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1. Introduction

Neural networks are widely used in the fields of control, signal processing, and time
series analysis [1]. Traditional neural networks’ parameters are usually real numbers for
dealing with real-valued signals. However, complex-valued signals also appear in practical
applications. As a result, complex-valued neural network (CVNN), whose weights, threshold
values, input and output signals are all complex numbers, is proposed [2, 3]. CVNN has been
extensively used in processing complex-valued signals [4]. By encoding real-valued signals
into complex numbers, CVNN also has shown more powerful capability than real-valued
neural networks in processing real-valued signals. For example, two-layered CVNN [5] can
successfully solve the XOR problem which cannot be solved by two-layered real-valued
neural networks. CVNN can be trained by two types of complex backpropagation (BP)
algorithms: fully complex BP algorithm and split-complex BP algorithm. Different from the
fully complex BP algorithm [6], the operation of activation function in the split-complex BP
algorithm is split into real part and imaginary part [2–4, 7], and this makes the split-complex
BP algorithm avoid the occurrence of singular points in the adaptive training process.
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Complex BP algorithms can be done using either a batch method or an online method. In
online training, weights are updated after the presentation of each training example, while
in batch training, weights are not updated until all of the examples are inputted into the
networks. Compared with batch learning, online learning is hard to parallelize.

The convergence of neural networks learning algorithms is crucial for practical
applications. The dynamical behaviors of many neural networks have been extensively
analyzed [8, 9]. However, the existing convergence results of complex BP algorithm are
mainly focusing on fully complex BP algorithm for two-layered CVNN (see, e.g., [10, 11])
and the convergence of split-complex BP algorithm is seldom investigated. Nitta [12] used
CVNN as a complex adaptive pattern classifier and presented some heuristic convergence
results. The purpose of this paper is to give some rigorous convergence results of batch
split-complex BP (BSCBP) algorithm for three-layered CVNN. The monotonicity of the error
function during the training iteration process is also guaranteed.

The remainder of this paper is organized as follows. The three-layered CVNN model
and the BSCBP algorithm are described in the next section. Section 3 presents the main
convergence theorem. A numerical example is given in Section 4 to verify our theoretical
results. The details of the convergence proof are provided in Section 5. Some conclusions are
drawn in Section 6.

2. Network Structure and Learning Method

Figure 1 shows the structure of the network we considered in this paper. It is a three-layered
CVNN consisting of L input neurons, M hidden neurons, and 1 output neuron. For any
positive integer d, the set of all d-dimensional complex vectors is denoted by C

d and the
set of all d-dimensional real vectors is denoted by R

d. Let us write wm = wR
m + iwI

m =
(wm1, wm2, . . . , wmL)

T ∈ C
L as the weight vector between the input neurons and mth hidden

neuron, where wml = wR
ml + iw

I
ml, w

R
ml and wI

ml ∈ R
1, i =

√
−1, m = 1, . . . ,M, and l = 1, . . . , L.

Similarly, write v = vR+ ivI = (v1, v2, . . . , vM)T ∈ C
M as the weight vector between the hidden

neurons and the output neuron, where vm = vRm + ivIm, vRm and vIm ∈ R
1, m = 1, . . . ,M. For

simplicity, all the weight vectors are incorporated into a total weight vector

W =
((
w1
)T
,
(
w2
)T
, . . . ,

(
wM

)T
,vT
)T ∈ C

M(L+1). (2.1)

For input signals z = (z1, z2, . . . , zL)
T = x + iy ∈ C

L, where x = (x1, x2, . . . , xL)
T ∈ R

L, and
y = (y1, y2, . . . , yL)

T ∈ R
L, the input of the mth hidden neuron is

Um = UR
m + iUI

m

=
L∑

l=1

(
wR
mlxl −w

I
mlyl
)
+ i

L∑

l=1

(
wI
mlxl +w

R
mlyl
)

=

(
wR
m

−wI
m

)

·
(
x

y

)

+ i

(
wI
m

wR
m

)

·
(
x

y

)

.

(2.2)

Here “·” denotes the inner product of two vectors.



Discrete Dynamics in Nature and Society 3

v1 vM

O

Output layer

· · · Hidden layer

w11 wML

z1 z2 zL· · ·
Input layer

Figure 1: CVVN with L −M − 1 structure.

For the sake of using BSCBP algorithm to train the network, we consider the following
popular real-imaginary-type activation function [5]:

fC(U) = fR
(
UR) + ifR

(
UI) (2.3)

for any U = UR + iUI ∈ C
1, where fR is a real function (e.g., sigmoid function). If we simply

denote fR as f , the output Hm for the hidden neuron m is given by

Hm = HR
m + iHI

m = f
(
UR
m

)
+ if
(
UI
m

)
. (2.4)

Similarly, the input of the output neuron is

S = SR + iSI

=
M∑

m=1

(
vRmH

R
m − vImHI

m

)
+ i

M∑

m=1

(
vImH

R
m + vRmH

I
m

)

=

(
vR

−vI

)

·
(
HR

HI

)

+ i

(
vI

vR

)

·
(
HR

HI

)
(2.5)

and the output of the network is given by

O = OR + iOI = g
(
SR
)
+ ig
(
SI
)
, (2.6)

where HR = (HR
1 ,H

R
2 , . . . ,H

R
M)T , HI = (HI

1 ,H
I
2 , . . . ,H

I
M)T , and g is a real function.

