|x|)
(
b1(t) +

∣∣y
∣∣2
)
,

∣∣DyL
(
t, x, y

)∣∣ ≤ a(|x|)(c(t) + ∣∣y∣∣),

(2.8)

then the functional ϕ defined by ϕ(u) =
∫T
0L(t, u(t), u

Δ(t))Δ is continuously differential on H1
T (T)

and

〈ϕ′(u), v〉 =
∫T

0

[
DxL

(
t, u(t), uΔ(t)

)
· v(t) +DyL

(
t, u(t), uΔ(t)

)
· vΔ(t)

]
Δ. (2.9)

Proof. In the following, we will prove that ϕ has a directional derivative ϕ′(u) ∈ (H1
T (T))

∗

given by (2.9) and that the mapping

ϕ′ : H1
T (T) −→

(
H1

T (T)
)∗

, u −→ ϕ′(u) (2.10)
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is continuous.
(i) It follows easily from (2.8) that ϕ is everywhere finite on H1

T (T). Fixing u and v in
H1

T (T),we define

F(λ, t) = L
(
t, u(t) + λv(t), uΔ(t) + λvΔ(t)

)
for t ∈ [0, T]

T
, λ ∈ [−1, 1],

ψ(λ) = ϕ(u + λv) =
∫T

0
F(λ, t)Δ =

∫T

0
F(λ, t) ◦ Edt =

∫T

0
F(λ, E(t))dt.

(2.11)

We will apply Leibniz formula of differentiation under integral sign to ψ. According
to assumption (2.8), one obtains

|DλF(λ, E(t))|
≤ ∣∣(DxL

(
t, u + λv, u� + λv�) ◦ E) · (v ◦ E) + (DyL

(
t, u + λv, u� + λv�) ◦ E) · (v� ◦ E)∣∣

≤ a(|u(E(t)) + λv(E(t))|)
[(
b1(t) +

∣∣u� + λv�∣∣2
)
|v| + (c(t) + ∣∣u� + λv�∣∣)∣∣v�∣∣

]
◦ E

≤ a0
[(
b1(t) +

(∣∣u�∣∣ +
∣∣u�∣∣)2

)
|v| + (c(t) + ∣∣u�∣∣ +

∣∣v�∣∣)∣∣v�∣∣
]
◦ E,

(2.12)

where a0 = max(λ,t)∈[−1,1]×[0,T]a(|u(E(t)) + λv(E(t))|).

It is obvious that b1 ◦ E ∈ L1([0, T],R+), (|uΔ ◦ E| + |vΔ ◦ E|)2 ∈ L1([0, T],R+), c ◦ E ∈
L2([0, T],R+). v ∈ H1

T (T) implies that vΔ ◦ E ∈ L2([0, T],R+) and v ◦ E ∈ L1([0, T],R+) hold,
hence we have

|DλF(λ, E(t))| ≤ d ◦ E ∈ L1([0, T],R+). (2.13)

In view of Leibniz formula and (1.6), we get

ψ ′(0) = 〈ϕ′(u), v〉 =
∫T

0
DλF(0, E(t))dt

=
∫T

0
DxL

(
E(t), u(E(t)), uΔ(E(t))

)
· v(E(t))dt

+
∫T

0
DyL

(
E(t), u(E(t)), uΔ(E(t))

)
· vΔ(E(t))dt

=
∫T

0

[
DxL

(
t, u(t), uΔ(t)

)
· v(t) +DyL

(
t, u(t), uΔ(t)

)
· vΔ(t)

]
Δ.

(2.14)
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Moreover

∣
∣
∣DxL

(
t, u, uΔ

)∣∣
∣ ≤ a(|u|)

(
b1(t) +

∣
∣
∣uΔ
∣
∣
∣
2
)

∈ L1([0, T]
T
,R+),

∣
∣
∣DyL

(
t, u, uΔ

)∣∣
∣ ≤ a(|u|)

(
c(t) +

∣
∣
∣uΔ
∣
∣
∣
)
∈ L2([0, T]

T
,R+).

