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Many existing pest control models, which control pests by releasing natural enemies, neglect the
effect that natural enemies may get killed. From this point of view, we formulate a pest control
model with stage structure for the pest with constant maturation time delay (through-stage time
delay) and periodic releasing natural enemies and natural enemies killed at different fixed time
and perform a systematic mathematical and ecological study. By using the comparison theorem
and analysis method, we obtain the conditions for the global attractivity of the pest-eradication
periodic solution and permanence of the system. We also present a pest management strategy
in which the pest population is kept under the economic threshold level (ETL) when the pest
population is uniformly permanent. We show that maturation time delay, impulsive releasing,
and killing natural enemies can bring great effects on the dynamics of the system. Numerical
simulations confirm our theoretical results.
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1. Introduction

The warfare between man and pests has been on for thousands of years, and pest outbreaks
often cause serious ecological and economic problems. With the development of society,
human beings have come up with numerous methods to control pests, for instance, biological,
cultural, physical, mechanical, and chemical tools in a way that minimize economics. Among
those methods, releasing natural enemies is an effective and basic one, and it cannot pollute
the environment. Morever, it is relatively simple to implement.

The pest control models by releasing natural enemies have been studied by many
researchers [1–3]. All of them have invariably assumed that the releasing enemies can all have
an effect on the models, whereas it is often the case that the natural enemies may get killed.
For example, releasing frogs may prevent locusts. But in many places in China, especially in
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some southern areas, it is customary to eat frogs, and in markets the price of a frog is 15 yuan;
so the number of the released frogs is reduced in a period as a result of their getting killed
by people. According to the above biological background, we formulate a pest control model
with periodic impulsive releasing natural enemies and natural enemies killed at different
fixed time. We assume that the pest has a stage structure with constant maturation time delay
(through-stage time delay). Many stage structure models with time delay were extensively
studied (see [4–9]). In practice, from the principle of ecosystem balance, we need only to
control the pest population under the economic threshold level (ETL) and not to eradicate
natural enemy totally and hopes pest population and natural enemy population can coexist
when the pests do not bring about immense economic losses. Then the questions that arise
here are the following: how do the impulse period and time delay affect the extinction of the
pest and permanence of the system? How many natural enemies should we release to control
pests? How to keep the pests under ETL?

For these purposes, in Section 2 we suggest a delay impulsive differential equation
to model the process of impulsive releasing natural enemies and natural enemies killed
at different fixed time and introduce lemmas which will be used in this paper. Impulsive
differential equations are found in almost every domain of applied science and have been
studied in many investigations [10–17], and it can describe population dynamic models, since
many life phenomena and human exploitation are almost impulsive in the natural world,
and impulsive delay differential equations are almost analyzed in theory (see [18–20]). Time
delay and impulse are introduced into pest control models with stage structure, which greatly
enrich biologic background, but the system becomes nonautonomous and quite complicated,
which causes great difficulties for us to study the model. In Sections 3 and 4, the conditions
for the global attractivity of the pest-eradication periodic solution and permanence of the
system are obtained. We give a brief conclusion of our results in the last section. Numerical
simulations are presented to illustrate our theoretical results.

2. Model Formulation and Auxiliary Lemmas

A model of single pest population growth incorporating stage structure as a reasonable
generalization of the logistic model was derived as follows in [21]:

dxj(t)
dt

= αx(t) − dxj(t) − αe−dτx(t − τ),

dx(t)
dt

= αe−dτx(t − τ) − βx2(t),

(2.1)

where xj(t) and x(t) represent the immature and mature pest population densities,
respectively. This model assumes an average age to maturity which appears as a constant
time delay reflecting a delayed birth of immature and a reduced survival of immature to their
maturity. α > 0 is the coefficient of birth rate of the mature population in this environment;
τ , called maturation time delay, is the time to maturity; d > 0 is the coefficient of death rate
of the immature population; β > 0 is the mature pest death and overcrowding rate; the term
αe−dτx(t − τ) represents the immature pests which are born at the time t − τ (i.e., αx(t − τ))
and survive at the time t (with the immature pest death rate d) and therefore, represents the
transformation of immatures to matures.
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The basic model that we consider in this paper is the one based on the ideas that the
natural enemies may be killed when they are released to control pest population; then we
formulate the following two-stage pest control model with stage structure for pest and pulse
releasing of natural enemies killed at different fixed time:

