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1. Introduction

The stability of dynamical neural networks with time delay which have been used in many
applications such as optimization, control, and image processing has receivedmuch attention
recently (see, e.g., [1–15]). Particularly, the authors [3, 8, 9, 14, 16] have studied the stability
of neural networks with time-varying delays.

As pointed out in [8], Global dissipativity is also an important concept in dynamical
neural networks. The concept of global dissipativity in dynamical systems is a more
general concept, and it has found applications in areas such as stability theory, chaos
and synchronization theory, system norm estimation, and robust control [8]. Global
dissipativity of several classes of neural networks was discussed, and some sufficient
conditions for the global dissipativity of neural networks with constant delays are derived in
[8].

In this paper, without assuming the boundedness, monotonicity, and differentiability
of activation functions, we consider the following delay differential equations:
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x′
i(t) = −di(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj
(
t − τij(t)

))

+
n∑

j=1

cij(t)
∫ t

−∞
Hij(t − s)fj

(
xj(s)

)
ds + Ji(t), i = 1, 2, . . . , n,

(1.1)

where n denotes the number of the neurons in the network, xi(t) is the state of the ith neuron
at time t, x(t) = [x1(t), x2(t), . . . , xn(t)]

T ∈ Rn, f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]
T ∈

Rn denote the activation functions of the jth neuron at time t, and the kernelsHij : [0,+∞) →
[0,+∞) are piece continuous functions with

∫+∞
0 Hij(s)ds = hij < ∞ for i, j = 1, 2, . . . , n.

Moreover, we consider model (1.1) with τij(t), di(t), aij(t), bij(t), cij(t), and Ji(t) satisfying
the following assumptions:

(A1) the time delays τij(t) ∈ C(R, [0,∞)) are periodic functions with a common period
ω(> 0) for i, j = 1, 2, . . . , n;

(A2) cij(t) ∈ C(R, [0,∞)), aij(t), bij(t), cij(t), Ji(t) ∈ C(R,R) are periodic functions with a
common period ω(> 0) and fi ∈ C(R,R), i, j = 1, 2, . . . , n.

The organization of this paper is as follows. In Section 2, problem formulation and
preliminaries are given. In Section 3, some new results are given to ascertain the global robust
dissipativity of the neural networks with time-varying delays. Section 4 gives an example to
illustrate the effectiveness of our results.

2. Preliminaries and Lemmas

For the sake of convenience, two of the standing assumptions are formulated below as
follows.

(A3) |fj(u)| ≤ pj |u|+qj for all u ∈ R, j = 1, 2, . . . , n,where pj , qj are nonnegative constants.

(A4) There exist nonnegative constants pj , j = 1, 2, . . . , n, such that |fj(u)− fj(v)| ≤ pj |u−
v| for any u, v ∈ R.

Let

τ = max
1≤i,j≤n

sup
t≥0

{
τij(t)

}
. (2.1)

The initial conditions associated with system (1.1) are of the form

xi(s) = φi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n, (2.2)

in which φi(s) is continuous for s ∈ [−τ, 0].
For continuous functions φi defined on [−τ, 0], i = 1, 2, . . . , n, we set φ =

(φ1, φ2, . . . , φn)
T . If x0 = (x0

1, x
0
1, . . . , x

0
n)
T is an equilibrium of system (1.1), then we denote

∥∥∥φ − x0
∥∥∥ =

n∑

i=1

(
sup
−τ≤t≤0

∣∣∣φi(t) − x0
i

∣∣∣
)
. (2.3)
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Definition 2.1. The equilibrium x0 = (x0
1, x

0
1, . . . , x

0
n)
T is said to be globally exponentially

stable, if there exist constants λ > 0 and m ≥ 1 such that for any solution x(t) =
(x1(t), x2(t), . . . , xn(t))

T of (1.1), we have

∣∣∣xi(t) − x0
i

∣∣∣ ≤ m
∥∥∥φ − x0

∥∥∥e−λt (2.4)

for t ≥ 0, where λ is called to be globally exponentially convergent rate.

