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1. Introduction and Main Results

Let F be a real separable Banach space equipped with a probability measure μ on the Borel
sets of F. Let H be another normed space such that F is continuously embedded in H. By
‖ · ‖ we denote the norm in H. Any A : F → H such that f �→ ‖f − A(f)‖ is a measurable
mapping is called an approximation operator (or just approximation). The p-average error of
A is defined as

ep(A,H) =
(∫

F

‖f −A(f)‖pμ(df)
)1/p

. (1.1)

Since in practice the underlying function is usually given via its (exact or noisy) values
at finitely many points, the approximation operator A(f) is often considered depending
on some function values about f only. Many papers such as [1–4] studied the complexity
of computing an ε-approximation in average case setting. Noticed that the polynomial
interpolation operators are important approximation tool in the continuous functions space,
and they are depending on some function values about f only, we want to know the average
error for some polynomial interpolation operators in the Wiener measure. Now we turn to
describe the contents in detail.
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Let X be the space of continuous function f defined on [0, 1] such that f(0) = 0. The
space X is equipped with the sup norm. The Wiener measure ω is uniquely defined by the
following property:

ω
(
f ∈ X :

(
f(t1), . . . , f(tn)

) ∈ B
)
=

n∏
j=1

1√
2π
(
tj − tj−1

)
∫
B

e
∑n

j=1(−(uj−uj−1)
2/2(tj−tj−1))du1 · · ·dun,

(1.2)

for every n ≥ 1, B ∈ B(Rn), where B(Rn) denote the set class of all Borel measurable subsets
of Rn, and 0 = t0 < t1 < · · · < tn ≤ 1 with u0 = 0. Its mean is zero, and its correlation operator
is given by Lx1(CωLx2) = min{x1, x2} for Lxi(f) = f(xi), that is,

∫
X

f(x1)f(x2)ω
(
df
)
= min{x1, x2}, ∀x1, x2 ∈ [0, 1]. (1.3)

In this paper, we specify F = {f ∈ C[−1, 1] : g(t) = f(2t − 1) ∈ X}, and for every
measurable subset A ⊂ F, we define

μ(A) = ω
({

g(t) = f(2t − 1), f ∈ A
})

. (1.4)

For 1 ≤ p < ∞, denote by Lp the linear normed space of Lp-integrable function f on
[−1, 1] with the following finite norm:

‖f‖p =

(∫1

−1
|f(x)|pdx

)1/p

. (1.5)

Let

tk = tkn = cos
2k − 1
2n

π, k = 1, . . . , n (1.6)

be the zeros of Tn(x) = cosnθ (x = cos θ), the nth degree Tchebycheff polynomial of the first
kind. The well-known Grünwald interpolation polynomial of f based on {tk}nk=1 is given by
(see [5])

Gn

(
f, x
)
=

n∑
k=1

f(tk)l2k(x), (1.7)

where

lk(x) =
(−1)k+1

√
1 − t2kTn(x)

n(x − tk)
, k = 1, . . . , n. (1.8)



Discrete Dynamics in Nature and Society 3

Theorem 1.1. Let Gn(f, x) be defined as above. Then

ep
(
Gn, Lp

) �
⎧⎪⎪⎨
⎪⎪⎩

1√
n
, 1 ≤ p ≤ 4,

1
n2/p

, p ≥ 4,
(1.9)

where in the following A(n) � B(n) means that there exists C independent of n such that A(n)/C ≤
B(n) ≤ CA(n), and the constant C may be different in the same expression.

By Hölder inequality, combining Theorem 1.1 with paper [2] we know that for 1 ≤
p, q ≤ 4,

ep
(
Gn, Lq

) � 1√
n
. (1.10)

Remark 1.2. Denote by Pn the set of algebraic polynomials of degree ≤ n. For f ∈ F, let
Tnf denote the best Lq-approximation polynomial of f from Pn. Then the p-average error of
the best Lq-approximation of continuous functions by polynomials from Pn over the Wiener
space is given by

ep
(
Tn, Lq

)
=
(∫

F

‖f − Tnf‖pqμ(df)
)1/p

. (1.11)

By Theorem 1.1 and paper [6] we can obtain that for 2 ≤ q ≤ 4 and 1 ≤ p ≤ 4, we have

ep
(
Gn, Lq

) � ep
(
Tn, Lq

) � 1√
n
. (1.12)

Remark 1.3. Let us recall some fundamental notions about the information-based complexity
in the average case setting. Let F be a set with a probability measure μ, and let G be a
normed linear space with norm ‖ · ‖. Let S be a measurable mapping from F into G which
is called a solution operator. Let N be a measurable mapping from F into Rn, and let φ be
a measurable mapping from Rn into G which are called an information operator and an
algorithm, respectively. For 1 ≤ p < +∞, the p-average error of the approximation φ ◦ N
with respect to the measure μ is defined by

ep
(
S,N, φ, ‖ · ‖) :=

(∫
F

‖Sf − φ(N(f))‖pμ(df)
)1/p

, (1.13)

and the p-average radius of information N with respect to μ is defined by

rp(S,N, ‖ · ‖) := inf
φ
ep
(
S,N, φ, ‖ · ‖), (1.14)
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where φ ranges over the set of all algorithms. Futhermore, let Λ denote a class of permissible
information functional and denote NΛ

n the set of nonadaptive information operators N from
Λ of cardinality n, that is,

N
(
f
)
=
(
L1
(
f
)
, L2
(
f
)
, . . . , Ln

(
f
))
, Li ∈ Λ, i = 1, . . . , n. (1.15)

Let

rp(n, S,Λ, ‖ · ‖) = inf
N∈NΛ

n

rp(S,N, ‖ · ‖), (1.16)

denote the nth minimal p-average radius of nonadaptive information in the class Λ.

