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1. Introduction and Statements of Main Results

Let Z and R be the sets of all integers and real numbers, respectively. For a, b ∈ Z, define
Z[a] = {a, a + 1, . . .}, Z[a, b] = {a, a + 1, . . . , b}when a ≤ b.

In this paper, we consider the following boundary value problem (BVP for short)
consisting of the discrete generalized Emden-Fowler equation:

Δ
[
p(t)Δu(t − 1)

]
+ q(t)u(t) = f(t, u(t)), t ∈ Z[1, k], (1.1)

and the boundary value conditions:

u(0) + αu(1) = A, u(k + 1) + βu(k) = B, (1.2)

where k is a positive integer, α, β, A, and B are constants, and Δu(t) = u(t + 1) − u(t) is
the forward difference operator. We assume that p(t) is nonzero and realvalued for each t ∈
Z[1, k + 1]. We also assume that q(t) is realvalued for each t ∈ Z[1, k], f(t, x) is realvalued for
each (t, x) ∈ Z[1, k] × R, and f(t, x) is continuous in the second variable x.
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Equation (1.1) has been extensively studied by many authors; for example, see [1–
9] concerning its disconjugacy, disfocality, oscillation, asymptotic behaviour, existence of
periodic solutions, and solutions to boundary value problem.

Recently, Yu and Guo in [10] employed the critical point theory to obtain the existence
of solutions to the BVP (1.1)-(1.2). Motivated by this and the results in [11], the main purpose
of this paper is to give some new sufficient conditions for the existence of solutions to the BVP
(1.1)-(1.2) by applying the Saddle Point Theorem and the Least Action Principle.

Before giving the main results, we first set

F(t, x) =
∫x

0
f(t, s)ds, c(t) = q(t) − p(t) − p(t + 1),

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c(1) − αp(1) p(2) 0 · · · 0 0

p(2) c(2) p(3) · · · 0 0

0 p(3) c(3) · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · c(k − 1) p(k)

0 0 0 · · · p(k) c(k) − βp(k + 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

η =
(
η(1), η(2), . . . , η(k)

)τ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p(1)A

0

...

0

p(k + 1)B

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(1.3)

The main results are as follows.

Theorem 1.1. Suppose that f , M satisfy the following assumptions.

(F1) There are constants C1 > 0, C2 > 0, 1/2 ≤ θ < 1 such that for all (t, x) ∈ Z[1, k] × R,

∣∣f(t, x)
∣∣ ≤ C1|x|θ + C2. (1.4)

(F2) One has

(i) either ‖u‖−2θ∑k
t=1 F(t, u(t)) → −∞ as ‖u‖ → ∞, or

(ii) ‖u‖−2θ∑k
t=1 F(t, u(t)) → +∞ as ‖u‖ → ∞,

where for all u = (u(1), u(2), . . . , u(k))τ ∈ Rk, ‖u‖ = (
∑k

t=1 |u(t)|2)
1/2

.

(P1) The matrixM is singular.

Then the BVP (1.1)-(1.2) has at least one solution.
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Remark 1.2. There are functions p(t), q(t), and f(t, x) satisfying our Theorem 1.1 and not
satisfying the results in [10]. For example, let A, B be arbitrary constants, k = 4, α = β =
−1, θ = 1/2 and

p(t) ≡ 1, q(t) ≡ 0, f(t, x) = g(t)
x

4
√
1 + x2

+ 1, (1.5)

where g(t) < 0 for every t ∈ Z[1, 4]. It is easy to verify that (F1), (F2)(i), and (P1) are satisfied.
Then the BVP (1.1)-(1.2) has at least one solution. And it is easy to see that this solution is a
nonzero solution since f(t, 0)/= 0.

Theorem 1.3. Suppose that f , M satisfy the following assumptions.

(F3) For any t ∈ Z[1, k], lim|x|→∞(f(t, x)/x) = 0.

(P2) The matrixM is nonsingular.

Then the BVP (1.1)-(1.2) has at least one solution.

Corollary 1.4. Suppose that f , M satisfy (F1) and (P2). Then the BVP (1.1)-(1.2) has at least one
solution.

Remark 1.5. Since for all (t, x) ∈ Z[1, k] × R, |f(t, x)| ≤ C2 implies |f(t, x)| ≤ C1|x|θ + C2, our
Corollary 1.4 extends Theorem 3.2 in [10].