Lemma 2.2 ([17]). If ρ(K) < 1 for matrix K = (kij)n×n ≥ 0, then (E −K)−1 ≥ 0, where E denotes
the identity matrix of size n.

3. Periodic Solutions and Exponential Stability

We will use the coincidence degree theory to obtain the existence of a ω-periodic solution to
systems (1.1). For the sake of convenience, we briefly summarize the theory as follows.

Let X and Z be normed spaces, and let L : DomL ⊂ X 	→ Z be a linear mapping and
be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero
if dimKerL = codimImL < ∞ and ImL is closed in Z. If L is a Fredholm mapping of index
zero, then there exist continuous projectors P : X 	→ X and Q : Z 	→ Z such that ImP = KerL
and ImL = KerQ = Im(I−Q). It follows that L | DomL∩KerP : (I−P)X 	→ ImL is invertible.
We denote the inverse of this map byKp. IfΩ is a bounded open subset of X, the mappingN
is called L-compact onΩ ifQN(Ω) is bounded andKp(I −Q)N : Ω 	→ X is compact. Because
ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ 	→ KerL.

Let Ω ⊂ Rn be open and bounded, f ∈ C1(Ω, Rn) ∩ C(Ω, Rn) and y ∈ Rn \ f(∂Ω ∪ Sf),
that is, y is a regular value of f. Here, Sf = {x ∈ Ω : Jf(x) = 0}, the critical set of f, and Jf is
the Jacobian of f at x. Then the degree deg{f,Ω, y} is defined by

deg
{
f,Ω, y

}
=
∑

x∈f−1(y)

sgn Jf(x) (3.1)

with the agreement that the above sum is zero if f−1(y) = ∅. For more details about the degree
theory, we refer to the book of Deimling [18].

Lemma 3.1 (continuation theorem [19, page 40]). Let L be a Fredholm mapping of index zero, and
letN be L-compact on Ω. Suppose that

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x ∈ ∂Ω;

(b) QNx/= 0 for each x ∈ ∂Ω ∩ KerL and

deg{JQN,Ω ∩ KerL, 0}/= 0. (3.2)

Then the equation Lx =Nx has at least one solution lying in DomL ∩Ω.
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For the simplicity of presentation, in the remaining part of this paper, for a continuous
function g : [0, ω] 	→ R, we denote

g∗ = max
t∈[0,ω]

g(t), g∗ = min
t∈[0,ω]

g(t), g =
1
ω

∫ω

0
g(t)dt. (3.3)

Theorem 3.2. Let (A1)–(A3) hold, kij = (1/di + ω)(|aij | + |bij | + |cijhij |)pj and K = (kij)n×n. If
ρ(K) < 1, then system (1.1) has at least a ω-periodic solution.

Proof. TakeX = Z = {x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ C(R,Rn) : x(t) = x(t+ω), for all t ∈ R},

and denote

|xi| = max
t∈[0,ω]

|xi(t)|, i = 1, 2, . . . , n, ‖x‖ = max
1≤i≤n

|xi|. (3.4)

Equipped with the norms ‖ · ‖, both X and Z are Banach spaces. Denote

Δ(xi, t) := −di(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj
(
t − τij(t)

))

+
n∑

j=1

cij(t)
∫ t

−∞
Hij(t − s)fj

(
xj(s)

)
ds + Ji(t).

(3.5)

Since

n∑

j=1

cij(t)
∫ t

−∞
Hij(t − s)fj

(
xj(s)

)
ds =

n∑

j=1

cij(t)
∫∞

0
Hij(s)fj

(
xj(t − s)

)
ds, (3.6)

then, for any x(t) ∈ X, because of the periodicity, it is easy to check that

Δ(xi, t) = −di(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj
(
t − τij(t)

))

+
n∑

j=1

cij(t)
∫∞

0
Hij(s)fj

(
xj(t − s)

)
ds + Ji(t) ∈ Z.

