
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2009, Article ID 439173, 18 pages
doi:10.1155/2009/439173

Research Article
Stability Analysis of Stochastic
Reaction-Diffusion Cohen-Grossberg Neural
Networks with Time-Varying Delays

Chuangxia Huang,1 Xinsong Yang,2 and Yigang He3

1 College of Mathematics and Computing Science, Changsha University of Science and Technology,
Changsha, Hunan 410076, China

2 Department of Mathematics, Honghe University, Mengzi, Yunnan 661100, China
3 College of Electrical and Information Engineering, Hunan University, Changsha, Hunan 410082, China

Correspondence should be addressed to Chuangxia Huang, cxiahuang@126.com

Received 28 July 2009; Accepted 16 September 2009

Recommended by Yong Zhou

This paper is concerned with pth moment exponential stability of stochastic reaction-diffusion
Cohen-Grossberg neural networks with time-varying delays. With the help of Lyapunov method,
stochastic analysis, and inequality techniques, a set of new suffcient conditions on pth moment
exponential stability for the considered system is presented. The proposed results generalized and
improved some earlier publications.

Copyright q 2009 Chuangxia Huang et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Since the seminal work for Cohen-Grossberg neural networks by Cohen and Grossberg [1],
theoretical understanding of neural network dynamics has advanced greatly. The model can
be described by a system of ordinary differential equations

ẋi(t) = −αi(xi(t))

⎡
⎣βi(xi(t)) −

n∑
j=1

aijgj
(
xj(t)

)
⎤
⎦, (1.1)

where t ≥ 0, n ≥ 2;n corresponds to the number of units in a neural network; xi(t) denotes the
potential (or voltage) of cell i at time t; fj(·) denotes a nonlinear output function between cell i
and j; αi(·) > 0 represents an amplification function; βi(·) represents an appropriately behaved
function; the n × n connection matrix A = (aij)n×n denotes the strengths of connectivity
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between cells, and if the output from neuron j excites (resp., inhibits) neuron i, then aij ≥ 0
(resp., aij ≤ 0).

During hardware implementation, time delays do exist due to finite switching speed
of the amplifiers and communication time and, thus, delays should be incorporated into
the model equations of the network. For model (1.1), Ye et al. [2] introduced delays by
considering the following delay differential equations:

ẋi(t) = −αi(xi(t))

⎡
⎣βi(xi(t)) −

n∑
j=1

aijfj
(
xj
(
t − τj

))
⎤
⎦. (1.2)

Some other more detailed justifications for introducing delays into model equations of
neural networks can be found in [3–13] and references therein. It is seen that (1.2) is quite
general and it includes several well-known neural networks models as its special cases such
as Hopfield neural networks, cellular neural networks, and bidirectional association memory
neural networks (see, e.g., [14–18]).

In addition to the delay effects, stochastic effects constitute another source of
disturbances or uncertainties in real systems [19]. A lot of dynamical systems have variable
structures subject to stochastic abrupt changes, which may result from abrupt phenomena
such as stochastic failures and repairs of the components, changes in the interconnections of
subsystems, and sudden environment changes. In the recent years, the stability investigation
of stochastic Neural Networks is interesting to many investigators, and a large number of
stability criteria of these systems have been reported [20–30]. The stochastic model can be
described by a system of stochastic differential equations

dxi(t) = −αi(xi(t))

⎡
⎣βi(xi(t)) −

n∑
j=1

aijgj
(
xj(t)

)
−

n∑
j=1

bijgj
(
xj
(
t − τj(t)

))
⎤
⎦dt

+
n∑
j=1

σij
(
t, xi(t), xj

(
t − τj(t)

))
dωj(t).

(1.3)

However, besides delay and stochastic effects, diffusion effect cannot be avoided
in the neural networks when electrons are moving in asymmetric electromagnetic fields
[31], so we must consider the activations vary in space as well as in time. In [32–36],
authors have considered the stability of reaction-diffusion neural networks with constant
or time-varying delays, which are expressed by partial differential equations. To the best
of our knowledge, few authors have considered the problem of pth moment stability for
stochastic Cohen-Grossberg neural networks with both time-varying delays and reaction-
diffusion terms. Motivated by the above discussions, in this paper, we consider the stochastic
reaction-diffusion Cohen-Grossberg neural networks with time-varying delays described by
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the following stochastic partial differential equations:

dyi(x, t) =
m∑
k=1

∂

∂xk

(
Dik

∂yi
∂xk

)
dt − αi

(
yi(x, t)

)

×

⎡
⎣βi

(
yi(x, t)

)
−

n∑
j=1

aij(t)gj
(
yj(x, t)

)
−

n∑
j=1

bij(t)gj
(
yj
(
x, t − τj(t)

))
⎤
⎦dt

+
n∑
j=1

σij
(
t, yi(x, t), yj

(
x, t − τj(t)

))
dωj(t),

(1.4)

where

∂yi
∂n

:=
(
∂yi
∂x1

, . . . ,
∂yi
∂xm

)T

= 0, t ≥ 0, i = 1, . . . , n, x ∈ Ω,

yi = yi(x, s) = φi(x, s), −∞ < s ≤ 0, x ∈ Ω.

