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1. Introduction

Recurrent neural networks have been extensively studied in the past decades. Two popular
examples are Hopfield neural networks and cellular neural networks. Increasing attention
has been draw to the potential applications of recurrent neural networks in information
processing systems such as signal processing, model identification, optimization, pattern
recognition, and associative memory. However, these successful applications are greatly
dependent on the dynamic behavior of recurrent neural networks (RNNs). On the other
hand, time delay is inevitably encountered in RNNs, since the interactions between different
neurons are asynchronous. Generally, time delays, both constant and time varying, are often
encountered in various engineering, biological, and economic systems due to the finite
switching speed of amplifiers in electronic networks, or to the finite signal propagation time
in biological networks [1]. The existence of time delay could make delayed RNNs be instable
or have poor performance. Therefore, many research interests have been attracted to the
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stability analysis for delayed RNNs. A lot of results related to this issue have been reported
[2–6].

The theory of passivity plays an important role for analyzing the stability of nonlinear
system [7] and has received much attention in the literature from the control community
since 1970s [8–14]. It is well known that the passivity theory plays an important role in
both electrical network and nonlinear control systems, provides a nice tool for analyzing the
stability of system [15], and has found applications in diverse areas such as signal processing,
chaos control and synchronization, and fuzzy control. The passivity condition for delayed
neural networks with or without time-varying parametric uncertainties using LMIs [16] has
been proposed in [17]. By constructing proper Lyapunov functionals and using some analytic
techniques, sufficient conditions are given to ensure the passivity of the integro-differential
neural networks with time-varying delays in [18]. In [19, 20], the authors studied the delay-
dependent robust passivity criterion for the delayed cellular neural networks and the delayed
recurrent neural networks. It should be pointed out that the aforementioned results are the
continuous-time neural networks.

Recently, the stability analysis problems for discrete-time neural networks with time
delay have received considerable research interests. For instance in [21], global exponential
stability of a class of discrete-time Hopfield neural networks with variable delays is
considered. By making use of a difference inequality, a new global exponential stability
result is provided. Under different assumptions on the activation functions, a unified linear
matrix inequality (LMI) approach has been developed to establish sufficient conditions
for the discrete-time recurrent neural networks with interval variable time to be globally
exponentially stable in [22]. Delay-dependent results on the global exponential stability
problem for discrete-time neural networks with time-varying delays were presented in
[23, 24], respectively. However, no delay-range-dependent passivity conditions on discrete-
time uncertain recurrent neural networkswith interval time-varying delay are available in the
literature and remain essentially open. The objective of this paper is to address this unsolved
problem.

The purpose of this paper is to deal with the problem of passivity conditions for
discrete-time uncertain recurrent neural networks with interval time-varying delay. The
interval time-varying delay includes both lower and upper bounds of delay, and the
parameter uncertainties are assumed to be time varying but norm bounded which appear
in all the matrices in the state equation. It is then established that the resulting passivity
condition can be cast in a linear matrix inequality format which can be conveniently solved
by using the numerically effective Matlab LMI Toolbox. In particular, when the interval time-
delay factor is known, it is emphasized that delay-range-dependent passivity condition yields
more general and practical results. Finally, two numerical examples are given to demonstrate
the effectiveness.

Throughout this paper, the notation X ≥ Y (X > Y ) for symmetric matrices X and
Y indicates that the matrix X − Y is positive and semidefinite (resp., positive definite); ZT

represents the transpose of matrix Z.

2. Preliminaries

Consider a discrete-time recurrent neural network with interval time-varying delay
described by

x(k + 1) = (A + ΔA(k))x(k) + (W + ΔW(k))f(x(k)) + (W1 + ΔW1(k))f(x(k − τ(k))) + u(k),
(2.1)
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where x(k) = (x1(k), x2(k), . . . , xn(k))
T is the state vector, A = diag(a1, a2, . . . , an) with

|ai| < 1, i = 1, 2, . . . , n, is the state feedback coefficient matrix, Wn×n and Wn×n
1 are the

interconnection matrices representing the weighting coefficients of the neurons, f(x(k)) =
[f1(x1(k)), . . . , fn(xn(k))]