We remark that, in practice, there should be thresholds involved in the above formulas
for the output and hidden neurons. Here we have omitted the bias so as to simplify the
presentation and deduction.
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Let the network be supplied with a given set of training examples {zq, dq}Qq=1 ⊂ C
L×C

1.

For each input zq = xq + iyq (1 ≤ q ≤ Q) from the training set, we write Uq
m = Uq,R

m + iUq,I
m (1 ≤

m ≤ M) as the input for the hidden neuron m, Hq
m = H

q,R
m + iH

q,I
m (1 ≤ m ≤ M) as the

output for the hidden neuron m, Sq = Sq,R + iSq,I as the input to the output neuron, and
Oq = Oq,R + iOq,I as the actual output. The square error function of CVNN trained by BSCBP
algorithm can be represented as follows:

E(W) =
1
2

Q∑

q=1

(
Oq − dq

)(
Oq − dq

)∗

=
1
2

Q∑

q=1

[(
Oq,R − dq,R

)2 +
(
Oq,I − dq,I

)2]

=
Q∑

q=1

[
μqR
(
Sq,R
)
+ μqI

(
Sq,I
)]
,

(2.7)

where “∗” signifies complex conjugate, and

μqR(t) =
1
2
(
g(t) − dq,R

)2
, μqI(t) =

1
2
(
g(t) − dq,I

)2
, t ∈ R

1, 1 ≤ q ≤ Q. (2.8)

The purpose of the network training is to find W� which can minimize E(W). The gradient
method is often used to solve the minimization problem. Writing

Hq = Hq,R + iHq,I =
(
H

q,R

1 ,H
q,R

2 , . . . ,H
q,R

M

)T + i
(
H

q,I

1 ,H
q,I

2 , . . . ,H
q,I

M

)T
, (2.9)

and differentiating E(W) with respect to the real parts and imaginary parts of the weight
vectors, respectively, give

∂E(W)
∂vR

=
Q∑

q=1

[
μ′qR
(
Sq,R
)
Hq,R + μ′qI

(
Sq,I
)
Hq,I
]
, (2.10)

∂E(W)
∂vI

=
Q∑

q=1

[
− μ′qR

(
Sq,R
)
Hq,I + μ′qI

(
Sq,I
)
Hq,R

]
, (2.11)

∂E(W)
∂wR

m

=
Q∑

q=1

[
μ′qR
(
Sq,R
)(
vRmf

′(U
q,R
m

)
xq − vImf ′

(
U
q,I
m

)
yq
)

+ μ′qI
(
Sq,I
)(
vImf

′(U
q,R
m

)
xq + vRmf

′(U
q,I
m

)
yq
)]
, 1 ≤ m ≤M,

(2.12)

∂E(W)
∂wI

m

=
Q∑

q=1

[
μ′qR
(
Sq,R
)(
− vRmf ′

(
U
q,R
m

)
yq − vImf ′

(
U
q,I
m

)
xq
)

+ μ′qI
(
Sq,I
)(
− vImf ′

(
U
q,R
m

)
yq + vRmf

′(U
q,I
m

)
xq
)]
, 1 ≤ m ≤M.

(2.13)
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Starting from an arbitrary initial value W0 at time 0, BSCBP algorithm updates the weight
vector W iteratively by

Wn+1 = Wn + ΔWn, n = 0, 1, . . . , (2.14)

where ΔWn = ((Δwn
1)
T , . . . , (Δwn

M)T ,Δvn)T )T , with

Δwn
m = −η

(
∂E
(
Wn
)

∂wR
m

+ i
∂E
(
Wn
)

∂wI
m

)
, m = 1, . . . ,M,

Δvn = −η
(
∂E
(
Wn
)

∂vR
+ i

∂E
(
Wn
)

∂vI

)
.

(2.15)

Here η > 0 stands for the learning rate. Obviously, we can rewrite (2.14) and (2.15) by dealing
with the real parts and the imaginary parts of the weights separately

Δwn,R
m = wn+1,R

m −wn,R
m = −η

∂E
(
Wn
)

∂wR
m

,

Δwn,I
m = wn+1,I

m −wn,I
m = −η

∂E
(
Wn
)

∂wI
m

,

Δvn,R = vn+1,R − vn,R = −η
∂E
(
Wn
)

∂vR
,

Δvn,I = vn+1,I − vn,I = −η
∂E
(
Wn
)

∂vI
,

(2.16)

where m = 1, . . . ,M.