(1.5)

In the above model, n ≥ 2 corresponds to the number of units in the neural network, x =
(x1, . . . , xm)

T is space variable, and yi(x, t) denotes the state variable of cell i at time t in space
variable x; smooth function Dik = Dik(x, y, t) ≥ 0 is a diffusion operator; Ω is a compact set
with smooth boundary ∂Ω and the measure mesΩ > 0 in Rm,

∂yi
∂n

∣∣∣∣
∂Ω

= 0, (1.6)

and φi(x, s) are the boundary value and initial value, respectively; aij(t) and bij(t) denote
the strengths of connectivity between cell i and j at time t, respectively; τj(t) is time delay
and satisfies 0 ≤ τj(t) ≤ τ ; σ = (σij(t, yi(x, t), yj(x, t − τj(t))))n×n is the diffusion coefficient
matrix, and ω(t) = (ω1(t), . . . , ωn(t))

T is an n-dimensional Brownian motion defined on a
complete probability space (Ω,F,P) with a natural filtration {Ft}t≥0 by standard Brownian
motion {w(s) : 0 ≤ s ≤ t}. As a standing hypothesis, we assume that gj(·) and σ(t, ·, ·) satisfy
the Lipschitz condition and the linear growth condition and that (1.4) has a solution on t ≥ 0
for the initial conditions.

The remainder of this paper is organized as follows. In Section 2, the basic notations
and assumptions are introduced. In Section 3, criteria are proposed to determine pth
moment exponential stability for the stochastic Cohen-Grossberg neural networks with time-
varying delays and reaction-diffusion term. An illustrative example is given to illustrate the
effectiveness of the obtained results in Section 4. We also conclude this paper in Section 5.



4 Discrete Dynamics in Nature and Society

2. Preliminaries

For any y(x, t) = (y1(x, t), . . . , yn(x, t))
T ∈ Rn, we define

∥∥yi(x, t)
∥∥
p =

[∫

Ω

∣∣yi(x, t)
∣∣pdx

]1/p

,

∥∥y(x, t)∥∥ =

⎡
⎣

n∑
j=1

∥∥yi(x, t)
∥∥p
p

⎤
⎦

1/p

.

(2.1)

As usual, we will also assume that the following conditions are satisfied.

(H1) There exist positive constants αi, αi, such that

αi ≤ ai
(
yi(x, t)

)
≤ αi. (2.2)

(H2) For each i ∈ {1, . . . , n}, there exists positive constant Gi, such that

∣∣gi(u) − gi(v)
∣∣ ≤ Gi|u − v|, ∀u, v,∈ R. (2.3)

(H3) There exist positive functions γj(t), such that

yj(x, t)βj
(
yj(x, t)

)
≥ γj(t)y2

j (x, t). (2.4)

(H ′3) There exists positive constant γj , such that

yj(x, t)βj
(
yj(x, t)

)
≥ γjy2

j (x, t). (2.5)

(H4) There are nonnegative functions c0
ij(t), c

1
ij(t), for all t, u, v ∈ R, such that

σ2
ij(t, u, v) ≤ c

0
ij(t)u

2 + c1
ij(t)v

2. (2.6)

(H ′4) There are nonnegative constants c0
ij , c

1
ij , for all t, u, v ∈ R, such that

σ2
ij(t, u, v) ≤ c

0
iju

2 + c1
ijv

2. (2.7)

(H5) The following inequality holds:

∫

Ω
Dik

(
∂yi
∂xk

)m

k=1
· ∇yp−1

i dx > 0. (2.8)
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Definition 2.1. The trivial solution of (1.4) is said to be pth moment exponentially stable if
there is a pair of positive constants λ and G such that

E
∥∥y(φ, t)∥∥p < GE∥∥φ∥∥pe−λ(t−t0), on t ≥ t0 (2.9)

for any φ, where λ also called as convergence rate. When p = 2, it is usually said to be
exponentially stable in mean square.

Definition 2.2. Let h : R → R be a continuous function, d+h; the upper right Dini-derivative
of h is defined as

d+h(t) = lim sup
δ→ 0+

h(t + δ) − h(t)
δ

. (2.10)

The following lemmas are important in our approach.