T ∈ Rn is the neuron activation function with f(0) = 0, τ(k) is the
time-varying delay of the system satisfying

τ1 ≤ τ(k) ≤ τ2, k ∈ N, (2.2)

where 0 ≤ τ1 ≤ τ2 are known integers. Let y(k) = f(x(k)) be the output of the neural
networks. u(k) is the input vector. ΔA(k), ΔW(k), and ΔW1(k) are unknown matrices
representing time-varying parameter uncertainties, which are assumed to be of the form

[
ΔA(k) ΔW(k) ΔW1(k)

]
= MF(k)

[
N1 N2 N3

]
, (2.3)

whereM,N1,N2, andN3 are known real constant matrices, and F(·) : R → Rk×l is unknown
time-varying matrix function satisfying

FT (k)F(k) ≤ I, k ∈ N. (2.4)

The uncertain matrices ΔA(k), ΔW(k), and ΔW1(k) are said to be admissible if both (2.3)
and (2.4) hold.

In order to obtain our main results, the activation functions in (2.1) are assumed to be
bounded and satisfy the following assumption.

Assumption 1. The activation functions gi(·), i = 1, 2, . . . , n, are globally Lipschitz and
monotone nondecreasing; that is, there exist constant scalars αi such that for any ς1, ς2 ∈ R
and ς1 /= ς2,

0 ≤ gi(ς1) − gi(ς2)
ς1 − ς2

≤ αi, i = 1, 2, . . . , n. (2.5)

Definition 2.1 ([25]). System (2.1) is called passive if there exists a scalar β ≥ 0 such that

2
kp∑

k=0

yT (k)u(k) ≥ −β
kp∑

k=0

uT (k)u(k) (2.6)

for all kp ≥ 0 and for all solutions of (2.1)with x(0) = 0.

3. Mathematical Formulation of the Proposed Approach

This section explores the globally robust delay-range-dependent passivity conditions of the
discrete-time recurrent uncertain neural network with interval time-varying delay given in
(2.1). Specially, an LMI approach is employed to solve the robust delay-range-dependent
passivity condition if the system in (2.1) is globally asymptotically stable for all admissible
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uncertainties ΔA(k), ΔW(k), and ΔW1(k) satisfying (2.6). The analysis commences by
using the LMI approach to develop some results which are essential to introduce the
followingLemma 3.1 for the development of our main theorem.

Lemma 3.1. Let A, D, S, F, and P be real matrices of appropriate dimensions with P > 0 and F
satisfying FT (k)F(k) ≤ I. Then the following statements hold.

(a) For any ε > 0 and vectors x, y ∈ Rn

2xTDFSy ≤ ε−1xTDDTx + εyTSTSy. (3.1)

(b) For vectors x, y ∈ Rn

2xTDSy ≤ xTDPDTx + yTSTP−1Sy. (3.2)

For any matrices Ei, Si, Ti, and Hi (i = 1, 2, . . . , 8) of appropriate dimensions, it follows from null
equations that

Φ1 = 2
[
xT (k)E1 + xT (k − τ(k))E2 + xT (k − τ2)E3 + xT (k − τ1)E4

+fT (x(k))E5 + fT (x(k − τ(k)))E6 + xT (k + 1)E7 + uT (k)E8

]

×
⎡

⎣x(k) − x(k − τ(k)) −
k∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))
⎤

⎦ = 0,

(3.3)

Φ2 = 2
[
xT (k)S1 + xT (k − τ(k))S2 + xT (k − τ2)S3 + xT (k − τ1)S4

+fT (x(k))S5 + fT (x(k − τ(k)))S6 + xT (k + 1)S7 + uT (k)S8

]

×
⎡

⎣x(k − τ(k)) − x(k − τ2) −
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))
⎤

⎦ = 0,

(3.4)

Φ3 = −2
[
xT (k)T1 + xT (k − τ(k))T2 + xT (k − τ2)T3 + xT (k − τ1)T4

+fT (x(k))T5 + fT (x(k − τ(k)))T6 + xT (k + 1)T7 + uT (k)T8
]