dxj(t)
dt

= αx(t) − dxj(t) − αe−dτx(t − τ),
dx(t)
dt

= αe−dτx(t − τ) − d1x
2(t) − βx(t)y(t),

dy(t)
dt

= λβx(t)y(t) − d2y(t)

t /=nT, t /= (n + k − 1)T,

xj(t+) = xj(t),

x(t+) = x(t),

y(t+) =
(
1 − p)y(t),

t = (n + k − 1)T,

xj(t+) = xj(t),

x(t+) = x(t),

y(t+) = y(t) + μ,

t = nT,

(2.2)

where xj(t), x(t), and y(t) represent the density of the immature pest, mature pest, and
natural enemy population at time t, respectively; n ∈ Z+, and Z+ = {1, 2, . . .}; d2 > 0 is the
natural enemy death’s rate; μ > 0 is the natural enemy releasing amount at every impulsive
period nT ; 0 ≤ p ≤ 1 is the killed rate of natural enemies at every impulsive period (n+k−1)T .
The meanings of other parameters are the same as those of Model (2.1).

The first equation in system (2.2) may be rewritten as follows:

xj(t) =
∫ t

t−τ
αe−d(t−s)x(s)ds, (2.3)

and xj(0) =
∫0
−ταe

−dsx(s)ds; that is xj(t) can be linear expression by x(t), and xj(t) does not
appear in the second and third equations in system (2.2), therefore in the rest of this paper,
we will study the subsystem of (2.2) as follows:

dx(t)
dt

= αe−dτx(t − τ) − d1x
2(t) − βx(t)y(t),

dy(t)
dt

= λβx(t)y(t) − d2y(t),
t /=nT, t /= (n + k − 1)T,

x(t+) = x(t),

y(t+) =
(
1 − p)y(t),

t = (n + k − 1)T,

x(t+) = x(t),

y(t+) = y(t) + μ,
t = nT.

(2.4)
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The initial conditions for (2.4) are

(
ϕ1(s), ϕ2(s)

) ∈ C+ = C
(
[−τ, 0], R2

+

)
, ϕi(0) > 0, i = 1, 2. (2.5)

From the biological point of view, we only consider system (2.4) in the biological meaning
region: D = {x(t), y(t) | x(t) ≥ 0, y(t) ≥ 0}.

Lemma 2.1 (see [22]). Consider the following equation:

dx(t)
dt

= ax(t − τ) − bx(t) − cx2(t), (2.6)

where a, b, c, τ are all positive constants, x(t) > 0, for −τ ≤ t ≤ 0; one has the following.

(1) If a < b, then limt→+∞x(t) = 0.

(2) If a > b, then limt→+∞x(t) = (a − b)/c.

Lemma 2.2. For each solution of system (2.2)with t being large enough, one has xj(t), x(t), y(t) ≥ L,
where L = (λα + d3)

2/4λd3d1 + μed3T/(ed3T − 1) and d3 = min{d2, d}.

Proof. Let V (t) = λxj(t) + λx(t) + y(t), d3 = min{d2, d}. If t /=nT and t /= (n + k − 1)T , we have

dV (t)
dt

≤ λ(α + d)x(t) − λd1x
2(t) − d3V ≤ λ(α + d3)

2

4d1
− d3V, (2.7)

If t = (n+k − 1)T , V ((n+k − 1)T+) ≤ V ((n+k − 1)T); if t = nT , V (nT+) ≤ V (nT+) +μ. We have

V (t) ≤ V (0)e−d3t +
∫ t

0

(λα + d3)
2

4λd3d1
e−d3(t−s)ds +

∑

0<nT<t

μe−d3(t−nT)

−→ λ(α + d3)
2

4d3d1
+

μed3T

ed3T − 1
= L, as t −→ +∞.

(2.8)

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), we obtain that each
positive solution of system (2.2) is uniformly ultimately bounded. The proof is complete.