Lemma 2.3 (Hardy inequality [4]). Assume there exist constants ak ≥ 0, pk > 0 (k = 1, . . . , m +
1), then the following inequality holds:

(
m+1∏
k=1

a
pk
k

)1/Sm+1

≤
(

m+1∑
k=1

pka
r
k

)1/r

S−1/r
m+1 , (2.11)

where r > 0 and Sm+1 =
∑m+1

k=1 pk. In (2.11), if one lets pm+1 = 1, r = Sm+1 =
∑m

k=1 pk + 1, one will
get

(
m∏
k=1

a
pk
k

)
am+1 ≤

1
r

(
m∑
k=1

pka
r
k

)
+

1
r
arm+1, (2.12)

if one lets pm+1 = 2, r = Sm+1 =
∑m

k=1 pk + 2, one will get

(
m∏
k=1

a
pk
k

)
am+1 ≤

1
r

(
m∑
k=1

pka
r
k

)
+

2
r
arm+1. (2.13)

Lemma 2.4 (generalized Halanay inequality [37]). For two positive-valued functions a(t) and
b(t) defined on [t0∞), assume there exists a constant number 0 ≤ μ < 1 satisfying 0 < a0 ≤ a(t), 0 <
b(t) ≤ μa(t) hold for all t ≥ t0; y(t) is nonnegative continuous function on [t0 − τ,∞) and satisfies
the following inequality:

d+y(t) ≤ −a(t)y(t) + b(t)y(t) for t ≥ t0, (2.14)

where y(t) = supt−τ≤s≤ty(s); τ ≥ 0 is constant. Then one has

y(t) ≤ y(t0)e−λ
∗(t−t0), (2.15)
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where λ∗ > 0 is defined as

λ∗ = inf
t≥t0

{
λ(t) : λ = a(t) − b(t)eλτ

}
. (2.16)

3. Main Results

Theorem 3.1. Under assumptions (H1), (H2), (H3), (H4), (H5), if there exist a positive diagonal
matrix Q = diag (q1, . . . , qn), constants νk > 0 (k = 1, . . . , k1), μk > 0 (k = 1, . . . , k2), ρk > 0 (k =
1, . . . , k3), ξij , ξ∗ij ,ηij , η

∗
ij , mij ,m

∗
ij , pij , p

∗
ij ,qij , q

∗
ij ∈ R, 0 < λ2, and 0 ≤ μ < 1, such that

0 < λ2 ≤ λ2(t) ≤ μλ1(t), holds for all t ≥ t0, (3.1)

where

λ1(t) = min
1≤i≤n

⎧
⎨
⎩pαiγi(t) −

n∑
j=1

αi

k1∑
k=1

νk
∣∣aij(t)

∣∣pξij/νkGpηij/νk
j

− 1
qi

n∑
j=1

qjαj
∣∣aji(t)

∣∣pξ∗jiGpη∗ji
i −

n∑
j=1

αi

k2∑
k=1

μk
∣∣bij(t)

∣∣ppij/μkGpqij/μk
j

−
p
(
p − 1

)

2

n∑
j=1

c0
ij(t) −

p − 1
2

n∑
j=1

k3∑
k=1

ρk
∣∣∣c1
ij(t)

∣∣∣
pmij/ρk

⎫
⎬
⎭,

λ2(t) = max
1≤i≤n

⎡
⎣

n∑
j=1

qj

qi
αj
∣∣bji(t)

∣∣pp∗jiGpq∗ji
i +

(
p − 1

) n∑
j=1

qj

qi

(
c1
ji(t)

)pm∗ji/2

⎤
⎦

(3.2)

p =
∑k1

j=1 νk+1 =
∑k2

j=1 μk+1 =
∑k3

j=1 ρk+2, k1ξij+ξ∗ij = 1, k1ηij+η∗ij = 1, k2pij+p∗ij = 1, k2qij+q∗ij = 1,

k3mij +m∗ij = 1, k3mij +m∗ij = 1, then for all ξ ∈ LpF0
([−τ, 0], Rn), the trivial solution of system (1.4)

is pth moment exponentially stable, where p ≥ 2 is a constant.

Proof. Consider the following Lyapunov function:

V
(
t, y(t)

)
=
∫

Ω

n∑
i=1

qi
∣∣yi(x, t)

∣∣pdx. (3.3)
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Applying Itô formula to V (t, y(t)), for δ > 0, we can get

V
(
t + δ, y(t + δ)

)
− V

(
t, y(t)

)

=
∫ t+δ
t

Vt
(
s, y(s)

)
ds

+
∫ t+δ
t

Vy
(
s, y(s)

)
⎧
⎨
⎩

m∑
k=1

∂

∂xk

(
Dik

∂yi
∂xk

)
−αi

(
yi(x, s)

)
⎡
⎣βi

(
yi(x, s)

)
−

n∑
j=1

aij(s)gj
(
yj(x, s)

)

−
n∑
j=1

bij(s)gj
(
yj
(
x, s − τj(s)

))
⎤
⎦
⎫
⎬
⎭ds

+
∫ t+δ
t

Vy
(
s, y(s)

) n∑
j=1

σij
(
s, yi(x, s), yj

(
x, s − τj(s)

))
dωj(s) +

∫ t+δ
t

1
2

trace
(
σTVyyσ

)
ds

≤
∫ t+δ
t

∫

Ω
p

n∑
i=1

qi
∣∣∣yp−2

i (x, s)
∣∣∣yi(x, s)

×

⎧
⎨
⎩

m∑
k=1

∂

∂xk

(
Dik

∂yi
∂xk

)
− αi

(
yi(x, s)

)
⎡
⎣βi

(
yi(x, s)