(2.15)

Thus, from Lemma 2.3,

∫T

0
DλF(0, t)Δ =

∫T

0

[
DxL

(
t, u, uΔ

)
· v +DyL

(
t, u, uΔ

)
· vΔ
]
Δ

≤ c1‖v‖∞ + c2
∥
∥
∥vΔ
∥
∥
∥
L2(T)

≤ c3‖v‖,
(2.16)

and ϕ has a directional derivative ϕ′(u) ∈ (H1
T (T))

∗, given by (2.9).
(ii) According to the theorem of Krasnosel’skii [33], assumption (2.8) implies that the

mapping fromH1
T (T) into L

1×L2 defined by u → (DxL(t, u, uΔ), DyL(t, u, uΔ)) is continuous,
thus, ϕ′ is continuous fromH1

T (T) into (H1
T (T))

∗, and the proof is completed.

We also need the following theorem, which was the generalized mountain pass
theorem.

Lemma 2.5. [34] Let E be a real Hilbert space with E = E1 ⊕E2 and E2 = E⊥
1 . Suppose I ∈ C1(E,R),

satisfies (PS), and

(I1) I(u) = 1/2(Au, u) +m(u), where Au = A1P1u + A2P2u and Ai : Ei → Ei is bounded
and self-adjoint, i = 1, 2,

(I2) m′(u) is compact, and

(I3) there exist a subspace Ẽ ⊂ E and sets S ⊂ E,Q ⊂ Ẽ and constants α > ω such that

(i) S ⊂ E1 and I|S ≥ α;
(ii) Q is bounded and I|∂Q ≤ ω;
(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α.

3. Existence Results

In this section, by using the minimax methods in critical theory, we establish the existence
of at least one nonzero periodic solution for second-order Hamiltonian system (1.1) on time
scales.

Throughout this section, the following is assumed.

(H1) Suppose that there exist t1, t2 ∈ [0, T]
T
and b ∈ C([0, T]

T
,R) satisfying b(t) ≥

(1/2)b(t0) > 0 for all t ∈ [t1, t2]T
, where t0 ∈ [t1, t2]T

. In addition,
∫T
0 b(t)Δ = 0.

(H2)
∫T
0H(t, x)Δ ≥ 0 for all x ∈ R

n and Δ-a.e. t ∈ [0, T]
T
.
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(H3) Assume that there exists g ∈ L1([0, T]
T
,R+) such that |∇H(t, x)| ≤ g(t) for all x ∈ R

n

and Δ-a.e. t ∈ [0, T]
T
.

(H4) Assume that there exist α0 ∈ (0, 1/2T2) and r0 > 0 such that |H(t, x)| ≤ α0|x|2 for all
‖x‖ ≤ r0 and Δ-a.e. t ∈ [0, T]

T
.

(H5) Assume that σ(ρ(t)) = t.

If

L
(
t, x, y

)
= L
(
t, u(t), uΔ(t)

)
=

1
2
|uΔ(t)|2 − b(t)|u(t)|μ −H(t, u(t)), (3.1)

then by Lemma 2.4, the functional ϕ is given by

ϕ(u) =
1
2

∫T

0

∣∣∣uΔ(t)
∣∣∣
2
Δ −

∫T

0
b(t)|u(t)|μΔ −

∫T

0
H(t, u(t))Δ, (3.2)

which is continuously differentiable onH1
T (T). Moreover

〈ϕ′(u), v〉 =
∫T

0
uΔ(t) · vΔ(t)Δ − μ

∫T

0
b(t)|u(t)|μ−2u(t) · v(t)Δ

−
∫T

0
∇H(t, u(t)) · v(t)Δ ∀u, v ∈ H1

T (T).

(3.3)

That is, for all u, v ∈ H1
T (T), we get

〈ϕ′(u), v〉 = −
∫T

0
uΔΔ(ρ(t)

) · v(t)Δ − μ
∫T

0
b(t)|u(t)|μ−2u(t) · v(t)Δ −

∫T

0
∇H(t, u(t)).v(t)Δ

= −
∫T

0

(
uΔΔ(ρ(t)

)
+ μb(t)|u(t)|μ−2u(t) +∇H(t, u(t))

)
· v(t)Δ.

(3.4)

Hence , u ∈ H1
T (T) is a solution of problem (1.1) if and only if u is a critical point of ϕ.