×
⎡

⎣x(k − τ1) − x(k − τ(k)) −
k−τ1∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))
⎤

⎦ = 0,

(3.5)

Φ4 = −2
[
xT (k)H1 + xT (k − τ(k))H2 + xT (k − τ2)H3 + xT (k − τ1)H4

+fT (x(k))H5 + fT (x(k − τ(k)))H6 + xT (k + 1)H7 + uT (k)H8

]

× [
x(k + 1) − (A + ΔA(k))x(k) − (W + ΔW(k))f(x(k))

−(W1 + ΔW1(k))f(x(k − τ(k))) − u(k)
]
= 0,

(3.6)
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Φ5 = 2fT (x(k))R1f(x(k)) − 2fT (x(k))R1f(x(k)) + 2fT (x(k − τ(k)))R2x(k − τ(k))

− 2fT (x(k − τ(k)))R2x(k − τ(k)) = 0.
(3.7)

To study the globally robust delay-range-dependent passivity conditions of the
discrete-time uncertain recurrent neural network with interval time-varying delay, the
following theorem reveals that such conditions can be expressed in terms of LMIs.

Theorem 3.2. Under Assumption 1, given scalars 0 ≤ τ1 < τ2, system (2.1) with interval time-
varying delay τ(k) satisfying (2.2) is globally asymptotically robust stability, if there exist matrices
P > 0, Q1 > 0, Q2 > 0, Z1 > 0, Z2 > 0, diagonal matrices R1 > 0, R2 > 0, and matrices Ei, Si , Ti
andHi (i = 1, 2, . . . , 8) of appropriate dimensions, a positive scalar ε > 0 and a scalar β ≥ 0 such that
the following LMI holds:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω τ2E τ21S τ21T HM εN

τ2E
T −τ2Z1 0 0 0 0

τ21S
T 0 −τ21(Z1 + Z2) 0 0 0

τ21T
T 0 0 −τ21Z2 0 0

MTHT 0 0 0 −εI 0

εNT 0 0 0 0 −εI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.8)

where

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17 Ω18

ΩT
12 Ω22 Ω23 Ω24 Ω25 Ω26 Ω27 Ω28

ΩT
13 ΩT

23 Ω33 Ω34 Ω35 Ω36 Ω37 Ω38

ΩT
14 ΩT

24 ΩT
34 Ω44 Ω45 Ω46 Ω47 Ω48

ΩT
15 ΩT

25 ΩT
35 ΩT

45 Ω55 Ω56 Ω57 Ω58

ΩT
16 ΩT

26 ΩT
36 ΩT

46 ΩT
56 Ω66 Ω67 Ω68

ΩT
17 ΩT

27 ΩT
37 ΩT

47 ΩT
57 ΩT

67 Ω77 Ω78

ΩT
18 ΩT

28 ΩT
38 ΩT

48 ΩT
58 ΩT

68 ΩT
78 Ω88

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω11 = −P+(τ21 + 1)Q1 + τ2Z1 + τ21Z2 + E1 + ET
1 +H1A +ATHT

1 +Q2,

Ω12 = ET
2 − E1 + S1 + T1 +ATHT

2 , Ω13 = ET
3 − S1 +ATHT

3 ,

Ω14 = ET
4 − T1 +ATHT

4 , Ω15 = ET
5 +H1W0 +ATHT

5 + ΓTR1,

Ω16 = ET
6 +H1W1 +ATHT

6 , Ω17 = ET
7 − τ2Z1 − τ21Z2 −H1 +ATHT

7 ,

Ω18 = ET
8 +H1 +ATHT

8 , Ω22 = −Q1 − E2 − ET
2 + S2 + ST

2 + T2 + TT
2 ,

Ω23 = −ET
3 − S2 + ST

3 + TT
3 , Ω24 = −ET

4 − T2 + ST
4 + T4,

Ω25 = −ET
5 + ST

5 + TT
5 +H2W0, Ω26 = −ET

6 + ST
6 + TT

6 +H2W1 + RT
2 ,
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Ω27 = −ET
7 + ST