)
−

n∑
j=1

aij(s)gj
(
yj(x, s)

)

−
n∑
j=1

bij(s)gj
(
yj
(
x, s − τj(s)

))
⎤
⎦
⎫
⎬
⎭dxds

+
∫ t+δ
t

Vy
(
s, y(s)

) n∑
j=1

σij
(
s, yi(x, s), yj

(
x, s − τj(s)

))
dωj(s) +

∫ t+δ
t

1
2

trace
(
σTVyyσ

)
ds

≤
∫ t+δ
t

∫

Ω
p

⎧
⎨
⎩

n∑
i=1

qi
∣∣∣yp−1

i (x, s)
∣∣∣
m∑
k=1

∂

∂xk

(
Dik

∂yi
∂xk

)
−

n∑
i=1

qiαiγi(s)
∣∣∣ypi (x, s)

∣∣∣

+
n∑
i=1

n∑
j=1

qiαiGj

∣∣∣aij(s)yp−1
i (x, s)yj(x, s)

∣∣∣

+
n∑
i=1

n∑
j=1

qiαiGj

∣∣∣bij(s)yp−1
i (x, s)yj

(
x, s − τj(s)

)∣∣∣
⎫
⎬
⎭dxds

+ p
∫ t+δ
t

∫

Ω

n∑
i=1

n∑
j=1

qi
∣∣∣yp−1

i (x, s)
∣∣∣σij

(
s, yi(x, s), yj

(
x, s − τj(s)

))
dxdωj(s)

+
∫ t+δ
t

∫

Ω

p
(
p − 1

)

2
qi

n∑
i=1

n∑
j=1

[
c0
ij(s)

∣∣∣ypi (x, s)
∣∣∣ + c1

ij(s)
∣∣∣yp−2

i (x, s)y2
j

(
x, s − τj(s)

)∣∣∣
]
dxds.

(3.4)
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From the boundary condition, we get

m∑
k=1

∫

Ω
y
p−1
i

∂

∂xk

(
Dik

∂yi
∂xk

)
dx

=
∫

Ω
y
p−1
i ∇ ·

(
Dik

∂yi
∂xk

)m

k=1
dx

=
∫

Ω
∇ ·

(
y
p−1
i Dik

∂yi
∂xk

)m

k=1
dx −

∫

Ω

(
Dik

∂yi
∂xk

)m

k=1
· ∇yp−1

i dx

=
∫

∂Ω

((
y
p−1
i Dik

∂yi
∂xk

))m

k=1
· dS −

∫

Ω

(
Dik

∂yi
∂xk

)m

k=1
· ∇yp−1

i dx

= −
∫

Ω

(
Dik

∂yi
∂xk

)m

k=1
· ∇yp−1

i dx,

(3.5)

in which, ∇ = (∂/∂x1, . . . , ∂/∂xm)
T is the gradient operator, and

(
Dik

∂yi
∂xk

)m

k=1
=
(
Di1

∂yi
∂x1

, . . . , Dim
∂yi
∂xm

)T

. (3.6)

On the other hand, from Lemma 2.3, we have

pGj

∣∣∣aij(s)yp−1
i (x, s)yj(x, s)

∣∣∣

= p
k1∏
k=1

(∣∣aij(s)
∣∣ξij/νkGηij/νk

j

∣∣yi(x, s)
∣∣)νk∣∣aij(s)

∣∣ξ∗ijGη∗ij
j

∣∣yj(x, s)
∣∣

≤
k1∑
k=1

νk
∣∣aij(s)

∣∣pξij/νkGpηij/νk
j

∣∣yi(x, s)
∣∣p + ∣∣aij(s)

∣∣pξ∗ijGpη∗ij
j

∣∣yj(x, s)
∣∣p,

(3.7)

pGj

∣∣∣bij(s)yp−1
i (x, s)yj

(
x, s − τj(s)

)∣∣∣

= p
k2∏
k=1

(∣∣bij(s)
∣∣pij/μkGqij/μk

j

∣∣yi(x, s)
∣∣)μk ∣∣bij(s)

∣∣p∗ijGq∗ij
j

∣∣yj
(
x, s − τj(s)

)∣∣

≤
k2∑
k=1

μk
∣∣bij(s)

∣∣ppij/μkGpqij/μk
j

∣∣yi(x, s)
∣∣p + ∣∣bij(s)

∣∣pp∗ijGpq∗ij
j

∣∣yj
(
x, s − τj(s)

)∣∣p,

(3.8)

p
(
p − 1

)

2
c1
ij(s)

∣∣∣ yp−2
i (x, s)y2

j

(
x, s − τj(s)

)∣∣∣

=
p
(
p − 1

)

2

k3∏
k=1

(∣∣∣c1
ij(s)

∣∣∣
mij/ρk∣∣yi(x, s)

∣∣
)ρk(∣∣∣c1

ij(s)
∣∣∣
m∗ij/2∣∣yj

(
x, s − τj(s)

)∣∣
)2

≤
p − 1

2

k3∑
k=1

ρk
∣∣∣c1
ij(s)

∣∣∣
pmij/ρk∣∣yi(x, s)

∣∣p + (p − 1
)∣∣∣c1

ij(s)
∣∣∣
pm∗ij/2∣∣yj

(
x, s − τj(s)

)∣∣p.