Lemma 2.3 (see [23]). Consider the following system:

dy(t)
dt

= −d2y(t), t /=nT, t /= (n + k − 1)T,

y(t+) =
(
1 − p)y(t), t = (n + k − 1)T,

y(t+) = y(t) + μ, t = nT,

(2.9)
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where d2, p, μ, k are all positive constants; then, system (2.9) has a globally asymptotic stable positive
periodic solution:

y∗(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μe−d2[t−(n−1)T]

1 − (1 − p)e−d2T
, (n − 1)T < t ≤ (n + k − 1)T,

μ
(
1 − p)e−d2[t−(n−1)T]

1 − (1 − p)e−d2T
, (n + k − 1)T < t ≤ nT.

(2.10)

Lemma 2.4 (see [24]). Let V : R+ × R3 → R+ and V ∈ V0. Assume that

D+V (t, x) ≤ g(t, V (t, x)), t /=nT,

V (t, x(t+)) ≤ ψn(V (t, x(t))), t = nT,
(2.11)

where g : R+ × R+ → R is continuous in (nT, (n + 1)T] × R+ and for ν ∈ R+, n ∈ Z+,
lim(t,y)→ (nT+,ν)g(t, y) = g(nT+, ν) exits, and ψn : R+ → R+ is nondecreasing. Let r(t) be the
maximal solution of the scalar impulsive differential equation:

du(t)
dt

= g(t, u), t /=nT,

u(t+) = ψn(u(t)), t = nT

u(0+) = u0,

(2.12)

exiting on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any
solution of (2.11).

3. Global Attractivity of the “Pest-Eradication” Periodic Solution

Define ζ1 = [1 − (1 − p)e−d2T ]αe−dτ/βμ(1 − p)e−d2T .

Theorem 3.1. If ζ1 < 1 holds, the population-extinction periodic solution (0, y∗(t)) of (2.4) is
globally attractive.

Proof. From the second equation in system (2.4), we have dy(t)/dt ≥ −d2y(t); then consider
the following system:

dz1(t)
dt

= −d2z1(t), t /=nT, t /= (n + k − 1)T,

z1(t+) =
(
1 − p)z1(t), t = (n + k − 1)T,

z1(t+) = z1(t) + μ, t = nT.

(3.1)
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According to Lemma 2.3, the globally asymptotic stable positive periodic solution of system
(3.1) is

z∗1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μe−d2[t−(n−1)T]

1 − (1 − p)e−d2T
, (n − 1)T < t ≤ (n + k − 1)T,

μ
(
1 − p)e−d2[t−(n−1)T]

1 − (1 − p)e−d2T
, (n + k − 1)T < t ≤ nT.

(3.2)

According to Lemma 2.4, for any ε1 > 0, there exits a n1 such that

y(t) > z∗1(t) − ε1 >
μ
(
1 − p)e−d2T

1 − (1 − p)e−d2T
− ε1 =: η, nT < t ≤ (n + 1)T, n > n1. (3.3)

From the first equation of system (2.4), we can get

dx(t)
dt

< αe−dτx(t − τ) − d1x
2(t) − βx(t)η. (3.4)

Then consider the following comparison equation:

dz(t)
dt

= αe−dτz(t − τ) − d1z
2(t) − βz(t)η. (3.5)

Since ζ1 < 1, according to Lemma 2.1, we obtain limt→∞z(t) = 0; then by the comparison
theorem in differential equations, we get limt→∞x(t) = 0. Without loss of generality, we
assume that

0 < x(t) < ε, ∀t ≥ 0. (3.6)

Consider the following system:

dY (t)
dt

=
(
λβε − d2

)
Y (t), t /=nT, t /= (n + k − 1)T,

Y (t+) =
(
1 − p)Y (t), t = (n + k − 1)T,

Y (t+) = Y (t) + μ, t = nT.

(3.7)

The globally asymptotic stable positive periodic solution of system (3.7) is

Y ∗(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μe(λβε−d2)[t−(n−1)T]

1 − (1 − p)e(λβε−d2)T
, (n − 1)T < t ≤ (n + k − 1)T,

μ
(
1 − p)e(λβε−d2)[t−(n−1)T]

1 − (1 − p)e(λβε−d2)T
, (n + k − 1)T < t ≤ nT.