7 + TT
7 −H2, Ω28 = −ET

8 + ST
8 + TT

8 +H2, Ω33 = −Q2 − S3 − ST
3 ,

Ω34 = −ST
4 − T3, Ω35 = −ST

5 +H3W0, Ω36 = −ST
6 +H3W1, Ω37 = −ST

7 −H3,

Ω38 = −ST
8 +H3, Ω44 = −T4 − TT

4 , Ω45 = TT
5 +H4W0, Ω46 = −TT

6 +H4W1,

Ω47 = −TT
7 −H4, Ω48 = −TT

8 +H4, Ω55 = −R1 − RT
1 +H5W0 +WT

0 H
T
5 ,

Ω56 = H5W1 +WT
0 H

T
6 , Ω57 = −H5 +WT

0 H
T
7 , Ω58 = H5 +WT

0 H
T
8 − I,

Ω66 = −R2Γ−1 −
(
R2Γ−1

)T
+H6W1 +WT

1 H
T
6 , Ω67 = −H6 +WT

1 H
T
7 ,

Ω68 = H6 +WT
1 H

T
8 , Ω77 = −H7 −HT

7 + P + τ2Z1 + τ21Z2, Ω78 = H7 −H8,

Ω88 = H8 +HT
8 − βI, E =

[
ET
1 ET

2 ET
3 ET

4 ET
5 ET

6 ET
7 ET

8

]T
,

S =
[
ST
1 ST

2 ST
3 ST

4 ST
5 ST

6 ST
7 ST

8

]T
,

T =
[
TT
1 TT

2 TT
3 TT

4 TT
5 TT

6 TT
7 TT

8

]T
,

H =
[
HT

1 HT
2 HT

3 HT
4 HT

5 HT
6 HT

7 HT
8

]T
,

N =
[
NT

1 0 0 0 NT
2 NT

3 0 0
]T
,

(3.9)

in which Γ = diag (α1, α2, . . . , αn), τ21 = τ2 − τ1. Then system (2.1) satisfying (3.8) with interval
time-varying delay is robust delay-range-dependent passivity condition in the sense of Definition 2.1.

Proof. Choose the Lyapunov-Krasovskii functional candidate for the system in (2.1) as

V (k) = V1(k) + V2(k) + V3(k) + V4(k)

= xT (k)Px(k) +
−1∑

i=−τ2

k∑

j=k+i+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))

+
k−1∑

j=k−τ(k)
xT(j

)
Q1x

(
j
)
+

−1−τ1∑

i=−τ2

k−1∑

j=k+i+1

xT(j
)
Q1x

(
j
)
+

k−1∑

j=k−τ2
xT(j

)
Q2x

(
j
)

+
−1−τ1∑

i=−τ2

k∑

j=k+i+1

(
x
(
j
) − x

(
j − 1

))T
Z2

(
x
(
j
) − x

(
j − 1

))
.

(3.10)

Then, the difference ΔV (k) = V (k + 1) − V (k) of V (k) along the solution of (2.1) gives

ΔV1(k) = xT (k + 1)Px(k + 1) − xT (k)Px(k),

ΔV2(k) =
−1∑

i=−τ2

k+1∑

j=k+i+2

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))

−
−1∑

i=−τ2

k∑

j=k+i+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))
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≤ τ2(x(k + 1) − x(k))TZ1(x(k + 1) − x(k))

−
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))

−
k∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))
,

ΔV3(k) ≤ xT (k){Q2 + [(τ2 − τ1) + 1]Q1}x(k) − xT (k − τ(k))Q1x(k − τ(k))

− xT (k − τ2)Q2x(k − τ2),

ΔV4(k) = (τ2 − τ1)(x(k + 1) − x(k))TZ2(x(k + 1) − x(k))

−
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))T
Z2

(
x
(
j
) − x

(
j − 1

))

−
k−τ1∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))T
Z2

(
x
(
j
) − x

(
j − 1

))
.