(3.9)
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It follows from (3.4), (3.5), (3.7), (3.8), and (3.9) that

V
(
t + δ, y(t + δ)

)
− V

(
t, y(t)

)

≤
∫ t+δ
t

∫

Ω

⎧
⎨
⎩ −

n∑
i=1

qipαiγi(s)
∣∣yi(x, s)

∣∣p

+
n∑
i=1

n∑
j=1

qiαi

[
k1∑
k=1

νk|aij(s)|pξij/νkG
pηij/νk
j

∣∣yi(x, s)
∣∣p + ∣∣aij(s)

∣∣pξ∗ijGpη∗ij
j

∣∣yj(x, s)
∣∣p
]

+
n∑
i=1

n∑
j=1

qiαi

[
k2∑
k=1

μk
∣∣bij(s)

∣∣ppij/μkGpqij/μk
j

∣∣yi(x, s)
∣∣p

+
∣∣bij(s)

∣∣pp∗ijGpq∗ij
j

∣∣yj
(
x, s − τj(s)

)∣∣p
]⎫⎬
⎭dxds

+ p
∫ t+δ
t

∫

Ω

n∑
i=1

n∑
j=1

qi
∣∣yi(x, s)

∣∣p−1
σij
(
s, yi(x, s), yj

(
x, s − τj(s)

))
dxdωj(s)

+
∫ t+δ
t

∫

Ω
qi

⎧
⎨
⎩

n∑
i=1

n∑
j=1

p
(
p − 1

)

2
c0
ij(s)

∣∣yi(x, s)
∣∣p

+
n∑
i=1

n∑
j=1

[
p − 1

2

k3∑
k=1

ρk
∣∣∣c1
ij(s)

∣∣∣
pmij/ρk∣∣yi(x, s)

∣∣p

+
(
p − 1

)∣∣∣c1
ij(s)

∣∣∣
pm∗ij/2∣∣yj

(
x, s − τj(s)

)∣∣p
]⎫⎬
⎭dxds

≤
∫ t+δ
t

−min
1≤i≤n

⎧
⎨
⎩pαiγi(s) −

n∑
j=1

αi

k1∑
k=1

νk
∣∣aij(s)

∣∣pξij/νkGpηij/νk
j −

n∑
j=1

qj

qi
αj
∣∣aji(s)

∣∣pξ∗jiGpη∗ji
i

−
n∑
j=1

αi

k2∑
k=1

μk
∣∣bij(s)

∣∣ppij/μkGpqij/μk
j −

p
(
p − 1

)

2

n∑
j=1

c0
ij(s)

−
p − 1

2

n∑
j=1

k3∑
k=1

ρk
∣∣∣c1
ij(s)

∣∣∣
pmij/ρk

⎫
⎬
⎭V

(
s, y(s)

)
ds

+ p
∫ t+δ
t

∫

Ω

n∑
i=1

n∑
j=1

qi
∣∣yi(x, s)

∣∣p−1
σij
(
s, yi(x, s), yj

(
x, s − τj(s)

))
dxdωj(s)

+
∫ t+δ
t

max
1≤i≤n

⎧
⎨
⎩

n∑
j=1

qj

qi
αj
∣∣bji(s)

∣∣pp∗jiGpq∗ji
i +

(
p − 1

) n∑
j=1

qj

qi

(
c1
ji(s)

)pm∗ji/2

⎫
⎬
⎭V

(
s − τ(s), y(s−τ(s))

)
ds.

(3.10)
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By [38, Theorem 4.2.8], we know that

E

∫ t+δ
t

∫

Ω

n∑
i=1

n∑
j=1

qi
∣∣yi(x, s)

∣∣p−1
σij
(
s, yi(x, s), yj

(
x, s − τj(s)

))
dxdωj(s) = 0. (3.11)

Therefore, taking expectation on both sides of (3.10), the preceding result leads directly to

EV
(
t + δ, y(t + δ)

)
− EV

(
t, y(t)

)

≤
∫ t+δ
t

−min
1≤i≤n

⎧
⎨
⎩pαiγi(s) −

n∑
j=1

αi

k1∑
k=1

νk
∣∣aij(s)

∣∣pξij/νkGpηij/νk
j

−
n∑
j=1

qj

qi
αj
∣∣aji(s)

∣∣pξ∗jiGpη∗ji
i −

n∑
j=1

αi

k2∑
k=1

μk
∣∣bij(s)

∣∣ppij/μkGpqij/μk
j

−
p
(
p − 1

)

2

n∑
j=1

c0
ij(s) −

p − 1
2

n∑
j=1

k3∑
k=1

ρk
∣∣∣c1
ij(s)

∣∣∣
pmij/ρk

⎫
⎬
⎭EV

(
s, y(s)

)
ds

+
∫ t+δ
t

max
1≤i≤n

⎧
⎨
⎩

n∑
j=1

qj

qi
αj
∣∣bji(s)

∣∣pp∗jiGpq∗ji
i +

(
p−1

) n∑
j=1

qj

qi

(
c1
ji(s)

)pm∗ji/2

⎫
⎬
⎭

× EV
(
s − τ(s), y(s − τ(s))

)
ds.