Lemma 3.1. Let a sequence {un(t)} ⊂ H1
T (T) be such that ϕ′ (un (t)) → 0 and let {un(t)} be

bounded inH1
T (T), then {un(t)} has a convergent subsequence inH1

T (T).

Proof. Since {un(t)} is bounded in H1
T (T), it follows from [30, Theorem4.12] that there

exists a subsequence (still denoted by {un(t)}) which weakly converges to u0 ∈ H1
T (T). By

Lemma 2.2, we have

un −→ u0 in [0, T]
T
. (3.5)

Hence, for t ∈ [0, T]
T
, there exists anM > 0 such that |un(t)| ≤M,n = 1, 2, . . . .
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Lemma 2.1 leads to

H1
T (T) ↪→ L2([0, T]

T
,Rn) is compact. (3.6)

Hence

un −→ u0 in L2([0, T]
T
,Rn). (3.7)

Since

〈ϕ′(un(t)) − ϕ′(um(t)), un(t) − um(t)〉

=
∫T

0

(
uΔn (t) − uΔm(t)

)
·
(
uΔn (t) − uΔm(t)

)
Δ

− μ
∫T

0
b(t)
(
|un(t)|μ−2un(t) − |um(t)|μ−2um(t)

)
· (un(t) − um(t))Δ

−
∫T

0

(
∇H(t, un(t)) − ∇H(t, um(t))

)
· (un(t) − um(t))Δ,

(3.8)

in view of (H1) and (H3), one has

∫T

0

∣∣∣uΔn (t) − uΔm(t)
∣∣∣
2
Δ ≤ ∥∥ϕ′(un(t)) − ϕ′(um(t))

∥∥‖un(t) − um(t)‖

+ 2μMμ−1‖un(t) − um(t)‖∞
∫T

0
|b(t)|Δ

+ 2‖un(t) − um(t)‖∞
∫T

0
g(t)Δ −→ 0, as n,m −→ ∞.

(3.9)

Consequently

‖un(t) − um(t)‖2 =
∫T

0
|uΔn (t)Δ − uΔm(t)|

2
Δ +

∫T

0
|un(t) − um(t)|2Δ −→ 0 as n,m −→ ∞, (3.10)

which implies that {un} is a Cauchy sequence in H1
T (T). By the completeness of H1

T (T), we
obtain that {un} is a convergent sequence inH1

T (T); the proof is completed.

Now, we list our main result.

Theorem 3.2. Suppose that μ > 2, (H1), (H2), (H3), (H4), and (H5) hold, then the problem (1.1) has
at least one nonzero solution.

Proof. It suffices to show that all the conditions of Lemma 2.5 hold with respect to ϕ.
First, we show that ϕ satisfies the (PS) condition.
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From Lemma 3.1, we only need to prove that {un} is bounded. Otherwise, there exists
a subsequence (still denoted by un) such that ‖un‖ → ∞. Let vn = un/‖un‖, then {vn} is
bounded; it has a subsequence (we still denote {vn}) which weakly converges to v0. In view
of Lemma 2.2, {vn} uniformly converges to v0 in [0, T]

T
. Since ‖vn‖ = 1 for all n ∈ N, one has

‖vn‖/= 0.
According to ‖un‖ → ∞ as n → ∞, μ > 2 and (H3), for all vn, v ∈ H1

T (T),we get

μ

∣∣
∣
∣
∣

∫T

0
b(t)|vn(t)|μ−2vn(t) · v(t)Δ

∣∣
∣
∣
∣
≤ ‖un‖1−μ

∣
∣−〈ϕ′(un), v〉

∣
∣ + ‖un‖2−μ

∣∣
∣
∣
∣

∫T

0
vΔ
n (t) · vΔ(t)Δ

∣∣
∣
∣
∣

+ ‖un‖1−μ
∣
∣
∣
∣∣
−
∫T

0
∇H(t, un(t)) · v(t)Δ

∣
∣
∣
∣∣

≤ ‖un‖1−μ
∥∥ϕ′(un)

∥∥‖v‖ + C1‖un‖2−μ‖vn‖‖v‖

+ ‖un‖1−μ‖v‖∞
∫T

0
g(t)Δ −→ 0 as n −→ ∞.