(3.11)

Defining the following new variables:

η(k) =
[
xT (k)xT (k − τ(k))xT (k − τ2)xT (k − τ1)fT (x(k))fT (x(k − τ(k)))xT (k + 1)uT (k)

]T
,

E =
[
ET
1 ET

2 ET
3 ET

4 ET
5 ET

6 ET
7 ET

8

]T
,

S =
[
ST
1 ST

2 ST
3 ST

4 ST
5 ST

6 ST
7 ST

8

]T
,

T =
[
TT
1 TT

2 TT
3 TT

4 TT
5 TT

6 TT
7 TT

8

]T
,

H =
[
HT

1 HT
2 HT

3 HT
4 HT

5 HT
6 HT

7 HT
8

]T
,

N =
[
NT

1 0 0 0 NT
2 NT

3 0 0
]T
,

(3.12)

and combining null equations (3.3)–(3.7), it yields

ΔV (k) − 2yT (k)u(k) − βuT (k)u(k)

= ΔV1(k) + ΔV2(k) + ΔV3(k) + ΔV4(k) − 2yT (k)u(k)

− βuT (k)u(k) + Φ1 + Φ2 + Φ3 + Φ4 + Φ5

≤ xT (k + 1)Px(k + 1) − xT (k)Px(k) + τ2(x(k + 1) − x(k))TZ1(x(k + 1) − x(k))
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−
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))

−
k∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))

+ xT (k){Q2 + [(τ2 − τ1) + 1]Q1}x(k) − xT (k − τ(k))Q1x(k − τ(k))

− xT (k − τ2)Q2x(k − τ2) + (τ2 − τ1)(x(k + 1) − x(k))TZ2(x(k + 1) − x(k))

−
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))T
Z2

(
x
(
j
) − x

(
j − 1

))

−
k−τ1∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))T
Z2

(
x
(
j
) − x

(
j − 1

))

+ 2ηT (k)E

⎡

⎣x(k) − x(k − τ(k)) −
k∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))
⎤

⎦

+ 2ηT (k)S

⎡

⎣x(k − τ(k)) − x(k − τ2) −
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))
⎤

⎦

− 2ηT (k)T

⎡

⎣x(k − τ1) − x(k − τ(k)) −
k−τ1∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))
⎤

⎦

− 2ηT (k)H
[
x(k + 1) − (A + ΔA(k))x(k) − (W + ΔW(k))f(x(k))

−(W1 + ΔW1(k))f(x(k − τ(k))) − u(k)
]

+ 2fT (x(k))R1f(x(k)) − 2fT (x(k))R1f(x(k)) + 2fT (x(k − τ(k)))R2x(k − τ(k))

− 2fT (x(k − τ(k)))R2x(k − τ(k)) − 2yT (k)u(k) − βuT (k)u(k).

(3.13)

Moreover,

− 2ηT (k)E
k∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))

≤ τ2η
T (k)EZ−1

1 ETη(k) +
k∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))T
Z1

(
x
(
j
) − x

(
j − 1

))
,

(3.14)

− 2ηT (k)S
k−τ(k)∑

j=k−τ2+1

(
x
(
j
) − x

(
j − 1

))

≤ (τ2−τ1)ηT (k)S(Z1+Z2)−1STη(k)+
k−τ(k)∑

j=k−τ2+1

(
x
(
j
)−x(j − 1

))T (Z1+Z2)
(
x
(
j
)−x(j−1)),

(3.15)
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2ηT (k)T
k−τ1∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))

≤ (τ2 − τ1)ηT (k)TZ−1
2 TTη(k) +

k−τ1∑

j=k−τ(k)+1

(
x
(
j
) − x

(
j − 1

))T
Z2

(
x
(
j
) − x

(
j − 1

))
.