(3.7)
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Let

L : DomL =
{
x ∈ X : x ∈ C1(R,Rn)

}
� x 	−→ x′(·) ∈ Z,

P : X � x 	−→ 1
ω

∫ω

0
x(t)dt ∈ X,

Q : Z � z 	−→ 1
ω

∫ω

0
z(t)dt ∈ Z,

N : X � x 	−→ Δ(xi, t) ∈ Z.

(3.8)

Here, for any W = (w1, w2, . . . , wn)
T ∈ Rn, we identify it as the constant function in X or Z

with the value vectorW = (w1, w2, . . . , wn)
T . Then system (1.1) can be reduced to the operator

equation Lx =Nx. It is easy to see that

Ker L = Rn,

ImL =
{
z ∈ Z :

1
ω

∫ω

0
z(t)dt = 0

}
, which is closed in Z,

dimKerL = codimImL = n <∞,

(3.9)

and P , Q are continuous projectors such that

ImP = kerL, KerQ = ImL = Im(I −Q). (3.10)

It follows that L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) Kp : ImL 	→ KerP ∩DomL is given by

(Kp(z))i(t) =
∫ t

0
zi(s)ds − 1

ω

∫ω

0

∫ s

0
zi(v)dv ds. (3.11)

Then,

(QNx)i(t) =
1
ω

∫ω

0
Δ(xi, s)ds,

(Kp(I −Q)Nx)
i
(t) =

∫ t

0
Δ(xi, s)ds − 1

ω

∫ω

0

∫ t

0
Δ(xi, s)dsdt +

(
1
2
− t

ω

)∫ω

0
Δ(xi, s)ds.

(3.12)

Clearly, QN and Kp(I −Q)N are continuous. For any bounded open subset Ω ⊂ X, QN(Ω)
is obviously bounded. Moreover, applying the ArzelaCAscoli theorem, one can easily show

thatKp(I −Q)N(Ω) is compact. Therefore,N is L-compact onwith any bounded open subset
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Ω ∈ X. Since ImQ = KerL, we take the isomorphism J of ImQ onto KerL to be the identity
mapping.

Now, we reach the point to search for an appropriate open bounded set Ω for the
application of the continuation theorem corresponding to the operator equation Lx = λNx,
λ ∈ (0, 1), and we have

x′
i(t) = λΔ(xi, t) for 1 = 1, 2, . . . , n. (3.13)

Assume that x = x(t) ∈ X is a solution of system (1.1) for some λ ∈ (0, 1). Integrating both
sides of (3.13) over the interval [0, ω],we obtain

0 =
∫ω

0
x′
i(t)dt = λ

∫ω

0
Δ(xi, t)dt. (3.14)

Then

∫ω

0
di(t)xi(t)dt =

∫ω

0

⎧
⎨

⎩

n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj
(
t − τij(t)

))

+
n∑

j=1

cij(t)
∫∞

0
Hij(s)fj

(
xj(t − s)

)
ds + Ji(t)

⎫
⎬

⎭dt.

(3.15)

Noting that

∣∣fj(u)
∣∣ ≤ pj |u| + qj ∀u ∈ R, j = 1, 2, . . . , n, (3.16)

we get

|xi|∗di ≤
n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pj
∣∣xj
∣∣∗ +

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|. (3.17)

It follows that

|xi|∗ ≤
1

di

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pj
∣∣xj
∣∣∗ +

1

di

⎧
⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭. (3.18)

Note that each xi(t) is continuously differentiable for i = 1, 2, . . . , n, and it is certain that there
exists ti ∈ [0, ω] such that |xi(ti)| = |xi(t)|∗. Set

D = (D1, D2, . . . , Dn)
T , Di =

(
1

di
+ω

)⎧⎨

⎩

n∑

j=1

(∣∣aij
∣∣ +
∣∣bij
∣∣ +
∣∣cijhij

∣∣
)
qj + |Ji|

⎫
⎬

⎭. (3.19)
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In view of ρ(K) < 1 and Lemma 2.2, we have (E −K)−1D = l = (l1, l2, . . . , ln)
T ≥ 0, where li is

given by

li =
n∑

j=1

kij lj +Di, i = 1, 2, . . . , n. (3.20)