(3.8)
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By (3.3) and Lemma 2.4, for any ε2 > 0, there exits a T ∗, when t > T ∗:

z∗1(t) − ε2 < y(t) < Y ∗(t) + ε2. (3.9)

Let ε → 0, we can get

y∗(t) − ε2 < y(t) < y∗(t) + ε2 (3.10)

for t being large enough, which implies limt→∞y(t) = y∗(t). This completes the proof.

4. Permanence

Define ζ2 = [1 − (1 − p)e−d2T ]αe−dτ/βμe−d2T .

Definition 4.1. System (2.4) is said to be permanent if there are constants l, L > 0 and a finite time
T0 such that for every positive solution (xj(t), x(t), y(t)) ∈ R3

+ with initial conditions (2.5) satisfies
l ≤ xj(t) ≤ L, l ≤ x(t) ≤ L, l ≤ y(t) ≤ L for all t ≥ T0. Here T0 may depend on the initial condition
(2.5).

Theorem 4.2. If ζ2 > 1 holds, there exists a positive constant q such that each positive solution
(x(t), y(t)) of (2.4) satisfies x(t) ≥ q with t being large enough.

Proof. The first equation of system (2.4) may be rewritten as follows:

dx(t)
dt

=
[
αe−dτ − d1x(t) − βy(t)

]
x(t) − αe−dτ d

dt

∫ t

t−τ
x(s)ds. (4.1)

Define

V (t) = x(t) + αe−dτ
∫ t

t−τ
x(s)ds. (4.2)

Calculating the derivative of V (t) along the solution to (2.4) gives

dV (t)
dt

=
[
αe−dτ − d1x(t) − βy(t)

]
x(t). (4.3)

Since ζ2 > 1, we can choose m1. Let ε > 0 be small enough such that d2 − λβm1 > 0 and

αe−dτ

d1m1 + βσ
− 1 > 0, (4.4)

where σ = μe−(d2 − λβm1)T)/(1 − (1 − p)e−(d2−λβm1)T − ε. For any positive constant t0 > 0, we
claim that the inequality x(t) < m1 cannot hold for all t ≥ t0. Otherwise, there is a positive
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constant t0 such that x(t) < m1 for all t ≥ t0. From the second and the fourth equations in
system (2.4), we have

dy(t)
dt

≤ (λβm1 − d2
)
y(t), t /=nT, t /= (n + k − 1)T,

y(t+) =
(
1 − p)y(t), t = (n + k − 1)T,

y(t+) = y(t) + μ, t = nT.

(4.5)

According to Lemma 2.4, there exists T1 ≥ t0 + τ such that for t ≥ T1,

y(t) <
μe(λβm1−d2)T

1 − (1 − p)e(λβm1−d2)T
− ε =: σ. (4.6)

From (4.3) and (4.6) we have

dV (t)
dt

>
[
αe−dτ − d1m1 − βσ

]
x(t) =

(
d1m1 + βσ

)
(

αe−dτ

d1m1 + βσ
− 1

)

x(t), t ≥ T1. (4.7)

Let m2 = mint∈[T1,T1+τ]x(t), we show that x(t) ≥ m2 for all t > T1. Otherwise, there exists a
nonnegative constant T2, such that x(t) ≥ m2, for t ∈ [T1, T1 + τ + T2], x(T1 + τ + T2) = m2 and
x′(T1 + τ + T2) < 0.

Thus, from the first equation of system (2.4) and (4.5), we easily see that

dx(T1 + τ + T2)
dt

= αe−dτx(T1 + T2) − d1x
2(T1 + τ + T2) − βx(T1 + τ + T2)y(t)

≥
[
αe−dτ − d1m1 − βσ

]
m2 >

(
d1m1 + βσ

)
(

αe−dτ

d1m1 + βσ
− 1

)

m2 > 0.
(4.8)

This is a contradiction. So we obtain that x(t) ≥ m2, for all t > T1. From (4.7), we have

dV (t)
dt

>
(
d1m1 + βσ

)
(

αe−dτ

d1m1 + βσ
− 1

)

m2, (4.9)

which implies V (t) → +∞ as t → +∞. This is a contradiction to V (t) ≤ L(1 + ατe−dτ).
Therefore, for any positive constant t0, the inequality x(t) < m1 cannot hold for all t ≥ t0.