(3.11)

Thus, it follows from Lebesgue dominated convergence theorem on time scales [28] that

∣∣∣∣∣

∫T

0
b(t)|v0(t)|μ−2v0(t) · v(t)Δ

∣∣∣∣∣
= 0 ∀ v ∈ H1

T (T). (3.12)

By the arbitrariness of v, one has

b(t) = 0 for Δ-a.e. t ∈ [0, T]
T
, (3.13)

which contradicts the condition (H1). Hence ϕ satisfies the (PS) condition.
Second, if

Au = u(t), m(u) = −
∫T

0
b(t)|u(t)|μΔ −

∫T

0
H(t, u(t))Δ − 1

2

∫T

0
u2(t)Δ, (3.14)

then it is easy to verify that (I1) and (I2) hold.
Third, we will prove that ϕ satisfies the condition (I3) in Lemma 2.5.



Discrete Dynamics in Nature and Society 11

For arbitrary u ∈ H̃1
T (T)with ‖u‖ ≤ r0, (H4) and (2.7) imply

ϕ(u) =
1
2

∫T

0
|uΔ(t)|2Δ −

∫T

0
b(t)|u(t)|μΔ −

∫T

0
H(t, u(t))Δ

≥ 1
2

∫T

0
|uΔ(t)|2Δ − ‖u(t)‖μ∞

∫T

0
|b(t)|Δ − α0

∫T

0
|u(t)|2Δ

≥ 1
2T

‖u‖2∞ − ‖u(t)‖μ∞
∫T

0
|b(t)|Δ − α0T‖u(t)‖2∞

≥
(

1
2T

− α0T
)
‖u‖2∞ − ‖u(t)‖μ∞

∫T

0
|b(t)|Δ.

(3.15)

Choose ρ > 0 small enough such that

α �
(

1
2T

− α0T
)
ρ2 − ρμ

∫T

0
|b(t)|Δ > 0, (3.16)

thus

ϕ(u) ≥ α > ∀ u ∈ H̃1
T (T) with ‖u‖ = ρ. (3.17)

If

S =
{
u ∈ H̃1

T (T), ‖u‖ = ρ
}
, (3.18)

then ϕ|s ≥ α > 0; this implies that the condition (i) of Lemma 2.5 holds.
It is known that (H1) and (H2) lead to

ϕ(x) = −
∫T

0
b(t)|x|μΔ −

∫T

0
H(t, x)Δ ≤ 0 ∀ x ∈ R

n. (3.19)

Choose 0/= e ∈ H̃1
T (T) such that e(t) = 0 for all t ∈ [0, T]

T
\ [t1, t2]T

and

∫T

0
b(t)e(t)Δ =

∫ t2

t1

b(t)e(t)Δ = 0. (3.20)

For arbitrary u ∈ H1
T (T), let

ϕ1(u) =
1
2

∫T

0
|uΔ(t)|2Δ, ϕ2(u) = −

∫T

0
b(t)|u(t)|μΔ, ϕ3(u) = −

∫T

0
H(t, u(t))Δ, (3.21)
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then

ϕ(u) = ϕ1(u) + ϕ2(u) + ϕ3(u). (3.22)

For all x ∈ R
n and r ≥ 0, in terms of (H3), one has

ϕ3(x + re) − ϕ3(x) =
∫T

0

∫0

1
∇H(t, x + sre(t)) · re(t)dsΔ

≤ r
∫T

0
g(t)|e(t)|Δ ≤ r‖e‖∞

∥
∥g
∥
∥
L1(T).

(3.23)

Since −ϕ3(x) ≥ 0 for all x ∈ R
n,we have

ϕ3(x + re) ≤ r‖e‖∞
∥∥g
∥∥
L1(T) ∀ x ∈ R

n, r ≥ 0. (3.24)

In terms of (3.20) and Hölder’s inequality on time scales, one obtains

∫ t2

t1

− b(t)
(
|x|2 + r2|e(t)|2

)
Δ =

∫ t2

t1

− b(t)(|x| + r|e(t)|)2Δ

≤
(∫ t2

t1

− b(t)(|x| + r|e(t)|)μΔ
)2/μ

×
(∫ t2

t1

− b(t)Δ
)(μ−2)/μ

∀ x ∈ R
n, r ≥ 0.