3. Main Results

Throughout the paper ‖ · ‖ denotes the usual Euclidean norm. We need the following
assumptions:

(A1) there exists a constant c1 > 0 such that

max
t∈R1

{
|f(t)|, |g(t)|,

∣∣f ′(t)
∣∣,
∣∣g ′(t)

∣∣,
∣∣f ′′(t)

∣∣,
∣∣g ′′(t)

∣∣} ≤ c1; (3.1)

(A2) there exists a constant c2 > 0 such that ‖vn,R‖ ≤ c2 and ‖vn,I‖ ≤ c2 for all n =
0, 1, 2, . . . ;

(A3) the set Φ0 = {W | (∂E(W)/∂wR
m) = 0, (∂E(W)/∂wI

m) = 0, (∂E(W)/∂vR) =
0, (∂E(W)/∂vI) = 0, m = 1, . . . ,M} contains only finite points.

Theorem 3.1. Suppose that Assumptions (A1) and (A2) are valid and that {Wn} are the weight
vector sequence generated by (2.14)–(2.16) with arbitrary initial values W0. If η ≤ c8, where c8 is a
constant defined in (5.21) below, then one has
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(i) E(Wn+1) ≤ E(Wn), n = 0, 1, 2, . . .;

(ii) limn→∞‖(∂E(Wn)/∂wR
m)‖ = 0, limn→∞‖(∂E(Wn)/∂wI

m)‖ = 0, limn→∞‖(∂E(Wn)/
∂vR)‖ = 0, and limn→∞‖(∂E(Wn)/∂vI)‖ = 0, 0 ≤ m ≤M.

Furthermore, if Assumption (A3) also holds, then there exists a point W� ∈ Φ0 such that

(iii) limn→∞Wn = W�.

The monotonicity of the error function E(W) during the learning process is shown in
the statement (i). The statement (ii) indicates the convergence of the gradients for the error
function with respect to the real parts and the imaginary parts of the weights. The statement
(iii) points out that if the number of the stationary points is finite, the sequence {Wn} will
converge to a local minimum of the error function.

4. Numerical Example

In this section, we illustrate the convergence behavior of BSCBP algorithm by using a simple
numerical example. The well-known XOR problem is a benchmark in literature of neural
networks. As in [5], the training samples of the encoded XOR problem for CVNN are
presented as follows:

{
z1 = −1 − i, d1 = 1

}
,

{
z2 = −1 + i, d2 = 0

}
,

{
z3 = 1 − i, d3 = 1 + i

}
,

{
z4 = 1 + i, d4 = i

}
.

(4.1)

This example uses a network with one input neuron, three hidden neurons, and
one output neuron. The transfer function is tansig(·) in MATLAB, which is a commonly
used sigmoid function. The learning rate η is set to be 0.1. We carry out the test with the
initial components of the weights stochastically chosen in [−0.5, 0.5]. Figure 2 shows that
the gradient tends to zero and the square error decreases monotonically as the number of
iteration increases and at last tends to a constant. This supports our theoretical findings.

5. Proofs

In this section, we first present two lemmas; then, we use them to prove the main theorem.

Lemma 5.1. Suppose that the function E : R
2M(L+1) → R

1 is continuous and differentiable on a
compact set Φ ⊂ R

2M(L+1) and that Φ1 = {θ | (∂E(θ)/∂θ) = 0} contains only finite points. If a
sequence {θn}∞n=1 ⊂ Φ satisfies

lim
n→∞

∥∥θn+1 − θn
∥∥ = 0, lim

n→∞

∥∥∥∥
∂E(θn)
∂θ

∥∥∥∥ = 0, (5.1)

then there exists a point θ� ∈ Φ1 such that limn→∞θ
n = θ�.

Proof. This result is almost the same as [13, Theorem 14.1.5], and the detail of the proof is
omitted.
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Figure 2: Convergence behavior of BSCBP algorithm for solving XOR problem. (sum of gradient norms =
∑M

m=1
(‖Δwn,R

m ‖2 + ‖Δwn.I
m ‖2) + ‖Δvn,R‖2 + ‖Δvn,I‖2.)

For any 1 ≤ q < Q, 1 ≤ m ≤M and n = 0, 1, 2, . . ., write

U
n,q
m = Un,q,R

m + iUn,q,I
m =

⎛

⎝
wn,R
m

−wn,I
m

⎞

⎠ ·
(
xq

yq

)

+ i

⎛

⎝
wn,I
m

wn,R
m

⎞

⎠ ·
(
xq

yq

)

,

H
n,q
m = Hn,q,R

m + iHn,q,I
m = f

(
U
n,q,R
m

)
+ if
(
U
n,q,I
m

)
,

Hn,q,R =
(
H

n,q,R

1 , . . . ,H
n,q,R

M

)T
, Hn,q,I =

(
H

n,q,I

1 , . . . ,H
n,q,I

M

)T
,

Sn,q = Sn,q,R + iSn,q,I =

(
vn,R

−vn,I

)

·
(
Hn,q,R

Hn,q,I

)

+ i

(
vn,I

vn,R

)

·
(
Hn,q,R

Hn,q,I

)

,

ψn,q,R = Hn+1,q,R −Hn,q,R, ψn,q,I = Hn+1,q,I −Hn,q,I .