Theorem 1.6. Suppose that f , M satisfy the following assumptions.

(F4) For any t ∈ Z[1, k], lim|x|→∞(F(t, x)/x2) = 0.

(F5) One has

(i) either 2F(t, x) − (f(t, x) + η(t))x → −∞ as |x| → ∞ for all t ∈ Z[1, k], or
(ii) 2F(t, x) − (f(t, x) + η(t))x → +∞ as |x| → ∞ for all t ∈ Z[1, k].

(P3) The matrixM is singular and indefinite.

Then the BVP (1.1)-(1.2) has at least one solution.

Remark 1.7. There are functions p(t), q(t), and f(t, x) satisfying our Theorem 1.6 and not
satisfying the results in [10]. For example, let A, B be arbitrary constants, k = 4, α = 1, β = 0
and

p(1) = p(3) = −1, p(2) = p(4) = 1, p(5) = −2, q(t) ≡ 0,

f(t, x) = g(t)
(

x√
1 + x2

ln
(
1 + x2

)
+
√
1 + x2 2x

1 + x2
+ 1
)
,

(1.6)

where g(t) < 0 for every t ∈ Z[1, 4]. It is easy to verify that (F4), (F5)(i) and (P3) are satisfied.
Then the BVP (1.1)-(1.2) has at least one solution. And it is easy to see that this solution is a
nonzero solution since f(t, 0)/= 0.

Corollary 1.8. Assume that (F4) holds. If one of the following conditions is satisfied: (H1) the matrix
M is negative semi-definite, and (F5)(i) holds, (H2) the matrix M is positive semi-definite, and
(F5)(ii) holds, then, the BVP (1.1)-(1.2) has at least one solution.
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2. Variational Structure and Two Basic Lemmas

Let Rk be the real Euclidean space with dimension k. For any u, v ∈ Rk, ‖u‖ and (u, v) denote
the usual norm and inner product in Rk, respectively.

Define the functional J on Rk as follows:

J(u) =
1
2
(Mu,u) +

(
η, u
) −

k∑

t=1

F(t, u(t)), ∀u = (u(1), u(2), . . . , u(k))τ ∈ Rk. (2.1)

It is well known that u = (u(1), u(2), . . . , u(k))τ ∈ Rk is a critical point of J if and only if
{u(t)}k+1t=0 = (u(0), u(1), u(2), . . . , u(k), u(k + 1))τ is a solution of the BVP (1.1)-(1.2), where
u(0) = A − αu(1) and u(k + 1) = B − βu(k). For details, see [10]. It follows from the continuity
of f that J is continuously differentiable on Rk. Moreover, one has

(
J ′(u), h

)
= (Mu,h) +

(
η, h
) −

k∑

t=1

f(t, u(t)) · h(t), ∀u, h ∈ Rk. (2.2)

When the matrix M is singular and indefinite, we suppose that 0 < λ1 ≤ λ2 ≤ · · · ≤ λl
and 0 > −μ1 ≥ −μ2 ≥ · · · ≥ −μs are the positive and negative eigenvalues of M, respectively,
and l + s = k − 1. We also suppose that ςi, 1 ≤ i ≤ l and ξj , 1 ≤ j ≤ s are the eigenvectors of M
corresponding to eigenvalues λi, 1 ≤ i ≤ l and −μj , 1 ≤ j ≤ s satisfying

(ςi1 , ςi2) =

⎧
⎨

⎩

0, i1 /= i2,

1, i1 = i2,

(
ςi, ξj

)
= 0,

(
ξj1 , ξj2

)
=

⎧
⎨

⎩

0, j1 /= j2,

1, j1 = j2,
(2.3)

where i, i1, i2 ∈ Z[1, l], j, j1, j2 ∈ Z[1, s]. We denote

R+ = span{ςi | i ∈ Z[1, l]}, R− = span
{
ξj | j ∈ Z[1, s]

}
, (2.4)

R0 =
(
R+ ⊕ R−)⊥. (2.5)

Then Rk has the direct sum decomposition Rk = R+ ⊕ R0 ⊕ R−. So, for each u ∈ Rk, u can be
expressed by

u = u+ + u0 + u−, (2.6)

where u∗ ∈ R∗, ∗ is +, 0, or −, respectively. Furthermore, we have the following estimates:

λ1‖u+‖2 ≤ (Mu+, u+) ≤ λl‖u+‖2, u+ ∈ R+,

−μs

∥∥u−∥∥2 ≤ (Mu−, u−) ≤ −μ1
∥∥u−∥∥2, u− ∈ R−.