Let

Ω =
{
(x1, x2, . . . , xn)

T ∈ Rn; |xi| ≤ li, i = 1, 2, . . . , n
}
. (3.21)

Then, for t ∈ [ti, ti +ω], we have

|xi(t)| ≤ |xi(ti)| +
∫ t

ti

D+|xi(t)|dt

≤ |xi(t)|∗ +
∫ ti+ω

ti

D+|xi(t)|dt

≤ 1

di

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pj
∣∣xj
∣∣∗

+
1

di

⎧
⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭ +
∫ ti+ω

ti

D+|xi(t)|dt

≤
(

1

di
+ω

)
n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pj
∣∣xj
∣∣∗

+

(
1

di
+ω

)⎧⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭

≤
n∑

j=1

kij lj +Di

= li,

(3.22)

where D+ denotes the right derivative. Clearly, li, i = 1, 2, . . . , n, are independent of λ. Then
there are no λ ∈ (0, 1) and x ∈ Ω such that Lx = λNx. When u = (x1, x2, . . . , xn)

T ∈ ∂Ω ∩
KerL = ∂Ω ∩ Rn, u is a constant vector in Rn with |xi| = li, i = 1, 2, . . . , n. Note that QNu =
JQNu; when u ∈ KerL, it must be

(QNu)i = −di +
n∑

j=1

(
aij + bij + cijhij

)
fj
(
xj
)
+ Ji. (3.23)
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We claim that

|(QNu)i| > 0 for i = 1, 2, . . . , n. (3.24)

On the contrary, suppose that there exists some i such that |(QNu)i| = 0, that is,

dixi =
n∑

j=1

(
aij + bij + cijhij

)
fj
(
xj
)
+ Ji. (3.25)

Then, we have

li = |xi|

=
1

di

∣∣∣∣∣∣

n∑

j=1

(
aij + bij + cijhij

)
fj
(
xj
)
+ Ji

∣∣∣∣∣∣

≤ 1

di

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pjlj

+
1

di

⎧
⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭

≤
(

1

di
+ω

)
n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pjlj

+

(
1

di
+ω

)⎧⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭

=
n∑

j=1

kij lj +Di

= li,

(3.26)

which is a contradiction. Therefore,

QNu/= 0 for any u ∈ ∂Ω ∩ KerL = ∂Ω ∩ Rn. (3.27)

Consider the homotopy F : (Ω ∩ KerL) × [0, 1] 	→ Ω ∩ KerL defined by

F
(
u, μ
)
= μdiag

(
−d1,−d2, . . . ,−dn

)
u +
(
1 − μ)QNu, (3.28)
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(u, μ) ∈ (Ω ∩ KerL) × [0, 1]. Note that F(·, 0) = JQN; if F(u, μ) = 0, then, as before, we have

|xi| =
1 − μ
di

∣∣∣∣∣∣

n∑

j=1

(
aij + bij + cijhij

)
fj
(
xj
)
+ Ji

∣∣∣∣∣∣

≤ 1

di

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pj
∣∣xj
∣∣

+
1

di

⎧
⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭

≤ 1

di

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pjlj

+
1

di

⎧
⎨

⎩

n∑

j=1

(
|aij | + |bij | + |cijhij |

)
qj + |Ji|

⎫
⎬

⎭

<
n∑

j=1

kij lj +Di

= li,

(3.29)

Hence

F
(
u, μ
)
/= 0, for

(
u, μ
) ∈ (∂Ω ∩ KerL) × [0, 1]. (3.30)

It follows from the property of invariance under a homotopy that

deg{JQN,Ω ∩ KerL, 0} = deg{F(·, 0),Ω ∩ KerL, 0}

= deg{F(·, 1),Ω ∩ KerL, 0} = deg
{
diag
(
−d1,−d2, . . . ,−dn

)}
/= 0.