(3.25)

Thus, by using
∫T
0 b(t)|x|μΔ = 0, (3.25), and Hölder’s inequality on time scales again, for all

x ∈ R
n and r ≥ 0, we obtain

ϕ2(x + re) = −
∫T

0
b(t)
(|x + re(t)|μ − |x|μ)Δ

= −
∫ t1

0
b(t)|x + re(t)|μΔ −

∫ t2

t1

b(t)|x + re(t)|μΔ −
∫T

t2

b(t)|x + re(t)|μΔ +
∫T

0
b(t)|x|μΔ

= −
∫ t2

t1

b(t)|x + re(t)|μΔ +
∫ t2

t1

b(t)|x|μΔ

≤
(∫ t2

t1

− b(t)(|x|2 + r2|e(t)|2)Δ
)μ/2(∫ t2

t1

− b(t)Δ
)(2−μ)/2

+
∫ t2

t1

b(t)|x|μΔ

≤ −
∫ t2

t1

b(t)(|x| + r|e(t)|)μΔ +
∫ t2

t1

b(t)|x|μΔ ≤ 0.

(3.26)
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(3.24) and (3.26) lead to

ϕ(x + re) = ϕ1(x + re) + ϕ2(x + re) + ϕ3(x + re)

≤ 1
2
r2
∫T

0
|eΔ|2Δ + r‖e‖∞

∥
∥g
∥
∥
L1(T) ∀ x ∈ R

n, r ≥ 0,
(3.27)

which means that there exists r3 > 0 such that

ϕ(x + re) ≤ α

2
∀x ∈ R

n, r ∈ [0, r3]. (3.28)

For all R ≥ 0 and r ≥ 0, let

h(R, r) �
(∫ t2

t1

− b(t)(|R|2 + r2|e(t)|2)Δ
)μ/2(∫ t2

t1

− b(t)Δ
)(2−μ)/2

+
∫ t2

t1

b(t)|R|μΔ

= −
(∫ t2

t1

b(t)(|R|2 + r2|e(t)|2)Δ
)μ/2(∫ t2

t1

b(t)Δ

)(2−μ)/2
+
∫ t2

t1

b(t)|R|μΔ.

(3.29)

In view of
∫ t2
t1
b(t) > 0, for all R ≥ 0 and r ≥ 0, we get

∂h

∂r
(R, r) = −rμ

∫ t2

t1

b(t)|e(t)|2Δ
(∫ t2

t1

b(t)(R2 + r2|e(t)|2)Δ
)μ/2−1(∫ t2

t1

b(t)Δ

)(2−μ)/2

≤ −rμ
∫ t2

t1

b(t)|e(t)|2Δ
(∫ t2

t1

R2b(t)Δ

)μ/2−1(∫ t2

t1

b(t)Δ

)(2−μ)/2

≤ −rμRμ−2
∫ t2

t1

b(t)|e(t)|2Δ.

(3.30)

(3.30) and h(R, 0) = 0 imply that

h(R, r) ≤ −1
2
r2μRμ−2

∫ t2

t1

b(t)|e(t)|2Δ ∀ R ≥ 0, r ≥ 0. (3.31)

Note that there exists R1 > ρ > 0 such that

∫T

0
|eΔ(t)|2Δ − μRμ−2

∫ t2

t1

b(t)|e(t)|2Δ ≤ − 2
r3
‖e‖∞

∥∥g
∥∥
L1(T) ∀ R ≥ R1. (3.32)
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Therefore, by using (3.24), (3.26), (3.31), and (3.32), for x = R, r ∈ [r3, R] and R ≥ R1, one has

ϕ(x + re) = ϕ1(x + re) + ϕ2(x + re) + ϕ3(x + re)

≤ 1
2
r2
∫T

0
|eΔ(t)|2Δ + h(R, r) + r‖e‖∞

∥
∥g
∥
∥
L1(T)

≤ 1
2
r2
∫T

0
|eΔ(t)|2Δ − 1

2
r2μRμ−2

∫ t2

t1

b(t)|e(t)|2Δ + r‖e‖∞
∥
∥g
∥
∥
L(1)

≤ − r
r3
(r − r3)‖e‖∞

∥
∥g
∥
∥
L1(T) ≤ 0.