(5.2)

Lemma 5.2. Suppose Assumptions (A1) and (A2) hold, then for any 1 ≤ q ≤ Q and n = 0, 1, 2, . . .,
one has

∣∣Oq,R
∣∣ ≤ c0,

∣∣Oq,I
∣∣ ≤ c0,

∥∥Hn,q,R
∥∥ ≤ c0,

∥∥Hn,q,I
∥∥ ≤ c0, (5.3)

∣∣μ′qR(t)
∣∣ ≤ c3,

∣∣μ′qI(t)
∣∣ ≤ c3,

∣∣μ′′qR(t)
∣∣ ≤ c3,

∣∣μ′′qI(t)
∣∣ ≤ c3, t ∈ R

1, (5.4)

max
{∥∥ψn,q,R

∥∥2
,
∥∥ψn,q,I

∥∥2} ≤ c4

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2)
, (5.5)
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Q∑

q=1

⎛

⎝μ′qR
(
Sn,q,R

)
⎛

⎝
Δvn,R

−Δvn,I

⎞

⎠ ·

⎛

⎝
Hn,q,R

Hn,q,I

⎞

⎠ + μ′qI
(
Sn,q,I

)
⎛

⎝
Δvn,I

Δvn,R

⎞

⎠ ·

⎛

⎝
Hn,q,R

Hn,q,I

⎞

⎠

⎞

⎠

= − 1
η

(∥∥Δvn,R
∥
∥2 +

∥
∥Δvn,I

∥
∥2)

,

(5.6)

Q∑

q=1

μ′qR
(
Sn,q,R

)
⎛

⎝
vn,R

−vn,I

⎞

⎠ ·

⎛

⎝
ψn,q,R

ψn,q,I

⎞

⎠ + μ′qI
(
Sn,q,I

)
⎛

⎝
vn,I

vn,R

⎞

⎠ ·

⎛

⎝
ψn,q,R

ψn,q,I

⎞

⎠

≤
(
c5 −

1
η

) M∑

m=1

(∥
∥Δwn,R

m

∥
∥2 +

∥
∥Δwn,I

m

∥
∥2
)
,

(5.7)

Q∑

q=1

⎛

⎝μ′qR
(
Sn,q,R

)
⎛

⎝
Δvn,R

−Δvn,I

⎞

⎠ ·

⎛

⎝
ψn,q,R

ψn,q,I

⎞

⎠ + μ′qI
(
Sn,q,I

)
⎛

⎝
Δvn,I

Δvn,R

⎞

⎠ ·

⎛

⎝
ψn,q,R

ψn,q,I

⎞

⎠

⎞

⎠

≤ c6

(
M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

)

,

(5.8)

1
2

Q∑

q=1

(
μ′′qR
(
t
n,q

1

)(
Sn+1,q,R − Sn,q,R

)2 + μ′′qI
(
t
n,q

2

)(
Sn+1,q,I − Sn,q,I

)2)

≤ c7

(
M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

)

,

(5.9)

where ci (i = 0, 3, . . . , 7) are constants independent of n and q, each tn,q1 ∈ R
1 lies on the segment

between Sn+1,q,R and Sn,q,R, and each tn,q2 ∈ R
1 lies on the segment between Sn+1,q,I and Sn,q,I .

Proof. The validation of (5.3) can be easily got by (2.4)–(2.6) when the set of samples are fixed
and Assumptions (A1) and (A2) are satisfied. By (2.8), we have

μ′qR(t) = g
′(t)
(
g(t) −Oq,R),

μ′qI(t) = g
′(t)
(
g(t) −Oq,I),

μ′′qR(t) = g
′′(t)
(
g(t) −Oq,R) +

(
g ′(t)

)2
,

μ′′qI(t) = g
′′(t)
(
g(t) −Oq,I) +

(
g ′(t)

)2
, 1 ≤ q ≤ Q, t ∈ R

1.

(5.10)

Then (5.4) follows directly from Assumption (A1) by defining c3 = c1(c1 + c0) + (c1)
2.
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It follows from (5.2), Assumption (A1), the Mean-Value Theorem and the Cauchy-
Schwartz Inequality that for any 1 ≤ q ≤ Q and n = 0, 1, 2, . . .,

∥
∥ψn,q,R

∥
∥2 =

∥
∥Hn+1,q,R −Hn,q,R

∥
∥2

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜⎜
⎜
⎝

f
(
U
n+1,q,R
1

)
− f
(
U
n,q,R

1

)

...

f
(
U
n+1,q,R
M

)
− f
(
U
n,q,R

M

)

⎞

⎟
⎟⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜⎜
⎜
⎝

f ′
(
s
n,q

1

)(
U
n+1,q,R
1 −Un,q,R

1

)

...

f ′
(
s
n,q

M

)(
U
n+1,q,R
M −Un,q,R

M

)

⎞

⎟
⎟⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

=
M∑

m=1

(
f ′
(
s
n,q
m

)(
Δwn,R

m · xq −Δwn,I
m · yq

))2

≤ 2c1

M∑

m=1

((
Δwn,R

m · xq
)2 +

(
Δwn,I

m · yq
)2)

≤ 2c1

M∑

m=1

(∥∥Δwn,R
m

∥∥2∥∥xq
∥∥2 +

∥∥Δwn,I
m

∥∥2∥∥yq
∥∥2)