(3.31)

Thus, we have shown thatΩ satisfies all the assumptions of Lemma 3.1. Hence, Lu =Nu has
at least one ω-periodic solution on DomL ∩Ω. This completes the proof.

When cij = 0, (1.1) turns into the following system:

x′
i(t) = −di(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj(t − τ(t))

)
+ Ji(t), i = 1, 2, . . . , n. (P)

Corollary 3.3. Let (A1)–(A3) hold, kij = (1/di + ω)(|aij | + |bij |)pj , and K = (kij)n×n. If ρ(K) < 1,
then system (P) has at least a ω-periodic solution.
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Theorem 3.4. Let (A1), (A2), and (A4) hold, kij = (1/di + ω)(|aij | + |bij | + |cijhij |)pj , and K =
(kij)n×n. If ρ(K) < 1, and that

di −
n∑

j=1

(
|aij | + |bij | + |cijhij |

)
pje

d∗
i τ > 0, (3.32)

then system (1.1) has exactly one ω-periodic solution. Moreover, it is globally exponentially stable.

Proof. Let C = C([−τ, 0], Rn)with the supnorm ‖ϕ‖ = sups∈[−τ,0];1≤i≤n|ϕi(s)|, ϕ ∈ C. As usual, if
(−∞ ≤)a ≤ b(≤ ∞) and ψ ∈ C([−τ + a, b], Rn), then for t ∈ [a, b] we define ψt ∈ C by ψt(θ) =
ψ(t+θ), θ ∈ [−τ, 0]. From (A4), we can get |fj(u)| ≤ pj |u|+ |fj(0)|, j = 1, 2, . . . , n.Hence, all the
hypotheses in Theorem 3.2 hold with qj = |fj(0)|, j = 1, 2, . . . , n. Thus, system (1.1) has at least
oneω-periodic solution, say x̃(t) = (x̃1(t), x̃2(t), . . . , x̃n(t))

T . Let x(t) = (x1(t), x2(t), . . . , xn(t))
T

be an arbitrary solution of system (1.1). For t ≥ 0, a direct calculation of the right derivative
D+|xi(t) − x̃i(t)| of |xi(t) − x̃i(t)| along the solutions of system (1.1) leads to

D+|xi(t) − x̃i(t)| = D+{sgn(xi(t) − x̃i(t)}(xi(t) − x̃i(t))

≤ −di(t)|xi(t) − x̃i(t)| +
n∑

j=1

(∣∣aij(t)
[
fj
(
xj(t)
) − fj

(
x̃j(t)
)]∣∣

+
n∑

j=1

∣∣bij(t)
[
fj
(
xj
(
t − τij(t)

)) − fj
(
x̃j
(
t − τij(t)

))]∣∣

+
n∑

j=1

∣∣cij(t)
∣∣
∣∣∣∣

∫+∞

0
kij(s)

[
fj
(
xj(t − s)

) − fj
(
x̃j(t − s)

)]
ds

∣∣∣∣

≤ −di(t)|xi(t) − x̃i(t)| +
n∑

j=1

∣∣aij(t)
∣∣pj
∣∣xj(t) − x̃j(t)

∣∣

+
n∑

j=1

∣∣bij(t)
∣∣pj
∣∣xj
(
t − τij(t)

) − x̃j
(
t − τij(t)

)∣∣

+
n∑

j=1

∣∣cij(t)hij
∣∣pj sup

−τ≤s≤t

∣∣xj(s) − x̃j(s)
∣∣

≤ −di(t)|xi(t) − x̃i(t)|

+
n∑

j=1

(∣∣aij(t)
∣∣ +
∣∣bij(t)

∣∣ +
∣∣cij(t)hij

∣∣)pj sup
−τ≤s≤t

∣∣xj(s) − x̃j(t)
∣∣.