(3.16)

Using Assumption 1 and noting that R1 > 0 and R2 > 0 are diagonal matrices, one has

2fT (x(k))R1f(x(k)) ≤ 2fT (x(k))R1Γx(k), (3.17)

−2fT (x(k − τ(k)))R2x(k − τ(k)) ≤ −2fT (x(k − τ(k)))R2Γ−1f(x(k − τ(k))), (3.18)

where Γ = diag (α1, α2, . . . , αn).
Following from Lemma 3.1(a) results in

2ηT (k)H
(
ΔA(k)x(k) + ΔW0(k)f(x(k)) + ΔW1(k)f(x(k − τ(k)))

)

= 2ηT (k)HMF(k)NTη(k) ≤ ε−1ηT (k)HMMTHTη(k) + εηT (k)NNTη(k).
(3.19)

Substituting (3.14)–(3.19) into (3.13), it is not difficult to deduce that

ΔV (k) − 2yT (k)u(k) − βuT (k)u(k)

≤ ηT (k)
[
Ω + τ2EZ

−1
1 ET + τ21S(Z1 + Z2)−1ST + τ21TZ

−1
2 TT + ε−1HMMTHT + εNNT

]
η(k).

(3.20)

Using the Schur complement to the (3.20) and in view of LMI (3.8), it follows that

ΔV (k) − 2yT (k)u(k) − βuT (k)u(k) < 0. (3.21)

It follows from (3.21) that

2
kp∑

k=0

yT (k)u(k) ≥ V
(
x
(
kp
)) − V (x(0)) − β

kp∑

k=0

uT (k)u(k), (3.22)

for x(0) = 0, one has V (x(0)) = 0, so (2.6) holds, and hence the system is robust delay-
range-dependent passivity condition in the sense of Definition 2.1. This completes the proof
of Theorem 3.2.

Remark 3.3. Theorem 3.2 provides a sufficient passivity condition for the globally robust
stability of the discrete-time uncertain recurrent neural network with interval time-varying
delay given in (2.1) and proposes a delay-range-dependent criterion. Even for τ1 = 0, the
result in Theorem 3.2 may lead to the delay-dependent stability criteria. In fact, if Z2 = ε1I,
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with ε1 > 0, being sufficiently small scalar, Ti = 0, i = 1, 2, . . . , 8, E4 = 0, S4 = 0, H4 = 0,
Theorem 3.2 yields the following delay-dependent passivity criterion.

Corollary 3.4. Under Assumption 1, given scalars τ2 > 0, τ1 = 0, system (2.1) with time-varying
delay satisfying (2.3) is globally asymptotically robust stability, if there exist matrices P > 0, Q1 > 0,
Q2 > 0, Z1 > 0, diagonal matrices R1 > 0, R2 > 0, and matrices Ei, Si, and Hi(i = 1, 2, . . . , 8) of
appropriate dimensions and E4 = S4 = H4 = 0, a positive scalar ε > 0, and a scalar β ≥ 0 such that
the following LMI holds:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω τ2E τ2S HM εN

τ2E
T −τ2Z1 0 0 0

τ2S
T 0 −τ2Z1 0 0

MTHT 0 0 −εI 0

εNT 0 0 0 −εI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.23)

where

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 Ω13 Ω15 Ω16 Ω17 Ω18

ΩT
12 Ω22 Ω23 Ω25 Ω26 Ω27 Ω28

ΩT
13 ΩT

23 Ω33 Ω35 Ω36 Ω37 Ω38

ΩT
15 ΩT

25 ΩT
35 Ω55 Ω56 Ω57 Ω58

ΩT
16 ΩT

26 ΩT
36 ΩT

56 Ω66 Ω67 Ω68

ΩT
17 ΩT

27 ΩT
37 ΩT

57 ΩT
67 Ω77 Ω78

ΩT
18 ΩT

28 ΩT
38 ΩT

58 ΩT
68 ΩT

78 Ω88

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω11 = −P+(τ2 + 1)Q1 + τ2Z1 + E1 + ET
1 +H1A +ATHT