If x(t) ≥ m1 holds true for all t large enough, then our aim is obtained. Othervise, x(t)
is oscillatory about m1. Let

q = min
{m1

2
, m1e

−(d1+β)Lτ
}
. (4.10)
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In the following, we will show that x(t) ≥ q for t being large enough. There exist two positive
constants t, ω such that

x
(
t
)
= x
(
t +ω

)
= m1,

x(t) < m1 for t < t < t +ω.
(4.11)

Since x(t) is continuous and bounded and is not effected by impulses, we conclude that x(t)
is uniformly continuous. Then there exists a constant T3, such that x(t) > m1/2 for all t ≤ t ≤
t + T3.

If ω ≤ T3, our aim is obtained.
If T3 < ω ≤ τ, from the first equation of (2.4) we have that

dx(t)
dt

≥ −(d1 + β
)
Lx(t) for t < t ≤ t +ω. (4.12)

Then we have

x(t) ≥ m1e
−(d1+β)Lτ for t < t ≤ t +ω ≤ t + τ. (4.13)

It is clear that x(t) ≥ q for t < t ≤ t +ω.
If ω > τ , by the first equation of (2.4), then we have that x(t) ≥ q for t < t ≤ t + τ. Thus,

proceeding exactly as the proof for above claim, we can obtain the inequality x(t) < m1 cannot
hold for all t > t+τ, so the same arguments can be continued for for t+τ < t ≤ t+ω, and we can
get x(t) ≥ q for t+ τ < t ≤ t+ω. Since the interval [t, t+ω] is arbitrarily chosen (we only need
t to be large), we get that x(t) ≥ q for t being large enough. In view of our arguments above,
the choice of q is independent of the positive solution of (2.4) which satisfies that x(t) ≥ q for
being sufficiently large t. This completes the proof.

Theorem 4.3. If ζ2 > 1, then system (2.4) is permanent.

Proof. Suppose that (x(t), y(t)) is any solution of system (2.4) with initial condition (2.5). Let
q∗ = (μ(1−p)e−d2T/1−(1−p)e−d2T ), by (3.3) we know y(t) ≥ q∗, and according to Theorem 4.2,
there exist positive constants q, such that x(t) ≥ q. Set

D =
{
x(t), y(t) | q ≤ x(t) ≤ L, q∗ ≤ y(t) ≤ L}. (4.14)

Then, D is a bounded compact region which has positive distance from coordinate axes. By
Theorem 4.2, one obtains that every solution to system (2.4) with the initial condition (2.5)
eventually enters and remains in the region D. The proof is completed.

The immature pest is hardly any harmful for the crop; so we just consider the effect
of the mature pest. From the standpoint of ecological balance and saving resource, we only
need to maintain the mature pest population under the economic threshold level (ETL) and
not to eradicate the pest totally; then we have the following theorem.
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Theorem 4.4. Under the condition of Theorem 4.3, if

(
d1E − αe−dτ)(1 − (1 − p)e−d2T

)

βμ
(
1 − p)e−d2T

> 1, (4.15)

then the mature pest population is eventually under the economic threshold level E.

Proof. From (3.3) we know for any ε1 > 0 that there exits a n1 such that

y(t) >
μ
(
1 − p)e−d2T

1 − (1 − p)e−d2T
− ε1 =: η, nT < t ≤ (n + 1)T, n > n1. (4.16)

From the first equation of system (2.4), we can get

dx(t)
dt

< αe−dτx(t − τ) − d1x
2(t) − βx(t)η. (4.17)

Then consider the following comparison equation:

dz(t)
dt

= αe−dτz(t − τ) − d1z
2(t) − βz(t)η. (4.18)

If ζ2 > 1 holds, we can get αe−dτ > βη;then according to Lemma(2.1), we obtain

lim
t→∞

z(t) =
αe−dτ − βη

d1
. (4.19)

According to Lemma 2.4, we have x(t) ≤ (αe−dτ − βη)/d1 < E, as t → ∞. The proof is
completed.