(3.12)

By the mean value theorem for integrals, we have

d+EV
(
t, y(t)

)
≤ −λ1(t)EV

(
t, y(t)

)
+ λ2(t) sup

t−τ≤s≤t
EV

(
s, y(s)

)
. (3.13)

By Lemma 2.4, we get

EV
(
t, y(t)

)
≤ sup

t0−τ≤s≤t0
EV

(
s, y(s)

)
e−λ

∗(t−t0), (3.14)

where λ∗ > 0 is defined as

λ∗ = inf
t≥t0

{
λ(t) : λ = λ1(t) − λ2(t)eλτ

}
. (3.15)
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That is to say

E
∥∥y(φ, t)∥∥p < GE∥∥φ∥∥pe−λ∗(t−t0), on t ≥ t0, (3.16)

where

G =
max1≤i≤n{mi}
min1≤i≤n{mi}

. (3.17)

Therefore, the trivial solution of system (1.4) is pth moment exponentially stable.
Furthermore, just as discussed in [39, pp. 173–180], the trivial solution of (1.4) is also almost
surely exponentially stable. Theorem 3.1 also shows that the reaction-diffusion term has no
influence on the stability for system (1.4).

In Theorem 3.1, if we take k1 = k2 = k3 = 1, νk = μk = p − 1, ρk = p − 2, ξij = ηij = pij =
qij = (p − 1)/p, mij = μk = (p − 2)/p, ξ∗ij = η∗ij = p∗ij = q∗ij = 1/p, m∗ij = μk = 2/p, we have the
following result.

Corollary 3.2. Under assumptions (H1), (H2), (H3), (H4), (H5), if there exist a positive diagonal
matrix Q = diag(q1, . . . , qn), 0 < λ2, and 0 ≤ μ < 1, such that

0 < λ2 ≤ λ2(t) ≤ μλ1(t), holds for all t ≥ t0, (3.18)

where

λ1(t) = min
1≤i≤n

⎧
⎨
⎩pαiγi(t) −

(
p − 1

) n∑
j=1

αi
∣∣aij(t)

∣∣Gj

− 1
qi

n∑
j=1

αjqj
∣∣aji(t)

∣∣Gi −
(
p − 1

) n∑
j=1

αi
∣∣bij(t)

∣∣Gj

−
p
(
p − 1

)

2

n∑
j=1

c0
ij(t) −

(
p − 1

)(
p − 2

)

2

n∑
j=1

c1
ij(t)

⎫
⎬
⎭,

λ2(t) = max
1≤i≤n

⎡
⎣

n∑
j=1

qj

qi

∣∣bji(t)
∣∣αjGi +

(
p − 1

) n∑
j=1

qj

qi
c1
ji(t)

⎤
⎦,

(3.19)

then for all ξ ∈ L
p

F0
([−τ, 0], Rn), the trivial solution of system (1.4) is pth moment exponentially

stable, where p ≥ 2 is a constant.
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When aij(t) ≡ aij , bij(t) ≡ bij , model (1.4) is reduced to the following stochastic
reaction-diffusion Cohen-Grossberg neural networks with time-varying delays:

dyi(x, t) =
m∑
k=1

∂

∂xk

(
Dik

∂yi
∂xk

)
dt − αi

(
yi(x, t)

)

×

⎡
⎣βi

(
yi(x, t)

)
−

n∑
j=1

aijgj
(
yj(x, t)

)
−

n∑
j=1

bijgj
(
yj
(
x, t − τj(t)

))
⎤
⎦dt

+
n∑
j=1

σij
(
t, yi(x, t), yj

(
x, t − τj(t)

))
dωj(t),

(3.20)

Corollary 3.3. Under assumptions (H1), (H2), (H ′3), (H
′
4), (H5), if there exist a positive diagonal

matrix Q = diag(q1, . . . , qn), constants νk > 0 (k = 1, . . . , k1), μk > 0 (k = 1, . . . , k2), ρk > 0 (k =
1, . . . , k3), ξij , ξ∗ij ,ηij , η

∗
ij , mij ,m

∗
ij , pij , p

∗
ij ,qij , q

∗
ij ∈ R, such that

λ2 < λ1, (3.21)

where

λ1 = min
1≤i≤n

⎧
⎨
⎩pαiγi −

n∑
j=1

αi

k1∑
k=1

νk
∣∣aij

∣∣pξij/νkGpηij/νk
j − 1

qi

n∑
j=1

qjαj
∣∣aji

∣∣pξ∗jiGpη∗ji
i

−
n∑
j=1

αi

k2∑
k=1

μk
∣∣bij

∣∣ppij/μkGpqij/μk
j −

p
(
p − 1

)