(2.7)
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Set

‖u‖∞ = max
t∈Z[1,k]

|u(t)|, ‖u‖p =

(
k∑

t=1

|u(t)|p
)1/p

, (2.8)

where u = (u(1), u(2), . . . , u(k))τ ∈ Rk and ∞ > p ≥ 1. Then for any u ∈ Rk,

1√
k
‖u‖ ≤ ‖u‖∞ ≤ ‖u‖, 1√

k
‖u‖ ≤ ‖u‖p ≤ k1/p‖u‖. (2.9)

We will make use of the least action principle and saddle point theorem to obtain the
critical points of J . Let us first recall these theorems.

Lemma 2.1 (the least action principle, see [12]). Let X be a real Banach space, and assume that
J ∈ C1(X,R) is bounded from below in X and satisfies the Palais-Smale condition ((PS) condition for
short). Then c = infu∈XJ(u) is a critical value of J .

Lemma 2.2 (saddle point theorem, see [13]). Let X be a real Hilbert space, X = X1 ⊕ X2, where
X1 /= {0} and is finite dimensional. Suppose that J ∈ C1(X,R) satisfies the (PS) condition and

(ϕ1) there exist constants σ, ρ > 0 such that J |∂Bρ∩X1
≤ σ, where Bρ = {u ∈ X | ‖u‖ < ρ}, ∂Bρ

denotes the boundary of Bρ;

(ϕ2) there exist e ∈ Bρ ∩X1 and a constant ω > σ such that J |e+X2
≥ ω.

Then J possesses a critical value c ≥ ω and

c = inf
h∈Φ

max
u∈Bρ∩X1

J(h(u)), (2.10)

where Φ = {h ∈ C(Bρ ∩X1, X) | h|∂Bρ∩X1
= id}.

Remark 2.3. As shown in [14], a deformation lemma can be proved with the weaker condition
(C) replacing the usual (PS) condition, and it turns out that the saddle point theorem holds
under condition (C).

3. Proofs of the Main Results

In order to prove Theorem 1.1, we need to prove the following lemma.

Lemma 3.1. Assume that conditions (F1), (F2), and (P3) hold. Then the functional J (see (2.1))
satisfies the (PS) condition; that is, for any sequence {um} such that J(um) is bounded and J ′(um) →
0 as m → ∞, there exists a subsequence of {um} which is convergent in Rk.
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Proof. First suppose that (F1), (F2)(i), and (P3) hold. Recall that Rk is a finite dimensional
Hilbert space. Consequently, in order to prove that J satisfies the (PS) condition, we only
need to prove that {um} is bounded. Let {um} be a sequence in Rk such that J(um) is bounded
and J ′(um) → 0 asm → ∞. Then there exist C3 > 0 and m0 ∈ Z[1] such that

|J(um)| ≤ C3,
∣∣(J ′(um), h

)∣∣ ≤ ‖h‖ (3.1)

for all m > m0, h ∈ Rk.
Since M is singular and indefinite, we write um = u+

m + u0
m + u−

m with u∗
m ∈ R∗, where

∗ = +, 0,−, respectively. By (F1), (2.9), and Hölder’s inequality (p = 1/θ, q = 1/(1 − θ)), we
have