1 +Q2,

Ω12 = ET
2 − E1 + S1 +ATHT

2 , Ω13 = ET
3 − S1 +ATHT

3 ,

Ω15 = ET
5 +H1W0 +ATHT

5 + ΓTR1, Ω16 = ET
6 +H1W1 +ATHT

6 ,

Ω17 = ET
7 − τ2Z1 −H1 +ATHT

7 , Ω18 = ET
8 +H1 +ATHT

8 ,

Ω22 = −Q1 − E2 − ET
2 + S2 + ST

2 , Ω23 = −ET
3 − S2 + ST

3 , Ω25 = −ET
5 + ST

5 +H2W0,

Ω26 = −ET
6 + ST

6 +H2W1 + RT
2 , Ω27 = −ET

7 + ST
7 −H2, Ω28 = −ET

8 + ST
8 +H2,

Ω33 = −Q2 − S3 − ST
3 , Ω35 = −ST

5 +H3W0, Ω36 = −ST
6 +H3W1,Ω37 = −ST

7 −H3,

Ω38 = −ST
8 +H3, Ω55 = −R1 − RT

1 +H5W0 +WT
0 H

T
5 , Ω56 = H5W1 +WT

0 H
T
6 ,

Ω57 = −H5 +WT
0 H

T
7 , Ω58 = H5 +WT

0 H
T
8 − I,

Ω66 = −R2Γ−1 −
(
R2Γ−1

)T
+H6W1 +WT

1 H
T
6 , Ω67 = −H6 +WT

1 H
T
7 ,
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Ω68 = H6 +WT
1 H

T
8 , Ω77 = −H7 −HT

7 + P + τ2Z1, Ω78 = H7 −H8,

Ω88 = H8 +HT
8 − βI, E =

[
ET
1 ET

2 ET
3 ET

5 ET
6 ET

7 ET
8

]T
,

S =
[
ST
1 ST

2 ST
3 ST

5 ST
6 ST

7 ST
8

]T
, H =

[
HT

1 HT
2 HT

3 HT
5 HT

6 HT
7 HT

8

]T
,

N =
[
NT

1 0 0 NT
2 NT

3 0 0
]T
.

(3.24)

Therefore, the discrete-time recurrent neural network with time-varying delay in (2.1) (i.e., the lower
bounds τ1 = 0 and the given upper bounds τ2) approaches globally robustly delay-dependent passivity
condition in the sense of Definition 2.1.

Remark 3.5. In the stochastic context, robust delay-dependent passivity conditions are studied
in [26] for discrete-time stochastic neural networks with time-varying delays. In this paper,
however, robust delay-range-dependent passivity conditions are studied in the deterministic
context. It should be noted that deterministic systems and stochastic systems have different
properties and need to be dealt with separately. The results given in Theorem 3.2 provide
an LMI approach to the robust delay-range-dependent passivity conditions for deterministic
discrete-time recurrent neural networks with interval time-varying delay, which is new and
represents a contribution to recurrent neural networks systems.

Two numerical examples are now presented to demonstrate the usefulness of the
proposed approach.

4. Examples

Example 4.1. Consider the following discrete-time uncertain recurrent neural network:

x(k + 1) = (A + ΔA(k))x(k) + (W + ΔW(k))f(x(k)) + (W1 + ΔW1(k))f(x(k − τ(k))) + u(k),
(4.1)

where

A =

[
0.2 0

0 0.14

]

, W =

[
0.2 0.25

0.25 0.1

]

, W1 =

[−0.2 0.1

0.1 0.3

]

,

M =

[
0.2 0.1

0.1 0.2

]

, N1 =

[
0.1 0.2

0.1 0.2

]

, N2 =

[
0.3 0.1

0 0.1

]

, N3 =

[
0.2 0.1

0.1 0.1

]

.