≤ c4

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2)
,

(5.11)

where c4 = 2c1max1≤q≤Q{‖xq‖2, ‖yq‖2} and each s
n,q
m is on the segment between U

n+1,q,R
m and

U
n,q,R
m for m = 1, . . . ,M. Similarly we can get

∥∥ψn,q,I
∥∥ ≤ c4

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2)
. (5.12)

Thus, we have (5.5).
By (2.10), (2.11), (2.16), and (5.2), we have

Q∑

q=1

(

μ′qR
(
Sn,q,R

)
(

Δvn,R

−Δvn,I

)

·
(

Hn,q,R

Hn,q,I

)

+ μ′qI
(
Sn,q,I

)
(

Δvn,I

Δvn,R

)

·
(

Hn,q,R

Hn,q,I

))

=
Q∑

q=1

(
μ′qR
(
Sn,q,R

)
Hn,q,R ·Δvn,R + μ′qI

(
Sn,q,I

)
Hn,q,I ·Δvn,R

− μ′qR
(
Sn,q,R

)
Hn,q,I ·Δvn,I + μ′qI

(
Sn,q,I

)
Hn,q,R ·Δvn,I

)

=
∂E
(
Wn
)

∂vR
·Δvn,R +

∂E
(
Wn
)

∂vI
·Δvn,I

= − 1
η

(∥∥Δvn,R
∥∥2 +

∥∥Δvn,I
∥∥2)

.

(5.13)



10 Discrete Dynamics in Nature and Society

Next, we prove (5.7). By (2.2), (2.4), (5.2), and Taylor’s formula, for any 1 ≤ q ≤ Q,
1 ≤ m ≤M, and n = 0, 1, 2, . . ., we have

H
n+1,q,R
m −Hn,q,R

m = f
(
U
n+1,q,R
m

)
− f
(
U
n,q,R
m

)

= f ′
(
U
n,q,R
m

)(
U
n+1,q,R
m −Un,q,R

m

)
+

1
2
f ′′
(
t
n,q,R
m

)(
U
n+1,q,R
m −Un,q,R

m

)2
,

(5.14)

H
n+1,q,I
m −Hn,q,I

m = f
(
U
n+1,q,I
m

)
− f
(
U
n,q,I
m

)

= f ′
(
U
n,q,I
m

)(
U
n+1,q,I
m −Un,q,I

m

)
+

1
2
f ′′
(
t
n,q,I
m

)(
U
n+1,q,I
m −Un,q,I

m

)2
,

(5.15)

where tn,q,Rm is an intermediate point on the line segment between the two points Un+1,q,R
m and

U
n,q,R
m , and t

n,q,I
m between the two points Un+1,q,I

m and U
n,q,I
m . Thus according to (2.12), (2.13),

(2.16), (5.2), (5.14), and (5.15), we have

Q∑

q=1

(

μ′qR
(
Sn,q,R

)
(

vn,R

−vn,I

)

·
(
ψn,q,R

ψn,q,I

)

+ μ′qI
(
Sn,q,I

)
(
vn,I

vn,R

)

·
(
ψn,q,R

ψn,q,I

))

=
Q∑

q=1

M∑

m=1

(

μ′qR
(
Sn,q,R

)
vn,Rm f ′

(
U
n,q,R
m

)
(

Δwn,R
m

−Δwn,I
m

)

·
(
xq

yq

)

− μ′qR
(
Sn,q,R

)
vn,Im f ′

(
U
n,q,I
m

)
⎛

⎝
Δwn,I

m

Δwn,R
m

⎞

⎠ ·
(
xq

yq

)

+ μ′qI
(
Sn,q,I

)
vn,Im f ′

(
U
n,q,R
m

)
⎛

⎝
Δwn,R

m

−Δwn,I
m

⎞

⎠ ·
(
xq

yq

)

+μ′qI
(
Sn,q,I

)
vn,Rm f ′

(
U
n,q,I
m

)
⎛

⎝
Δwn,I

m

Δwn,R
m

⎞

⎠ ·
(
xq

yq

)
⎞

⎠ + δ1

=
M∑

m=1

((
Q∑

q=1

[
μ′qR
(
Sn,q,R

)(
vn,Rm f ′

(
U
n,q,R
m

)
xq − vn,Im f ′

(
U
n,q,I
m

)
yq
)

+ μ′qI
(
Sn,q,I

)(
vn,Im f ′

(
U
n,q,R
m

)
xq + vn,Rm f ′

(
U
n,q,I
m

)
yq
)]
)

·Δwn,R
m

+

(
Q∑

q=1

[
μ′qR
(
Sn,q,R

)(
− vn,Rm f ′

(
U
n,q,R
m

)
yq − vn,Im f ′

(
U
n,q,I
m

)
xq
)

+ μ′qI
(
Sn,q,I

)(
− vn,Im f ′

(
U
n,q,R
m

)
yq + vn,Rm f ′

(
U
n,q,I
m

)
xq
)]
)

·Δwn,I
m

)