5. Discussion

In this paper, we discuss a pest control model with stage structure for the pest with constant
maturation time delay (through-stage time delay) and periodic releasing natural enemies and
natural enemies killed at different fixed time. From Theorems 3.1, 4.2, and 4.3, we can observe
that the extinction and permanence of the population are very much dependent on T, τ, μ, p. If
μ is too large, from the condition of Theorem 3.1 we know that the population will be extinct.
Although in theory pests can be eliminated completely, in fact it is hard to implement. In the
natural world, the immature pest does not have any effect on the crop; so we only consider
the mature pest in this paper. Even though pest is extinct, the food chain between pest and
natural enemy is broken, that would be another disaster. Therefore we only need to control
the mature pest population under (ETL) and not to eradicate natural enemy totally and hope
that pest population and natural enemy population can coexist when the pests do not bring
about immense economic losses.
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Figure 1: Time series of system (2.4) with parameters d = 0.6; d1 = 0.4; α = 0.8; τ = 0.8; d2 = 0.5; β =
0.8; λ = 0.9; p = 0.3; μ = 0.2; T = 0.2.
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Figure 2: Time series of system (2.4) with parameters d = 0.6; d1 = 0.4; α = 0.8; τ = 0.8; d2 = 0.5; β =
0.8; λ = 0.9; p = 0.3; μ = 0.5; T = 0.2.
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Figure 3: Time series of system (2.4) with parameters d = 0.6; d1 = 0.4; α = 0.8; τ = 2;d2 = 0.5; β =
0.8; λ = 0.9; p = 0.3; μ = 0.2; T = 0.2.
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Figure 4: Time series of system (2.4) with parameters d = 0.6;d1 = 0.4;α = 0.8; τ = 0.8;d2 = 0.5; β = 0.8;λ =
0.9; p = 0.1;μ = 0.2; T = 0.2.
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Figure 5: Time series of system (2.4) with parameters d = 0.6; d1 = 0.4; α = 0.8; τ = 0.8; d2 = 0.5; β =
0.8; λ = 0.9; p = 0.3; μ = 0.2; T = 0.25.

To verify the theoretical results obtained in this paper, in the following we will give
some numerical simulations and take d = 0.6; d1 = 0.4; α = 0.8; τ = 0.8; d2 = 0.5; β = 0.8;
λ = 0.9; p = 0.3; μ = 0.2; T = 0.2 (see Figure 1); here we can compute ζ2 = 1.253 > 1; from
Theorem 4.3 we know that system (2.4) is permanent. If we increase the natural enemy input
amount to μ = 0.5 (ζ1 = 0.716 < 1) or increase the maturation time delay τ = 2 (ζ1 = 0.872 < 1),
other parameters are the same with those in Figure 1, and the pest will be extinct (see Figure 2
and Figure 3). If we decrease the killed rate of natural enemies to p = 0.1, then ζ1 = 0.635 < 1,
the pest also will be extinct (see Figure 4). It shows that if the maturation time delay is too
long, or the natural enemy releasing amount is too large, or fewer natural enemies are killed,
the permanence of the system disappears and the pest population dies out. This implies that
pulse releasing natural enemies, the maturation time delay and natural enemies killed bring
great effects on the dynamics behaviors of the model. Suppose that the economic threshold
level, E, is 0.3, then Figure 5 shows that if we choose an appropriate pulse releasing natural
enemy period (with T ), we can control the pest population under the ETL and not eradicate
natural enemy totally. This gives us some reasonable suggestions for pest management.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (10671001 and
10971001) and the Science and Research Project Foundation of Liaoning Province Education
Department.



14 Discrete Dynamics in Nature and Society

References

[1] B. Liu, Y. Zhang, and L. Chen, “The dynamical behaviors of a Lotka-Volterra predator-prey model
concerning integrated pest management,” Nonlinear Analysis: Real World Applications, vol. 6, no. 2, pp.
227–243, 2005.

[2] H. Zhang, L. Chen, and J. J. Nieto, “A delayed epidemic model with stage-structure and pulses for
pest management strategy,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1714–1726,
2008.

[3] J. Hui and D. Zhu, “Dynamic complexities for prey-dependent consumption integrated pest
management models with impulsive effects,” Chaos, Solitons and Fractals, vol. 29, no. 1, pp. 233–251,
2006.

[4] S. Tang and L. Chen, “Multiple attractors in stage-structured population models with birth pulses,”
Bulletin of Mathematical Biology, vol. 65, no. 3, pp. 479–495, 2003.