(3.33)

Let zi(t) = |xi(t) − x̃i(t)|. Then (3.33) can be transformed into

D+zi(t) ≤ −di(t)zi(t) +
n∑

j=1

(∣∣aij(t)
∣∣ +
∣∣bij(t)

∣∣ +
∣∣cij(t)hij

∣∣)pj sup
−τ≤s≤t

zj(s). (3.34)
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Thus, for t > t0 we have

D+
{
zi(t)e

∫ t
t0
di(s)ds

}
≤

n∑

j=1

(∣∣aij(t)
∣∣ +
∣∣bij(t)

∣∣ +
∣∣cij(t)hij

∣∣)pj‖zt‖e
∫ t
t0
di(s)ds, (3.35)

It follows that

zi(t)e
∫ t
t0
di(s)ds ≤ |zi(t0)|

+
∫ t

t0

⎧
⎨

⎩

n∑

j=1

(∣∣aij(u)
∣∣ +
∣∣bij(u)

∣∣ +
∣∣cij(u)hij

∣∣)pj‖zu‖e
∫u
t0
di(s)ds

⎫
⎬

⎭du.
(3.36)

Thus, for any t > 0 and θ ∈ [−min(τ, t), 0], we have

e
∫ t+θ
t0
di(s)ds = e(

∫ t
t0
+
∫ t+θ
t )di(s)ds ≥ e

∫ t
t0
di(s)ds−d∗

i τ . (3.37)

Therefore,

e
∫ t
t0
di(s)ds−d∗

i τzi(t + θ) ≤ e
∫ t+θ
t0
di(s)dszi(t + θ)

≤ ‖zt0‖ +
∫ t+θ

t0

⎧
⎨

⎩

n∑

j=1

(∣∣aij(u)
∣∣ +
∣∣bij(u)

∣∣ +
∣∣cij(u)hij

∣∣)pj‖zu‖e
∫u
t0
di(s)ds

⎫
⎬

⎭du.

(3.38)

It follows that

e
∫ t
t0
di(s)ds‖zt‖ ≤ ed∗

i τ‖zt0‖

+
∫ t

t0

ed
∗
i τ

⎧
⎨

⎩

n∑

j=1

(∣∣aij(u)
∣∣ +
∣∣bij(u)

∣∣ +
∣∣cij(u)hij

∣∣)pj‖zu‖e
∫u
t0
di(s)ds

⎫
⎬

⎭du.
(3.39)

By Gronwall’s inequality, we obtain

‖zt‖ ≤ ed∗
i τ‖zt0‖e

∫ t
t0
e
d∗
i
τ ∑n

j=1(|aij (u)|+|bij (u)|+|cij (u)hij |)pjdue
∫ t
t0
−di(s)ds, t ≥ t0. (3.40)
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Without loss of generality, we let t0 = 0. For t ≥ 0, [t/ω] denotes the largest integer less than
or equal to t/ω. Noting [t/ω] ≥ t/ω − 1, and di >

∑n
j=1(|aij | + |bij | + |cijhij |)pjed∗

i τ , we get

‖zt‖ ≤ ed∗
i τ‖z0‖e

∫ t
0e

d∗
i
τ ∑n

j=1(|aij (u)|+|bij (u)|+|cij (u)hij |)pjdue
∫ t
0−di(s)ds

= ed
∗
i τ‖z0‖e(

∫ω[t/ω]
0 +

∫ t
ω[t/ω]){e

d∗
i
τ ∑n

j=1(|aij (u)|+|bij (u)|+|cij (u)hij |)pj−di(u)}du

≤ ed∗
i τ+(−di+

∑n
j=1(|aij |+|bij |+|cijhij |)pjed

∗
i
τ )ω[t/ω]

× ‖z0‖e
∫ t
ω[t/ω]{−di(s)+

∑n
j=1(|aij (s)|+|bij (s)|+|cij(s)hij |)pjed

∗
i
τ}ds

≤ ed∗
i τ+(−di+

∑n
j=1(|aij |+|bij |+|cijhij |)pjed

∗
i
τ )ω[t/ω]