+ δ1

= − 1
η

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) + δ1,

(5.16)
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where

δ1 =
1
2

Q∑

q=1

M∑

m=1

⎛

⎜
⎝μ′qR

(
Sn,q,R

)
vn,Rm f ′′

(
t
n,q,R
m

)
⎛

⎝

⎛

⎝
Δwn,R

m

−Δwn,I
m

⎞

⎠ ·
(
xq

yq

)⎞

⎠

2

− μ′qR
(
Sn,q,R

)
vn,Im f ′′

(
t
n,q,I
m

)
⎛

⎝

⎛

⎝
Δwn,I

m

Δwn,R
m

⎞

⎠ ·
(
xq

yq

)⎞

⎠

2

+ μ′qI
(
Sn,q,I

)
vn,Im f ′′

(
t
n,q,R
m

)
⎛

⎝

⎛

⎝
Δwn,R

m

−Δwn,I
m

⎞

⎠ ·
(
xq

yq

)⎞

⎠

2

+μ′qI
(
Sn,q,I

)
vn,Rm f ′′

(
t
n,q,I
m

)
⎛

⎝

⎛

⎝
Δwn,I

m

Δwn,R
m

⎞

⎠ ·
(
xq

yq

)⎞

⎠

2
⎞

⎟
⎠ .

(5.17)

Using Assumptions (A1) and (A2), (5.4), and triangular inequality, we immediately get

δ1 ≤ |δ1| ≤ c5

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2)
, (5.18)

where c5 = 2Qc1c2c3 max1≤q≤Q{‖xq‖2 + ‖yq‖2}. Now, (5.7) results from (5.16) and (5.18).
According to (5.2), (5.4), and (5.5), we have

Q∑

q=1

(

μ′qR
(
Sn,q,R

)
(

Δvn,R

−Δvn,I

)

·
(
ψn,q,R

ψn,q,I

)

+ μ′qI
(
Sn,q,I

)
(
Δvn,I

Δvn,R

)

·
(
ψn,q,R

ψn,q,I

))

≤ c3

Q∑

q=1

(∥∥∥∥∥

(
Δvn,R

−Δvn,I

)∥∥∥∥∥

∥∥∥∥∥

(
ψn,q,R

ψn,q,I

)∥∥∥∥∥
+

∥∥
∥∥∥

(
Δvn,I

Δvn,R

)∥∥∥∥∥

∥∥∥∥∥

(
ψn,q,R

ψn,q,I

)∥∥∥∥∥

)

≤ 1
2
c3

Q∑

q=1

⎛

⎝

∥∥∥∥∥

(
Δvn,R

−Δvn,I

)∥∥∥∥∥

2

+

∥∥∥∥∥

(
ψn,q,R

ψn,q,I

)∥∥∥∥∥

2

+

∥∥∥∥∥

(
Δvn,I

Δvn,R

)∥∥∥∥∥

2

+

∥∥∥∥∥

(
ψn,q,R

ψn,q,I

)∥∥∥∥∥

2
⎞

⎠

= c3

Q∑

q=1

(∥∥Δvn,R
∥∥2 +

∥∥Δvn,I
∥∥2 +

∥∥ψn,q,R
∥∥2 +

∥∥ψn,q,I
∥∥2)

≤ c3

Q∑

q=1

(
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2 + 2c4

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2)
)

≤ c6

(
M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

)

,

(5.19)
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1
2

Q∑

q=1

(
μ′′qR
(
t
n,q

1

)(
Sn+1,q,R − Sn,q,R

)2 + μ′′qI
(
t
n,q

2

)(
Sn+1,q,I − Sn,q,I

)2)

≤ c3

2

Q∑

q=1

((
Sn+1,q,R − Sn,q,R

)2 +
(
Sn+1,q,I − Sn,q,I

)2)

≤ c3

2

Q∑

q=1

⎛

⎝
((

Δvn,R

−Δvn,I

)

·
(
Hn+1,q,R

Hn+1,q,I

)

+

(
vn,R

−vn,I

)

·
(
ψn,q,R

ψn,q,I

))2

+

((
Δvn,I

Δvn,R

)

·
(
Hn+1,q,R

Hn+1,q,I

)

+

(
vn,I

vn,R

)

·
(
ψn,q,R

ψn,q,I

))2
⎞

⎠

≤ c3Qmax
{(
c0
)2 +

(
c2
)2}(∥∥Δvn,R

∥
∥2 +

∥
∥Δvn,I

∥
∥2 +

∥
∥ψn,q,R

∥
∥2 +

∥
∥ψn,q,I

∥
∥2)

≤ c7

(
M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

)

,

(5.20)

where c6 = Qc3max{1, 2c4} and c7 = Qc3max{(c0)
2 + (c2)

2}max{1, 2c4}. So we obtain (5.8)
and (5.9).

Now, we are ready to prove Theorem 3.1 in terms of the above two lemmas.