∣∣∣∣∣

k∑

t=1

f(t, um(t)) ·
(
u−
m(t) − u+

m(t)
)
∣∣∣∣∣

≤
k∑

t=1

(
C1

∣∣∣u0
m(t) +

(
u+
m(t) + u−

m(t)
)∣∣∣

θ
+ C2

)
· ∣∣u−

m(t) − u+
m(t)
∣∣

≤ 2C1

∥∥∥u0
m

∥∥∥
θ

∞

k∑

t=1

∣∣u−
m(t) − u+

m(t)
∣∣ + 2C1

k∑

t=1

∣∣u+
m(t) + u−

m(t)
∣∣θ∣∣u−

m(t) − u+
m(t)
∣∣

+ C2

k∑

t=1

∣∣u−
m(t) − u+

m(t)
∣∣ ≤ 2C2

1k

τ1

∥∥∥u0
m

∥∥∥
2θ

∞
+
τ1
2
∥∥u−

m − u+
m

∥∥2

+ 2C1
∥∥u+

m + u−
m

∥∥θ
1

∥∥u−
m − u+

m

∥∥
q + C2

√
k
∥∥u−

m − u+
m

∥∥

≤ 2C2
1k

τ1

∥∥∥u0
m

∥∥∥
2θ

+
τ1
2
∥∥u−

m − u+
m

∥∥2 + 2C1k
∥∥u+

m + u−
m

∥∥θ∥∥u−
m − u+

m

∥∥

+ C2

√
k
∥∥u−

m − u+
m

∥∥,

(3.2)

where τ1 = min{λ1, μ1}. On the other hand, by the fact that u+
m and u−

m are mutually
orthogonal, one has ‖u−

m − u+
m‖ = ‖u+

m + u−
m‖. Hence we have

∣∣∣∣∣

k∑

t=1

f(t, um(t)) ·
(
u−
m(t) − u+

m(t)
)
∣∣∣∣∣
≤ 2C2

1k

τ1

∥∥∥u0
m

∥∥∥
2θ

+
τ1
2
∥∥u+

m + u−
m

∥∥2

+ 2C1k
∥∥u+

m + u−
m

∥∥θ+1 + C2

√
k
∥∥u+

m + u−
m

∥∥.

(3.3)
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Similarly to (3.3), we have

∣∣∣∣∣

k∑

t=1

[
F(t, um(t)) − F

(
t, u0

m(t)
)]
∣∣∣∣∣
≤ 2C2

1k

μs

∥∥∥u0
m

∥∥∥
2θ

+
μs

2
∥∥u+

m + u−
m

∥∥2

+ 2C1k
∥∥u+

m + u−
m

∥∥θ+1 + C2

√
k
∥∥u+

m + u−
m

∥∥.

(3.4)

Take h = u−
m − u+

m in (2.2). Then

−(Mum, u
−
m − u+

m

)
= −(J ′(um), u−

m − u+
m

)
+
(
η, u−

m − u+
m

) −
k∑

t=1

f(t, um(t))
(
u−
m(t) − u+

m(t)
)
.

(3.5)

We know

−(Mum, u
−
m − u+

m

) ≥ λ1‖u+
m‖2 + μ1

∥∥u−
m

∥∥2 ≥ τ1
∥∥u+

m + u−
m

∥∥2. (3.6)

Thus, by (3.1) and (3.3), we have

τ1
∥∥u+

m + u−
m

∥∥2 ≤ (1 + ∥∥η∥∥)∥∥u+
m + u−

m

∥∥ +
2C2

1k

τ1

∥∥∥u0
m

∥∥∥
2θ

+
τ1
2
∥∥u+

m + u−
m

∥∥2

+ 2C1k
∥∥u+

m + u−
m

∥∥θ+1 + C2

√
k
∥∥u+

m + u−
m

∥∥,

(3.7)

that is,

τ1
2
∥∥u+

m + u−
m

∥∥2 − 2C1k
∥∥u+

m + u−
m

∥∥θ+1 −
(
1 +
∥∥η
∥∥ + C2

√
k
)∥∥u+

m + u−
m

∥∥ ≤ 2C2
1k

τ1

∥∥∥u0
m

∥∥∥
2θ
. (3.8)

It follows from (3.8) and 1/2 ≤ θ < 1 that

∥∥u+
m + u−

m

∥∥ ≤ C4

∥∥∥u0
m

∥∥∥
θ
+ C5 (3.9)

for all m > m0 and some positive constants C4, C5.
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By (3.1), (2.9), (3.4), and (3.9), we have

C3 ≥ J(um) =
1
2
(Mum, um) +

(
η, um

) −
k∑

t=1

F(t, um(t))

≥ 1
2

(
λ1‖u+

m‖2 − μs

∥∥u−
m

∥∥2
)
− ∥∥η∥∥

(∥∥∥u0
m

∥∥∥ +
∥∥u+

m + u−
m

∥∥
)

−
k∑

t=1

(
F(t, um(t)) − F

(
t, u0

m(t)
))

−
k∑

t=1

F
(
t, u0

m(t)
)