× ‖z0‖e
∫ω
0 {−di(s)+

∑n
j=1(|aij (s)|+|bij (s)|+|cij(s)hij |)pjed

∗
i
τ}ds

≤ ed∗
i τ‖z0‖e−{di−

∑n
j=1(|aij |+|bij |+|cijhij |)pjed

∗
i
τ}t

≤ m‖z0‖e−λt, t ≥ 0,

(3.41)

where m = max1≤i≤n{ed∗
i τ} and λ = min1≤i≤n{di −

∑n
j=1(|aij | + |bij | + |cijhij |)pjed∗

i τ} are positive
constants. From (3.41), it is obvious that the periodic solution is global exponentially stable,
and this completes the proof of Theorem 3.4.

Corollary 3.5. Let (A1), (A2), and (A4) hold, kij = (1/di + ω)(|aij | + |bij |)pj and K = (kij)n×n. If
ρ(K) < 1, and that

di −
n∑

j=1

(
|aij | + |bij |

)
pje

d∗
i τ > 0, (3.42)

then system (P) has exactly one ω-periodic solution. Moreover, it is globally exponentially stable.

Remark 3.6. To the best of our knowledge, few authors have considered the existence of
periodic solution and global exponential stability for model (1.1)with coefficients and delays
all periodically varying in time. We only find model (P) in [20, 21]; however, it is assumed
in [20] that τij(t) ≥ 0 are constants and in [21] that aij(t), bij(t), Ji(t) are continuous ω-
periodic functions, and di are positive constants. Especially, the authors of [21] suppose that
τij(t) ≥ 0 are continuously differentiableω-periodic functions and 0 ≤ τ ′ij(t) < 1, clearly, which
implies that τij(t) are also constants. Obviously, our model is more general. Furthermore, in
[20, 21] fi, i = 1, 2, . . . , n, are assumed to be strictly monotone, and the explicit presence of
the maximum value of the coefficients functions in Theorems 3.2 and 3.4 (see [20, 21]) may
impose a very strict constraint on the model (e.g., when some of the maximum value of
the coefficients functions are very large). Therefore, our results are more convenient when
designing a cellular neural network.
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4. An Example

In this section, an example is used to demonstrate that the method presented in this paper is
effective.

Example 4.1. Consider the following two state neural networks:

(
x′
1(t)

x′
2(t)

)
= −
(
d1(t) 0

0 d2(t)

)(
x1(t)

x2(t)

)
+

(
a11(t) a12(t)

a21(t) a22(t)

)(
f1(x1(t))

f2(x2(t))

)

+

(
b11(t) b12(t)

b21(t) b22(t)

)(
f1(x1(t − τ1(t)))
f2(x2(t − τ2(t)))

)

+

(
c11(t) c12(t)

c21(t) c22(t)

)∫ t

−∞

(
H11(t − s) H12(t − s)
H21(t − s) H22(t − s)

)(
f1(x1(s))

f2(x2(s))

)
ds

+

(
3 cos t

2 sin t

)
,

(4.1)

where, all di(t) > 0, aij(t), bij(t), cij(t), τi(t) are 2π-periodic continuous functions. The
activation function f1(x) = cos((1/3)x)+(1/3)x, f2(x) = sin((1/2)x)+(1/4)x. τ = 0.6, d1 = 4,
d2 = 3; |a11| + |b11| + |c11h11| = 3/80; |a12| + |b12| + |c12h12| = 1/6; |a21| + |b21| + |c21h21| = 3/40;
|a22| + |b22| + |c22h22| = 2/21; d∗

1 = 5, d∗
2 = 4. Clearly, fi satisfies the hypothesis with p1 = 2/3,

p2 = 3/4. By some simple calculations, we have

di −
n∑

j=1

(∣∣aij
∣∣ +
∣∣bij
∣∣ +
∣∣cijhij

∣∣
)
pje

d∗
i τ > 0, i = 1, 2,

K =

⎛
⎜⎝

1 + 8π
160

1 + 8π
32

1 + 6π
60

1 + 6π
42

⎞
⎟⎠, ρ(K) ≈ 0.860 < 1.