Proof of Theorem 3.1. (i) By (5.6)–(5.9) and the Taylor’s formula, we have

E
(
Wn+1) − E

(
Wn)

=
Q∑

q=1

(
μqR
(
Sn+1,q,R) − μqR

(
Sn,q,R

)
+ μqI

(
Sn+1,q,I) − μqI

(
Sn,q,I

))

=
Q∑

q=1

(
μ′qR
(
Sn,q,R

)(
Sn+1,q,R − Sn,q,R

)
+ μ′qI

(
Sn,q,I

)(
Sn+1,q,I − Sn,q,I

)

+
1
2
μ′′qR
(
t
n,q

1

)(
Sn+1,q,R − Sn,q,R

)2 +
1
2
μ′′qI
(
t
n,q

2

)(
Sn+1,q,I − Sn,q,I

)2
)

=
Q∑

q=1

(

μ′qR
(
Sn,q,R

)
(

Δvn,R

−Δvn,I

)

·
(
Hn,q,R

Hn,q,I

)

+ μ′qI
(
Sn,q,I

)
(
Δvn,I

Δvn,R

)

·
(
Hn,q,R

Hn,q,I

)

+ μ′qR
(
Sn,q,R

)
(

vn,R

−vn,I

)

·
(
ψn,q,R

ψn,q,I

)

+ μ′qI
(
Sn,q,I

)
(
vn,I

vn,R

)

·
(
ψn,q,R

ψn,q,I

)

+ μ′qR
(
Sn,q,R

)
(

Δvn,R

−Δvn,I

)

·
(
ψn,q,R

ψn,q,I

)

+ μ′qI
(
Sn,q,I

)
(
Δvn,I

Δvn,R

)

·
(
ψn,q,R

ψn,q,I

)

+
1
2
μ′qR
(
t
n,q

1

)(
Sn+1,q,R − Sn,q,R

)2 +
1
2
μ′′qI
(
t
n,q

2

)(
Sn+1,q,I − Sn,q,I

)2
)
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≤ − 1
η

(∥∥Δvn,R
∥
∥2 +

∥
∥Δvn,I

∥
∥2) +

(
c5 −

1
η

) M∑

m=1

(∥∥Δwn,R
m

∥
∥2 +

∥
∥Δwn,I

m

∥
∥2)

+ c6

(
M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

)

+ c7

(
M∑

m=1

(∥∥Δwn,R
m

∥
∥2 +

∥
∥Δwn,I

m

∥
∥2) +

∥
∥Δvn,R

∥
∥2 +

∥
∥Δvn,I

∥
∥2

)

≤
(
c8 −

1
η

)( M∑

m=1

(∥∥Δwn,R
m

∥
∥2 +

∥
∥Δwn,I

m

∥
∥2) +

∥
∥Δvn,R

∥
∥2 +

∥
∥Δvn,I

∥
∥2

)

,

(5.21)

where c8 = c5 + c6 + c7, tn,q1 ∈ R
1 is on the segment between Sn+1,q,R and Sn,q,R, and t

n,q

2 ∈ R
1 is

on the segment between Sn+1,q,I and Sn,q,I . Then we have

E
(
Wn+1) ≤ E

(
Wn) −

(
1
η
− c8

)( M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

)

.

(5.22)

Obviously, by choosing the learning rate η to satisfy that

0 < η <
1
c8
, (5.23)

then we have

E(Wn+1) ≤ E(Wn), n = 0, 1, 2, . . . . (5.24)

(ii) According to (2.16), we have

M∑

m=1

(∥∥Δwn,R
m

∥∥2 +
∥∥Δwn,I

m

∥∥2) +
∥∥Δvn,R

∥∥2 +
∥∥Δvn,I

∥∥2

= η2

(
M∑

m=1

(∥∥∥∥
∂E(Wn)
∂wR

m

∥∥∥∥

2

+
∥∥∥∥
∂E(Wn)
∂wI

m

∥∥∥∥

2)
+
∥∥∥∥
∂E(Wn)
∂vR

∥∥∥∥

2

+
∥∥∥∥
∂E(Wn)
∂vI

∥∥∥∥

2
)

.

(5.25)
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Combining with (5.21), we have

E
(
Wn+1) ≤ E

(
Wn) − α

(
M∑

m=1

(∥∥
∥
∥
∂E
(
Wn
)

∂wR
m

∥
∥
∥
∥

2

+
∥
∥
∥
∥
∂E
(
Wn
)

∂wI
m

∥
∥
∥
∥

2

) +
∥
∥
∥
∥
∂E
(
Wn
)

∂vR

∥
∥
∥
∥

2

+
∥
∥
∥
∥
∂E
(
Wn
)

∂vI

∥
∥
∥
∥

2
)

≤ . . .

≤ E
(
W0) − α

n∑

k=0

(
M∑

m=1

(∥∥
∥
∥
∂E
(
Wk
)

∂wR
m

∥
∥
∥
∥

2

+
∥
∥
∥
∥
∂E
(
Wk
)

∂wI
m

∥
∥
∥
∥

2)
+
∥
∥
∥
∥
∂E
(
Wk
)

∂vR

∥
∥
∥
∥

2

+
∥
∥
∥
∥
∂E
(
Wk
)

∂vI

∥
∥
∥
∥

2
)

,

(5.26)

where α = (η − c8η
2). Since E(Wn+1) ≥ 0, there holds that

α
n∑

k=0

(
M∑

m=1

(∥∥∥∥
∂E(Wk)
∂wR

m

∥∥∥∥

2

+
∥∥∥∥
∂E(Wk)
∂wI

m

∥∥∥∥

2)
+
∥∥∥∥
∂E(Wk)
∂vR

∥∥∥∥

2

+
∥∥∥∥
∂E(Wk)
∂vI

∥∥∥∥

2
)

≤ E
(
W0). (5.27)

Let n → ∞, then

α
∞∑

k=0

(
M∑

m=1

(∥∥∥∥
∂E
(
Wk
)

∂wR
m

∥∥∥∥

2

+
∥∥∥∥
∂E
(
Wk
)

∂wI
m

∥∥∥∥

2)
+
∥∥∥∥
∂E
(
Wk
)

∂vR

∥∥∥∥

2

+
∥∥∥∥
∂E
(
Wk
)

∂vI

∥∥∥∥

2
)

≤ E
(
W0) <∞.