≥ −μs

2
∥∥u+

m + u−
m

∥∥2 − ∥∥η∥∥
∥∥∥u0

m

∥∥∥ − 2C2
1k

μs

∥∥∥u0
m

∥∥∥
2θ − μs

2
∥∥u+

m + u−
m

∥∥2

− 2C1k
∥∥u+

m + u−
m

∥∥θ+1 −
(∥∥η
∥∥ + C2

√
k
)∥∥u+

m + u−
m

∥∥ −
k∑

t=1

F
(
t, u0

m(t)
)

≥ −μs

(
C2

4

∥∥∥u0
m

∥∥∥
2θ

+ 2C4C5

∥∥∥u0
m

∥∥∥
θ
+ C2

5

)
− ∥∥η∥∥

∥∥∥u0
m

∥∥∥ − 2C2
1k

μs

∥∥∥u0
m

∥∥∥
2θ

− 2C1k

(
C4

∥∥∥u0
m

∥∥∥
θ
+ C5

)θ+1

−
(∥∥η
∥∥ + C2

√
k
)(

C4

∥∥∥u0
m

∥∥∥
θ
+ C5

)
−

k∑

t=1

F
(
t, u0

m(t)
)

= −
(

μsC
2
4 +

2C2
1k

μs

)∥∥∥u0
m

∥∥∥
2θ − ∥∥η∥∥

∥∥∥u0
m

∥∥∥ − 2C1k

(
C4

∥∥∥u0
m

∥∥∥
θ
+ C5

)θ+1

− 2μsC4C5

∥∥∥u0
m

∥∥∥
θ −
(∥∥η
∥∥ + C2

√
k
)(

C4

∥∥∥u0
m

∥∥∥
θ
+ C5

)
− μsC

2
5 −

k∑

t=1

F
(
t, u0

m(t)
)
.

(3.10)

Since 1/2 ≤ θ < 1, we deduce

−C3 ≤
∥∥∥u0

m

∥∥∥
2θ
(∥∥∥u0

m

∥∥∥
−2θ T∑

t=1

F
(
t, u0

m(t)
)
+ C6

)

+ C7 (3.11)

for allm > m0 and some positive constantsC6, C7. The above inequality and (F2)(i) imply that
{u0

m(t)} is bounded. Then it follows from (3.9) that {u+
m + u−

m} is bounded. Thus we conclude
that {um} is bounded, and the (PS) condition is verified.

Now, suppose that (F1), (F2)(ii), and (P3) hold. By a similar argument as above, we
know also that J satisfies the (PS) condition. The proof is complete.

Proof of Theorem 1.1. Assume that (F1), (F2)(i), and (P1) hold. The proof for the case when
(F1), (F2)(ii), and (P1) hold is similar and will be omitted here. Since p(t) is nonzero for each
t ∈ Z, the singular symmetric matrixM has at least one nonzero eigenvalue and we will give
the proof in three cases.

(i) Suppose that the matrix M is singular and indefinite. Then Rk has the direct sum
decomposition: Rk = R+ ⊕ R0 ⊕ R−. In view of Lemma 3.1, we only to check that
conditions (ϕ1) and (ϕ2) in the saddle point theorem hold. To this end, let X1 =
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R+ ⊕ R0, X2 = R−. For any u = u+ + u0 ∈ X1, by (F1), (2.9), and the mean value
theorem, we have

J(u) ≥ λ1
2
‖u+‖2 − ∥∥η∥∥

(∥∥∥u0
∥∥∥ + ‖u+‖

)
−

k∑

t=1

f
(
t, u0(t) + θ1(t)u+(t)

)
· u+(t) −

k∑

t=1

F
(
t, u0(t)

)

≥ λ1
2
‖u+‖2 − ∥∥η∥∥

(∥∥∥u0
∥∥∥ + ‖u+‖

)
− 2C1

√
k
∥∥∥u0
∥∥∥
θ
‖u+‖

− 2C1k‖u+‖θ+1 − C2

√
k‖u+‖ −

k∑

t=1

F
(
t, u0(t)

)

≥ λ1
2
‖u+‖2 − ∥∥η∥∥

(∥∥∥u0
∥∥∥ + ‖u+‖

)
− 4C2

1k

λ1

∥∥∥u0
∥∥∥
2θ − λ1

4
‖u+‖2

− 2C1k‖u+‖θ+1 − C2

√
k‖u+‖ −

k∑

t=1

F
(
t, u0(t)