(4.2)

The activation functions in this example are assumed to satisfy Assumption 1 with α1 =
0.5633, α2 = 0.0478. For interval time-varying delay, the best approached values of β by
Theorem 3.2, for the given upper bound τ2 = 10 and the various lower bounds τ1, are listed
inTable 1 by theMatlab LMI Control Toolbox. Therefore, using Theorem 3.2, the discrete-time
uncertain recurrent neural network with interval time-varying delay (4.1) satisfies robustly
delay-range-dependent passivity conditions in the sense of Definition 2.1 for various β levels.
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Example 4.2. Consider the discrete-time uncertain recurrent neural network with the follow-
ing parameters:

A =

⎡

⎢⎢
⎣

0.1 0 0

0 0.1 0

0 0 0.2

⎤

⎥⎥
⎦, W =

⎡

⎢⎢
⎣

0.1 −0.1 0.2

0.1 −0.2 0.3

−0.1 0 −0.1

⎤

⎥⎥
⎦, W1 =

⎡

⎢⎢
⎣

−0.1 0.2 0.1

−0.1 0.4 0.2

0.2 −0.1 0.4

⎤

⎥⎥
⎦,

M =

⎡

⎢⎢
⎣

0.1 0 0.1

0.1 0.3 0

0.2 0.1 0

⎤

⎥⎥
⎦, N1 =

⎡

⎢⎢
⎣

0 0.02 0.02

−0.1 0.1 0.1

−0.1 0.1 0.1

⎤

⎥⎥
⎦, N2 =

⎡

⎢⎢
⎣

0 −0.02 0.02

0.1 −0.1 0

0.1 0 −0.1

⎤

⎥⎥
⎦,

N3 =

⎡

⎢⎢
⎣

0.01 0.02 0

−0.1 0.3 0.1

0.1 0 0.2

⎤

⎥⎥
⎦.

(4.3)

The activation functions in this example are assumed to satisfy Assumption 1 with α1 = 0.034,
α2 = 0.429, α3 = 0.508. By theMatlab LMI Control Toolbox, it can be verified that Corollary 3.4
in this paper is feasible solution for all delays 0 ≤ τ(k) ≤ 15 (i.e., the lower bound τ1 = 0 and
the upper bound τ2 = 15) as follows:

P =

⎡

⎢⎢
⎣

2.3189 −0.2657 −0.0023
−0.2657 2.2981 −0.0574
−0.0023 −0.0574 2.3612

⎤

⎥⎥
⎦, Q1 =

⎡

⎢⎢
⎣

0.0565 −0.0056 0.0005

−0.0056 0.0679 −0.0052
0.0005 −0.0052 0.0657

⎤

⎥⎥
⎦,

Z1 =

⎡

⎢⎢
⎣

0.0199 −0.0038 0.0008

−0.0038 0.0150 0.0002

0.0008 0.0002 0.0144

⎤

⎥⎥
⎦, Z2 =

⎡

⎢⎢
⎣

0.0215 −0.0042 0.0009

−0.0042 0.0158 0.0002

0.0009 0.0002 0.0153

⎤

⎥⎥
⎦,

R1 =

⎡

⎢⎢
⎣

1.8998 0 0

0 1.6298 0

0 0 1.8378

⎤

⎥⎥
⎦, R2 =

⎡

⎢⎢
⎣

1.2991 0 0

0 0.2980 0

0 0 0.2635

⎤

⎥⎥
⎦,

ε = 3.4160, β = 5.0169.

(4.4)

Thus, by Corollary 3.4, the discrete-time uncertain recurrent neural network with time-
varying delay in (2.1) (i.e., the lower bound τ1 = 0 and the given upper bound τ2 = 15)
attains globally robustly delay-dependent passivity condition in the sense of Definition 2.1.
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Table 1: The various lower bounds τ1 and β levels for the given upper bound τ2 = 10.

τ1 β

0 5.9189
1 5,9228
2 5.8145
3 5.9832
4 5.8014
5 5.9522
6 5.9744
7 6.0126
8 6.0186
9 6.1851

5. Conclusions

This study has investigated the problem of globally robust passivity conditions for a discrete-
time recurrent uncertain neural network with interval time-varying delay. A sufficient
condition for the solvability of this problem, which takes into account the range for the
time delay, has been established that the passivity conditions can be cast in linear matrix
inequalities format. It has been shown that the bound for the time-varying delay in a range
which ensures that the discrete-time recurrent uncertain neural network with interval time-
varying delay attains globally robust passivity conditions can be obtained by solving a convex
optimization problem. Two numerical examples have been presented to demonstrate the
effectiveness of the proposed approach.
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