(5.28)

So there holds that

lim
n→∞

(
M∑

m=1

(∥∥∥∥
∂E
(
Wn
)

∂wR
m

∥∥∥∥

2

+
∥∥∥∥
∂E
(
Wn
)

∂wI
m

∥∥∥∥

2)
+
∥∥∥∥
∂E
(
Wn
)

∂vR

∥∥∥∥

2

+
∥∥∥∥
∂E
(
Wn
)

∂vI

∥∥∥∥

2
)

= 0, (5.29)

which implies that

lim
n→∞

∥∥∥∥
∂E
(
Wn
)

∂wR
m

∥∥∥∥ = lim
n→∞

∥∥∥∥
∂E
(
Wn
)

∂wI
m

∥∥∥∥ = 0, 0 ≤ m ≤M, (5.30)

lim
n→∞

∥∥∥∥
∂E
(
Wn
)

∂vR

∥∥∥∥ = lim
n→∞

∥∥∥∥
∂E
(
Wn
)

∂vI

∥∥∥∥ = 0. (5.31)

(iii) Write

θ =
((
wR

1

)T
, . . . ,

(
wR
M

)T
,
(
wI

1

)T
, . . . ,

(
wI
M

)T
,
(
vR
)T
,
(
vI
)T)T

, (5.32)

then E(W) can be looked as a function of θ, which is denoted as E(θ). That is to say

E(W) ≡ E(θ). (5.33)
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Obviously, E(θ) is a continuously differentiable real-valued function and

∂E(θ)
∂vR

=
∂E(W)
∂vR

,
∂E(θ)
∂vI

=
∂E(W)
∂vI

,

∂E(θ)
∂wR

m

=
∂E(W)
∂wR

m

,
∂E(θ)
∂wI

m

=
∂E(W)
∂wI

m

, m = 1, . . . ,M.
(5.34)

Let

θn =
((
wn,R

1

)T
, . . . ,

(
wn,R
M

)T
,
(
wn,I

1

)T
, . . . ,

(
wn,I
M

)T
,
(
vn,R
)T
,
(
vn,I
)T)T

, (5.35)

then by (5.30) and (5.31), we have

lim
n→∞

∥∥∥∥
∂E
(
θn
)

∂wR
m

∥∥∥∥ = lim
n→∞

∥∥∥∥
∂E
(
θn
)

∂wI
m

∥∥∥∥ = 0, 0 ≤ m ≤M, (5.36)

lim
n→∞

∥∥∥∥
∂E
(
θn
)

∂vR

∥∥∥∥ = lim
n→∞

∥∥∥∥
∂E
(
θn
)

∂vI

∥∥∥∥ = 0. (5.37)

Thus we have

lim
n→∞

∥∥∥∥
∂E
(
θn
)

∂θ

∥∥∥∥ = 0. (5.38)

We use (2.16), (5.30), and (5.31) to obtain

lim
n→∞

∥∥wn+1,R
m −wn,R

m

∥∥ = 0, lim
n→∞

∥∥wn+1,I
m −wn,I

m

∥∥ = 0, m = 1, . . . ,M, (5.39)

lim
n→∞

∥∥vn+1,R − vn,R
∥∥ = 0, lim

n→∞

∥∥vn+1,I − vn,I
∥∥ = 0. (5.40)

This leads to

lim
n→∞

∥∥θn+1 − θn
∥∥ = 0. (5.41)

Furthermore, from Assumption (A3) we know that the set {θ | (∂E(θ)/∂θ) = 0} contains only
finite points. Thus, the sequence {θn}∞n=1 here satisfies all the conditions needed in Lemma 5.1.
As a result, there is a θ� which satisfies that limn→∞θ

n = θ�. Since θn consists of the real and
imaginary parts of Wn, we know that there is a W� such that limn→∞Wn = W�. We thus
complete the proof.

6. Conclusion

In this paper, some convergence results of BSCBP algorithm for CVNN are presented. An
up-bound of the learning rate η is given to guarantee both the monotonicity of the error
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function and the convergence of the gradients for the error function. It is also proved that the
network weights vector tends to a local minimum if there are only finite stable points for the
error function. A numerical example is given to support the theoretical findings. Our work
can help the neural network researchers to choose the appropriate activation function and
learning rate to guarantee the convergence of the algorithm when they use BSCBP algorithm
to train CVNN. We mention that the convergence results can be extended to a more general
case that the networks have several outputs and hidden layers.
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