(3.33)

Thus, (3.28) and (3.33) can lead to

ϕ(x + re) ≤ α

2
, ∀ |x| = R, r ∈ [0, R], R ≥ R1. (3.34)

For all x ∈ R
n and R ≥ 0, denote

f(x,R) � −
(∫ t2

t1

b(t)(|x|2 + R2|e(t)|2)Δ
)μ/2(∫ t2

t1

b(t)Δ

)(2−μ)/2
+
∫ t2

t1

b(t)|x|μΔ. (3.35)

By using the similar way to inequality (3.26), one has

ϕ2(x + Re) ≤ f(x,R) ∀ x ∈ R
n, R ≥ 0, (3.36)

for all x ∈ R
n and R ≥ 0, since

∂f

∂R
(x,R) = −Rμ

∫ t2

t1

b(t)|e(t)|2Δ
(∫ t2

t1

b(t)(|x|2 + R2|e(t)|2)Δ
)μ/(2−1)(∫ t2

t1

b(t)Δ

)(2−μ)/2

≤ −μRμ−1
(∫ t2

t1

b(t)|e(t)|2Δ
)μ/2(∫ t2

t1

b(t)Δ

)(2−μ)/2
.

(3.37)

In view of (3.37) and f(x, 0) = 0, for all x ∈ R
n and R ≥ 0, we get

f(x,R) ≤ −Rμ

(∫ t2

t1

b(t)|e(t)|2Δ
)μ/2(∫ t2

t1

b(t)Δ

)(2−μ)/2
. (3.38)
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From (3.24), (3.36), and (3.38), for all x ∈ R
n and R ≥ 0, we obtain

ϕ(x + Re) = ϕ1(x + Re) + ϕ2(x + Re) + ϕ3(x + Re)

≤ 1
2
R2
∫T

0

∣∣
∣eΔ(t)

∣∣
∣
2
Δ − Rμ

(∫ t2

t1

b(t)|e(t)|2Δ
)μ/2(∫ t2

t1

b(t)Δ

)(2−μ)/2
+ R‖e‖∞

∥
∥g
∥
∥
L1(T),

(3.39)

which implies that there exists R2 > R1, such that

ϕ(x + Re) ≤ 0 ∀x ∈ R
n, R ≥ R2. (3.40)

Now let

Q = {x + re | x ∈ R
n, ‖x‖ = R, r ∈ [0, R], R ≥ R2}. (3.41)

Thus, (3.19), (3.34), and (3.40) lead to ϕ|∂Q ≤ (1/2)α, which means that the condition (ii) of
Lemma 2.5 is satisfied.

It is easy to see that S and ∂Q link. Hence, all the conditions of the generalized
mountain pass theorem are satisfied. By Lemma 2.5, the problem (1.1) has at least one nonzero
solution.

4. An Example

In this section, we present a simple example to illustrate our result.
Let

T = [0, 0.3] ∪ {0.4, 0.45, 0.5, 0.55, 0.6} ∪ [0.7, 1], T = 1. (4.1)

Consider the following second-order Hamiltonian system on time scales T of the form

uΔΔ(ρ(t)
)
+ μb(t)|u(t)|μ−2u(t) +∇H(t, u(t)) = 0,Δ-a.e. t ∈ [0, 1]

T
,

u(0) − u(1)= uΔ(0) − uΔ(1) = 0,
(4.2)

where μ > 2 is a constant; let ε > 0 is arbitrary small, H(t, u) = εu2(t) for Δ-a.e. t ∈ [0, 1]
T

and

b(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t, t ∈ [0, 0.3]
T
,

−1.5t + 0.75, t ∈ [0.3, 0.7]
T
,

t − 1, t ∈ [0.7, 1]
T
.

(4.3)

It is easy to verify that all the conditions of Theorem 3.2 are satisfied. By Theorem 3.2, we see
that the problem (4.2) has at least one nonzero solution.
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