(4.2)

Therefore, by Theorem 3.4, the system (1.1) has an exponentially stable 2π-periodic solution.

Acknowledgment

The first author was partially supported financially by the National Natural Science
Foundation of China (10801088).

References

[1] S. Arik, “Global robust stability of delayed neural networks,” IEEE Transactions on Circuits and Systems
I, vol. 50, no. 1, pp. 156–160, 2003.

[2] M. Dong, “Global exponential stability and existence of periodic solutions of CNNs with delays,”
Physics Letters A, vol. 300, no. 1, pp. 49–57, 2002.



14 Discrete Dynamics in Nature and Society

[3] A. Chen, J. Cao, and L. Huang, “Global robust stability of interval cellular neural networks with
time-varying delays,” Chaos, Solitons & Fractals, vol. 23, no. 3, pp. 787–799, 2005.

[4] J. Cao and M. Dong, “Exponential stability of delayed bi-directional associative memory networks,”
Applied Mathematics and Computation, vol. 135, no. 1, pp. 105–112, 2003.

[5] T.-L. Liao and F.-C. Wang, “Global stability for cellular neural networks with time delay,” IEEE
Transactions on Neural Networks, vol. 11, no. 6, pp. 1481–1484, 2000.

[6] Y. Li, “Global exponential stability of BAMneural networkswith delays and impulses,”Chaos, Solitons
& Fractals, vol. 24, no. 1, pp. 279–285, 2005.

[7] J. Cao, “On exponential stability and periodic solutions of CNNs with delays,” Physics Letters A, vol.
267, no. 5-6, pp. 312–318, 2000.

[8] X. Liao and J. Wang, “Global dissipativity of continuous-time recurrent neural networks with time
delay,” Physical Review E, vol. 68, no. 1, Article ID 016118, 7 pages, 2003.

[9] H. Jiang and Z. Teng, “Global eponential stability of cellular neural networks with time-varying
coefficients and delays,” Neural Networks, vol. 17, no. 10, pp. 1415–1425, 2004.

[10] S. Arik, “An analysis of global asymptotic stability of delayed cellular neural networks,” IEEE
Transactions on Neural Networks, vol. 13, no. 5, pp. 1239–1242, 2002.

[11] L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Transactions on Circuits and Systems,
vol. 35, no. 10, pp. 1257–1272, 1988.

[12] T.-L. Liao and F.-C. Wang, “Global stability for cellular neural networks with time delay,” IEEE
Transactions on Neural Networks, vol. 11, no. 6, pp. 1481–1484, 2000.

[13] S Arik, “Stability analysis of delayed neural networks,” IEEE Transactions on Circuits and Systems I,
vol. 47, no. 7, pp. 1089–1092, 2000.

[14] L. Huang, C. Huang, and B. Liu, “Dynamics of a class of cellular neural networks with time-varying
delays,” Physics Letters A, vol. 345, no. 4–6, pp. 330–344, 2005.

[15] S. Mohamad and K. Gopalsamy, “Exponential stability of continuous-time and discrete-time cellular
neural networks with delays,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 17–38, 2003.

[16] X. Lou and B. Cui, “Global asymptotic stability of delay BAM neural networks with impulses based
on matrix theory,” Applied Mathematical Modelling, vol. 32, no. 2, pp. 232–239, 2008.

[17] J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, Pa, USA, 1976.
[18] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.
[19] R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, vol. 568 of

Lecture Notes in Mathematics, Springer, Berlin, Germany, 1977.
[20] J. Zhou, Z. Liu, and G. Chen, “Dynamics of periodic delayed neural networks,” Neural Networks, vol.

17, no. 1, pp. 87–101, 2004.
[21] Z. Liu and L. Liao, “Existence and global exponential stability of periodic solution of cellular neural

networks with time-varying delays,” Journal of Mathematical Analysis and Applications, vol. 290, no. 1,
pp. 247–262, 2004.