)

=
λ1
4
‖u+‖2 − 2C1k‖u+‖θ+1 −

(∥∥η
∥∥ + C2

√
k
)
‖u+‖

−
∥∥∥u0
∥∥∥
2θ
(∥∥∥u0

∥∥∥
−2θ k∑

t=1

F
(
t, u0(t)

)
+
4C2

1k

λ1
+
∥∥η
∥∥
∥∥∥u0
∥∥∥
−2θ+1

)

,

(3.12)

where 0 < θ1(t) < 1, t = 1, 2, . . . , k. Since 1/2 ≤ θ < 1 and (F2)(i), we have

J(u) −→ +∞ as ‖u‖ −→ ∞ in X1. (3.13)

On the other hand, for any u = u− ∈ X2, by (F1), (2.9), and the mean value theorem,
we have

J(u) ≤ −1
2
μ1‖u‖2 +

∥∥η
∥∥‖u‖ −

k∑

t=1

f(t, θ2(t)u(t)) · u(t) −
k∑

t=1

F(t, 0)

≤ −1
2
μ1‖u‖2 +

∥∥η
∥∥‖u‖ +

k∑

t=1

C1|u(t)|θ+1 + C2

√
k‖u‖

≤ −1
2
μ1‖u‖2 + C1k‖u‖θ+1 +

(∥∥η
∥∥ + C2

√
k
)
‖u‖,

(3.14)

where 0 < θ2(t) < 1, t = 1, 2, . . . , k. Since 1/2 ≤ θ < 1, we can obtain

J(u) −→ −∞ as ‖u‖ −→ ∞ in X2. (3.15)

Let e = 0, then it follows from (3.13) and (3.15) that (ϕ1) and (ϕ2) are satisfied. By the
saddle point theorem, J has at least one critical point.
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(ii) Suppose that 0 < λ1 ≤ λ2 ≤ · · · ≤ λl are the positive eigenvalues of M and l = k − 1.
Then Rk has the direct sum decomposition: Rk = R+ ⊕ R0, where R+ and R0 are
defined as in (2.4) and (2.5), respectively. By a similar argument as in the proof of
Lemma 3.1, we see that J satisfies the (PS) condition. By (3.13), J is bounded from
below. Then, by the least action principle, c1 = infu∈Rk J(u) is a critical value of J .

(iii) Suppose that 0 > −μ1 ≥ −μ2 ≥ · · · ≥ −μs are the negative eigenvalues of M and
s = k − 1. Then Rk has the direct sum decomposition: Rk = R0 ⊕ R−. Following
almost the same procedure as the proof of Lemma 3.1, we know also that J satisfies
the (PS) condition in this case.

For any u = u− ∈ R−, (3.15) holds. For any u = u0 ∈ R0, since Mu = 0, we have

J(u) ≥ −∥∥η∥∥
∥∥∥u0
∥∥∥ −

k∑

t=1

F
(
t, u0(t)

)
= −
∥∥∥u0
∥∥∥
2θ
(∥∥∥u0

∥∥∥
−2θ k∑

t=1

F
(
t, u0(t)

)
+
∥∥η
∥∥
∥∥∥u0
∥∥∥
−2θ+1

)

.

(3.16)

Due to (F2)(i) and 1/2 ≤ θ < 1,

J(u) −→ +∞ as ‖u‖ −→ ∞ in R0. (3.17)

By the saddle point theorem, there exists at least one critical point of J .
Since J has at least one critical point in all three cases, the BVP (1.1)-(1.2) has at least

one solution.

Proof of Theorem 1.3. Since the matrix M is nonsingular, we will give the proof in three cases.

(i) Suppose that 0 < λ1 ≤ λ2 ≤ · · · ≤ λl and 0 > −μ1 ≥ −μ2 ≥ · · · ≥ −μs are the positive
and negative eigenvalues of M, respectively, and l + s = k. Then Rk has the direct
sum decomposition: Rk = R+ ⊕ R−. Denote τ1 = min{λ1, μ1}. It follows from (F3)
that there exists a positive constant a1 such that

∣∣f(t, x)
∣∣ ≤ 1

4
τ1|x| + a1 (3.18)

for any (t, x) ∈ Z[1, k] × R.