[5] X.-Y. Song and L.-S. Chen, “Optimal harvesting and stability for a predator-prey system with stage
structure,” Acta Mathematicae Applicatae Sinica, vol. 18, no. 3, pp. 423–430, 2002.

[6] X. Song and H. Guo, “Global stability of a stage-structured predator-prey system,” International
Journal of Biomathematics, vol. 1, no. 3, pp. 313–326, 2008.

[7] G. H. Zhu, X. Z. Meng, and L. S. Chen, “The dynamics of a mutual interference age structured
predator-prey model with time delay and impulsive perturbations on predators,” Applied Mathematics
and Computation, vol. 216, no. 1, pp. 308–316, 2010.

[8] S. Gao, L. Chen, and Z. Teng, “Pulse vaccination of an SEIR epidemic model with time delay,”
Nonlinear Analysis: Real World Applications, vol. 9, no. 2, pp. 599–607, 2008.

[9] X. Meng and L. Chen, “A stage-structured SI eco-epidemiological model with time delay and
impulsive controlling,” Journal of Systems Science and Complexity, vol. 21, no. 3, pp. 427–440, 2008.

[10] S. Sun and L. Chen, “Permanence and complexity of the eco-epidemiological model with impulsive
perturbation,” International Journal of Biomathematics, vol. 1, no. 2, pp. 121–132, 2008.

[11] X. Meng and L. Chen, “The dynamics of a new SIR epidemic model concerning pulse vaccination
strategy,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 582–597, 2008.

[12] J. Jiao and L. Chen, “Global attractivity of a stage-structure variable coefficients predator-prey system
with time delay and impulsive perturbations on predators,” International Journal of Biomathematics,
vol. 1, no. 2, pp. 197–208, 2008.

[13] X. Meng and L. Chen, “Permanence and global stability in an impulsive Lotka-Volterra N-species
competitive system with both discrete delays and continuous delays,” International Journal of
Biomathematics, vol. 1, no. 2, pp. 179–196, 2008.

[14] S. Gao and L. Chen, “The effect of seasonal harvesting on a stage-structured discrete model with birth
pulses,” International Journal of Bifurcation and Chaos, vol. 16, no. 9, pp. 2575–2586, 2006.

[15] J. Hui and L.-S. Chen, “Dynamic complexities in ratio-dependent predator-prey ecosystem models
with birth pulse and pesticide pulse,” International Journal of Bifurcation and Chaos, vol. 14, no. 8, pp.
2893–2903, 2004.

[16] K. Liu and L. Chen, “On a periodic time-dependent model of population dynamics with stage
structure and impulsive effects,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 389727,
15 pages, 2008.

[17] S. Tang and L. Chen, “Density-dependent birth rate, birth pulses and their population dynamic
consequences,” Journal of Mathematical Biology, vol. 44, no. 2, pp. 185–199, 2002.

[18] J. Yan, “Stability for impulsive delay differential equations,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 63, no. 1, pp. 66–80, 2005.

[19] L. Berezansky and E. Braverman, “Linearized oscillation theory for a nonlinear delay impulsive
equation,” Journal of Computational and Applied Mathematics, vol. 161, no. 2, pp. 477–495, 2003.

[20] X. Liu and G. Ballinger, “Boundedness for impulsive delay differential equations and applications to
population growth models,” Nonlinear Analysis: Theory, Methods & Applications, vol. 53, no. 7-8, pp.
1041–1062, 2003.

[21] W. G. Aiello and H. I. Freedman, “A time-delay model of single-species growth with stage structure,”
Mathematical Biosciences, vol. 101, no. 2, pp. 139–153, 1990.

[22] X. Song and L. Chen, “Optimal harvesting and stability for a two-species competitive system with
stage structure,” Mathematical Biosciences, vol. 170, no. 2, pp. 173–186, 2001.



Discrete Dynamics in Nature and Society 15

[23] B. Liu, Z. Teng, and L. Chen, “Analysis of a predator-prey model with Holling II functional response
concerning impulsive control strategy,” Journal of Computational and Applied Mathematics, vol. 193, no.
1, pp. 347–362, 2006.

[24] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66
of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical,
Harlow, UK, 1993.