2

n∑
j=1

c0
ij −

p − 1
2

n∑
j=1

k3∑
k=1

ρk
∣∣∣c1
ij

∣∣∣
pmij/ρk

⎫
⎬
⎭,

(3.22)

λ2 = max
1≤i≤n

⎡
⎣

n∑
j=1

qj

qi
αj
∣∣bji

∣∣pp∗jiGpq∗ji
i +

(
p − 1

) n∑
j=1

qj

qi

(
c1
ji

)pm∗ji/2

⎤
⎦, (3.23)

p =
∑k1

j=1 νk+1 =
∑k2

j=1 μk+1 =
∑k3

j=1 ρk+2, k1ξij+ξ∗ij = 1, k1ηij+η∗ij = 1, k2pij+p∗ij = 1, k2qij+q∗ij = 1,

k3mij +m∗ij = 1, k3mij +m∗ij = 1, then for all ξ ∈ LpF0
([−τ, 0], Rn), the trivial solution of system (3.20)

is pth moment exponentially stable, where p ≥ 2 is a constant.

In Corollary 3.3, if we take k1 = k2 = k3 = 1, νk = μk = p − 1, ρk = p − 2, ξij = ηij = pij =
qij = (p − 1)/p, mij = μk = (p − 2)/p, ξ∗ij = η∗ij = p∗ij = q∗ij = 1/p, m∗ij = μk = 2/p, we have the
following result.
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Corollary 3.4. Under assumptions (H1), (H2), (H ′3), (H
′
4), (H5), if there exists a positive diagonal

matrix Q = diag(q1, . . . , qn), such that

λ1 > λ2, (3.24)

where

λ1 = min
1≤i≤n

⎧
⎨
⎩pαiγi −

(
p − 1

) n∑
j=1

αi
∣∣aij

∣∣Gj −
1
qi

n∑
j=1

αjqj
∣∣aji

∣∣Gi

−
(
p − 1

) n∑
j=1

αi
∣∣bij

∣∣Gj −
p
(
p − 1

)

2

n∑
j=1

c0
ij −

(
p − 1

)(
p − 2

)

2

n∑
j=1

c1
ij

⎫
⎬
⎭,

λ2 = max
1≤i≤n

⎡
⎣ 1
qi

n∑
j=1

qj
∣∣bji

∣∣αjGi +
(
p − 1

) 1
qi

n∑
j=1

qjc
1
ji

⎤
⎦,

(3.25)

then for all ξ ∈ LpF0
([−τ, 0], Rn), the trivial solution of system (3.20) is pth moment exponentially

stable.

Remark 3.5. Model (3.20) has been studied in [40] and the main results in [40, Theorem 1,
Corollaries 1 and 2] are the direct results of Corollary 3.4 in our paper when we choose p = 2.

Remark 3.6. When Dik = 0 (i = 1, n, k = i, . . . , m) system (3.20) is reduced to the stochastic
Cohen-Grossberg neural networks (1.3), which has been studied in [24, 28]. Unfortunately,
the assumed condition (A2) in [28] is not correct, a defect appearing in the main result in [28]
when p = 2k + 1, k ∈ Z+, x(t) < 0, just from the constructed Lyapunov function, one can find
that the term “xp/2(t)” is a blemish. The constructed Lyapunov function should be replaced
with V (t, x(t)) =

∑n
i=1 qi|xi(t)|

p. Noticing that ∂|xi(t)|p/∂xi = p|xi|p−1 sgn {xi} = p|xi|p−2xi, we
have (∂|xi(t)|p/∂xi)βi(xi(t)) = p|xi|p−2xiβi(xi(t)), so the assumed condition (A2) should be
revised as (H ′3). On the other hand, there is an error appear in (1.3), the coefficient of λ1, the
term “(p − 1)(p − 2)” should be replaced with ((p − 1)(p − 2))/2, therefore, the main results
obtained in [28] are somewhat errors. Obviously, Theorem 3.1 in our paper modifies and
generalizes the main results in [28] greatly. Just choosing p = 2, one can get a set of corollary
easily, which also generalizes the main results in [24].

Remark 3.7. When Dik = 0 (i = 1, n, k = i, . . . , m), σij(t, ·, ·) = 0, system (1.4) is reduced
to a deterministic Cohen-Grossberg neural networks with time-varying delays model, just
choosing some special parameters, using Theorem 3.1, one can get a set of corollary easily,
which also generalizes some corresponding results in [4].