We now prove that the functional J satisfies the (PS) condition. Let {um} be a sequence
in Rk such that J(um) is bounded and J ′(um) → 0 as m → ∞. Write um = u+

m + u−
m, where

u+
m ∈ R+, u−

m ∈ R−. Similarly to (3.8), we have, by (3.18),

3τ1
4
∥∥u+

m + u−
m

∥∥2 ≤
(
1 +
∥∥η
∥∥ + a1

√
k
)∥∥u+

m + u−
m

∥∥. (3.19)

Thus {um} is bounded, and the (PS) condition is verified.



Discrete Dynamics in Nature and Society 11

For any u = u+ ∈ R+, by (3.18) and the mean value theorem, we have

J(u) ≥ 1
2
λ1‖u‖2 −

∥∥η
∥∥‖u‖ −

k∑

t=1

f(t, θ3(t)u(t)) · u(t) −
k∑

t=1

F(t, 0)

≥
(
λ1
2

− τ1
4

)
‖u‖2 − ∥∥η∥∥‖u‖ − a1

√
k‖u‖,

(3.20)

where 0 < θ3(t) < 1, t = 1, 2, . . . , k. For any u = u− ∈ R−, Similarly to (3.20), we have

J(u) ≤ −
(μ1

2
− τ1

4

)
‖u‖2 + ∥∥η∥∥‖u‖ + a1

√
k‖u‖. (3.21)

Let e = 0, then it follows from (3.20) and (3.21) that (ϕ1) and (ϕ2) are satisfied. By the
saddle point theorem, J has at least one critical point.

(ii) Suppose that 0 < λ1 ≤ λ2 ≤ · · · ≤ λl are the positive eigenvalues of M and l = k.
Then E has the direct sum decomposition: Rk = R+. It follows from (3.20) that J
satisfies the (PS) condition and is bounded from below. Then, by the least action
principle, c2 = infu∈Rk J(u) is a critical value of J .

(iii) Suppose that 0 > −μ1 ≥ −μ2 ≥ · · · ≥ −μs are the negative eigenvalues of M and
s = k. Then Rk has the direct sum decomposition: Rk = R−. It follows from (3.21)
that J satisfies the (PS) condition and is bounded from above. Then, by the least
action principle, c3 = −infu∈Rk J(u) is a critical value of −J .

Since J has a critical point in all three cases, the BVP (1.1)-(1.2) has at least one solution.

Proof of Corollary 1.4. This is immediate from Theorem 1.3.

The following lemma is useful for proving Theorem 1.6 and Corollary 1.8.

Lemma 3.2. Under the condition (F5), the functional J satisfies condition (C); that is, for any
sequence {um} such that J(um) is bounded and ‖J ′(um)‖(1 + ‖um‖) → 0 as m → ∞, there exists a
subsequence of {um} which is convergent in Rk.

Proof. First suppose that (F5)(i) holds. Let {um} be a sequence in Rk such that J(um) is
bounded and ‖J ′(um)‖(1 + ‖um‖) → 0 as m → ∞. Then there exists a constant L1 > 0 such
that

|J(um)| ≤ L1,
∥∥J ′(um)

∥∥(1 + ‖um‖) ≤ L1 (3.22)

for all m ∈ Z[1]. Hence, we have

−3L1 ≤ −∥∥J ′(um)
∥∥ · (1 + ‖um‖) − 2J(um) ≤

(
J ′(um), um

) − 2J(um)

=
k∑

t=1

[
2F(t, um(t)) −

(
f(t, um(t)) + η(t)

)
um(t)

]
.

(3.23)
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Then, {um} is bounded. In fact, if {um} is unbounded, there exist a subsequence of {um} (still
denoted by {um}) and t0 ∈ Z[1, k] such that |um(t0)| −→ ∞ as m −→ ∞. By (F5)(i), we have

2F(t0, um(t0)) −
(
f(t0, um(t0)) + η(t0)

)
um(t0) −→ −∞ as m −→ ∞. (3.24)

The continuity of 2F(t, x) − (f(t, x) + η(t))x with respect to x and (F5)(i) implies that there
exists a constant L2 > 0 such that for any (t, x) ∈ Z[1, k] × R, 2F(t, x) − (f(t, x) + η(t))x ≤ L2.
Then, we get

k∑

t=1

[
2F(t, um(t)) −

(
f(t, um(t)) + η(t)

)
um(t)

]

≤ 2F(t0, um(t0)) −
(
f(t0, um(t0)) + η(t0)

)
um(t0) + (k − 1)L2.