4. An Illustrative Example

In this section, a numerical example is presented to illustrate the correctness of our main
result.
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Example 4.1. Consider a two-dimensional stochastic reaction-diffusion Cohen-Grossberg
neural networks with time-varying delays as follows:

dy(t) =

⎛
⎜⎜⎜⎜⎝

2∑
k=1

∂

∂xk

(
D1k

∂y1

∂xk

)

2∑
k=1

∂

∂xk

(
D2k

∂y2

∂xk

)

⎞
⎟⎟⎟⎟⎠

dt −
(
α1
(
y1(x, t)

)
, 0

0 α2
(
y2(x, t)

)
)

×
[(

β1
(
y1(x, t)

)
, 0

0 β2
(
y2(x, t)

)
)(

y1(t)

y2(t)

)
−
(
a11(t), a12(t)

a21(t), a22(t)

)(
tanh

(
y1(t)

)

tanh
(
y2(t)

)
)

−
(
b11(t), b12(t)

b21(t), b22(t)

)(
tanh

(
y1(t − τ1(t))

)

tanh
(
y2(t − τ2(t))

)
)]

dt

+ σ
(
t, y(t), y(t − τ(t))

)
dw(t), t ≥ 0,

(4.1)

where α1(y1(x, t)) = 3 + sin(y1(x, t)), α2(y2(x, t)) = 3 − cos(y2(x, t)), β1(y1(x, t)) = (4 +
(3t/100))(y1(x, t)), β2(y2(x, t)) = (5 + (3t/100))(y2(x, t)), a11(t) = −1/8 − t/100, a12(t) =
1/4, a21(t) = 3/4, a22(t) = −1/4 − (1/200)t, b11(t) = −1/8 − (1/1600)t, b12(t) = 1/4, b21(t) =
1/8, b22(t) = −1/4 − (1/1600)t, τi(t) is a bounded positive function and σ : R+ × R2 × R2 →
R2 × R2 satisfies

trace
[
σT (t, u, v)σ(t, u, v)

]
≤ u2

1 + u
2
2 + v

2
1 + v

2
2 . (4.2)

In the example, let p = 4, Dik be a positive constant, take c0
ij = c1

ij = qi ≡ 1, by simple
computation, we get

∫

Ω
Dik

(
∂yi
∂xk

)2

k=1
· ∇y4−1

i dx =
2∑
k=1

∫

Ω
3y2

i Dik

(
∂yi
∂xk

)2

dx > 0. (4.3)

According to Corollary 3.2, one can get that

λ1(t) = min
1≤i≤n

⎧
⎨
⎩pαiγi(t) −

(
p − 1

) n∑
j=1

αi
∣∣aij(t)

∣∣Gj

− 1
qi

n∑
j=1

αjqj
∣∣aji(t)

∣∣Gi −
(
p − 1

) n∑
j=1

αi
∣∣bij(t)

∣∣Gj

−
p
(
p − 1

)

2

n∑
j=1

c0
ij(t) −

(
p − 1

)(
p − 2

)

2

n∑
j=1

c1
ij(t)

⎫
⎬
⎭ =

23
2

+
29

400
t,

(4.4)
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Figure 1: Numerical solution E(y4
1(t)), E(y

4
2(t)) of system (4.1).

λ2(t) = max
1≤i≤n

⎡
⎣

n∑
j=1

qj

qi

∣∣bji(t)
∣∣αjGi +

(
p − 1

) n∑
j=1

qj

qi
c1
ji(t)

⎤
⎦ =

15
2

+
t

400
, (4.5)

using Corollary 3.2, system (4.1) is 4th moment exponential stable.

Remark 4.2. One can find that models considered in [20, 22–29] are special cases of model
(1.4). To the best of our knowledge, few authors have considered the pth moment exponential
stability for Stochastic reaction-diffusion Neural Networks with time-varying connection
matrix and delays. It is assumed in [22, 23, 25, 26] that delays are constants, the delay
functions appear in [29] are differential and their derivatives are simultaneously required
to be not greater than 1, the activation functions appear in [22, 26] are bounded. Obviously,
we have dropped out these basic assumptions in this paper.

It is obvious that the results in [20–30] and the references therein cannot be applicable
to system (4.1) even if we remove the reaction-diffusion terms from the system for the
connection matrix and delays considered in this example are time-varying. This implies that
the results of this paper are essentially new. Just choose x ≡ constant these conclusions can
be verified by the numerical simulations shown in Figure 1.

5. Conclusions

In this paper, stochastic Cohen-Grossberg neural networks with time-varying delays and
reaction-diffusion have been investigated. All features of stochastic systems (especially the
connection matrices and delays are time-varying) reaction-diffusion systems have been taken
into account in the neural networks. Without requiring the differential and monotonicity
of the activation functions and the symmetry of the connection matrices, a set of new
sufficient conditions for checking pth moment exponential stability of the trivial solution
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of the considered system is presented by using of Lyapunov function, stochastic analysis
technique, and the generalized Halanay inequality. The proposed results generalized and
improved some of the earlier published results greatly. The results obtained in this paper are
independent of the magnitude of delays and diffusion effect, which implies that strong self-
regulation is dominant in the networks. In addition, the methods used in this paper are also
applicable to other neural networks, such as stochastic Hopfield neural networks with time-
varying delays and reaction-diffusion terms and stochastic bidirectional associative memory
(BAM) neural networks with time-varying delays and reaction-diffusion terms. If we remove
the noise and reaction-diffusion terms from the system, the derived conditions for stability of
general deterministic neural networks can be viewed as byproducts of our results.
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