(3.25)

Thus,

k∑

t=1

[
2F(t, um(t)) −

(
f(t, um(t)) + η(t)

)
um(t)

] −→ −∞ as m −→ ∞, (3.26)

which contradicts (3.23). Therefore, {um} is bounded in Rk and J satisfies condition (C).
Now, suppose that (F5)(ii) holds. By a similar argument as above, we know also that

J satisfies condition (C). The proof is complete.

Proof of Theorem 1.6. Assume that (F4), (F5)(i), and (P3) hold. The proof for the case when
(F4), (F5)(ii), and (P3) hold is similar and will be omitted here. Due to (P3), Rk has the direct
sum decomposition: Rk = R+ ⊕R0 ⊕R−,where R+, R− and R0 are defined as in (2.4) and (2.5),
respectively. We claim that for every t ∈ Z[1, k],

F(t, x) − η(t)x −→ −∞ as |x| −→ ∞. (3.27)

Indeed, according to (F5)(i), we can obtain that for any given ε > 0, there exists a positive
constant G1 such that for t ∈ Z[1, k], |x| > G1,

2F(t, x) − (f(t, x) + η(t)
)
x < −1

ε
. (3.28)

Obviously,

(
f(t, sx) + η(t)

)
sx − 2F(t, sx) >

1
ε
, (3.29)

where s > 1, |x| > G1. We have

d

ds

(
F(t, sx) − η(t)sx

s2

)
=

(
f(t, sx) + η(t)

)
sx − 2F(t, sx)

s3
≥ d

ds

(
− 1
2εs2

)
. (3.30)
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By integrating both sides of the above inequality from 1 to s, we get

F(t, sx) − η(t)sx
s2

− F(t, x) + η(t)x ≥ − 1
2εs2

+
1
2ε

. (3.31)

Let s → +∞ in the above inequality, and it follows from (F4) that

F(t, x) − η(t)x ≤ − 1
2ε

(3.32)

for t ∈ Z[1, k], |x| > G1. From the arbitrariness of ε, we can conclude that (3.27) holds,
proving our claim.

Now we prove

J(u) −→ +∞ as ‖u‖ −→ ∞ in R+ ⊕ R0. (3.33)

If (3.33) does not hold, there exist a constant L3 > 0 and a sequence {um} in R+ ⊕R0 such that
‖um‖ → ∞ as m → ∞ and

J(um) ≤ L3 (3.34)

for all m. Since ‖um‖ → ∞ as m → ∞, there exist a subsequence of {um} (still denoted by
{um}) and t0 ∈ Z[1, k] such that |um(t0)| −→ ∞ as m −→ ∞. By (3.27), we have

F(t0, um(t0)) − η(t0)um(t0) −→ −∞ as m −→ ∞. (3.35)

The continuity of F(t, x)−η(t)xwith respect to x and (3.27) implies that there exists a constant
L4 > 0 such that for any (t, x) ∈ Z[1, k] × R, F(t, x) − η(t)x ≤ L4. Then, we get

J(um) ≥ λ1
2
‖u+

m‖2 −
k∑

t=1

[
F(t, um(t)) − η(t)um(t)

] ≥ −F(t0, um(t0)) + η(t0)um(t0) − (k − 1)L4.

(3.36)

Thus,

J(um) −→ +∞ as m −→ ∞, (3.37)

which contradicts (3.34). Hence, (3.33) follows.
On the other hand, by (F4), there exists a positive constant a2 such that for any (t, x) ∈

Z[1, k] × R,

|F(t, x)| ≤ 1
4
μ1|x|2 + a2. (3.38)
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Then we have

J(u) ≤ −μ1

2
∥∥u−∥∥2 +

∥∥η
∥∥∥∥u−∥∥ +

μ1

4
∥∥u−∥∥2 + a2k (3.39)

for all u = u− ∈ R−. Thus, we can conclude that

J(u) −→ −∞ as ‖u‖ −→ ∞ in R−. (3.40)

It follows from (3.33) and (3.40) that J satisfies conditions (ϕ1) and (ϕ2). Hence
Theorem 1.6 follows from Lemma 3.2, the saddle point theorem, and Remark 2.3.

The proof of Corollary 1.8 is similar to that of Theorem 1.6 and is omitted.
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