For example, if F and μ are defined as above, S is the identity mapping I, and Λ
is consist of function evaluations at fixed point; then by [2] we know that for Lq-norm
approximation, if 1 ≤ p, q < ∞, we have

rp
(
n, I,Λ, Lq

) � 1√
n
. (1.17)

It is easy to understand that Gn(f, x) can be viewed as a composition of a nonadaptive
information operator from NΛ

n and a linear algorithm, and for 1 ≤ p, q ≤ 4,

ep
(
Gn, Lq

) � rp
(
n, I,Λ, Lq

)
. (1.18)

In comparison with the result of Theorem 1.1, we consider the following Grünwald
interpolation. Let

xk = xkn = cos
kπ

n + 1
, k = 1, . . . , n (1.19)

be the zeros of un(x) = sin(n + 1)θ/ sin θ, (x = cos θ), the nth Tchebycheff polynomial of the
second kind. The Grünwald interpolation polynomial of f based on {xk}nk=1 is given by

Gn

(
f, x
)
=

n∑
k=1

f(xk)l
2
k(x), (1.20)

where

lk(x) =
un(x)

u′
n(xk)(x − xk)

=
(−1)k+1(1 − x2

k

)
un(x)

(n + 1)(x − xk)
, k = 1, . . . , n. (1.21)

Theorem 1.4. Let Gn(f, x) be defined as above. Then

e2
(
Gn, L2

)
� 1. (1.22)
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2. The Proof of Theorem 1.1

We consider the upper estimate first. From [7, page 107, (28)] we obtain

e
p
p

(
Gn, ‖ · ‖p

)
= v

p
p ·
∫1

−1

(∫
F

∣∣f(x) −Gn(f, x)
∣∣2μ(df)

)p/2

dx, (2.1)

where vp
p is the pth absolute moment of the standard normal distribution. It is easy to verify

f(x) −Gn

(
f, x
)
=

(
1 −

n∑
k=1

l2k(x)

)
f(x) +

n∑
k=1

(
f(x) − f(tk)

)
l2k(x). (2.2)

From (2.2) and Hölder inequality we can obtain

∫
F

|f(x) −Gn(f, x)|2μ
(
df
) ≤ 2

(
1 −

n∑
k=1

l2k(x)

)2∫
F

f2(x)μ
(
df
)

+ 2
∫
F

(
n∑

k=1

(f(x) − f(tk))l2k(x)

)2

μ
(
df
)

= 2I1(x) + 2I2(x).

(2.3)

By (1.3)we obtain

∫
F

f2(x)μ
(
df
)
=
∫
X

g2
(
1 + x

2

)
ω
(
dg
)
=

1 + x

2
. (2.4)

Let x = cos θ, then it is easy to verify

n∑
k=1

l2k(x) − 1 =
Tn(x)
n2

(
xT ′

n(x) − nTn(x)
)
=

cosnθ sin(n − 1)θ
n sin θ

. (2.5)

By (2.4), (2.5), and a simple computation we can obtain

∫1

−1
|I1(x)|p/2dx ≤ 1

np

∫π

0

| cosnθ sin(n − 1)θ|p
| sin θ|p−1

dθ

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
np

, 1 ≤ p ≤ 2,

lnn
np

, p = 2,

1
n2

, p > 2.

(2.6)
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By (1.3), it is easy to verify that for k ≥ j,

∫
F

(
f(x) − f(tk)

)(
f(x) − f

(
tj
))
μ
(
df
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tk − x

2
, x < tk,

0, tk ≤ x ≤ tj ,

x − tj

2
, x > tj .

(2.7)

Let t0 = 1, tn+1 = −1. From (2.7) and a simple computation we know that for x ∈ [tm+1, tm],
m = 0, . . . , n,

I2(x) =
1
2

n∑
k=1

|x − tk|l4k(x) +
n−1∑

k=s+1

(x − tk)l2k(x)
n∑

j=k+1

l2j (x) +
m∑
k=1

(tk − x)l2k(x)
k−1∑
j=1

l2j (x)

= J1(x) + J2(x) + J3(x).

(2.8)

From [8] we know
∑n

k=1l
2
k
(x) ≤ 2, hence

n∑
k=1

l
p

k(x) ≤ C, ∀p ≥ 2. (2.9)

From (1.8) it follows that

|(x − xk)lk(x)| ≤ 1
n
, k = 1, . . . , n. (2.10)

From (2.7) and (2.10) it follows that

|J1(x)| ≤ 1
2n

n∑
k=1

∫1

−1

∣∣∣l3k(x)
∣∣∣dx ≤ C

n
. (2.11)

From (2.10) it follows that

J2(x) ≤ 1
n

n−1∑
j=m+1

∣∣lj(x)∣∣
n∑

k=j+1

l2k(x). (2.12)
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Let x = cos θ, we have

n−1∑
j=m+1

∣∣lj(x)∣∣
n∑

k=j+1

l2k(x) =
n−1∑

j=m+1

∣∣∣∣∣
sin
((
2j − 1

)
π/2n

)
cosnθ

n
(
cos θ − cos

((
2j − 1

)
π/2n

))
∣∣∣∣∣

×
n∑

k=j+1

sin2((2k − 1)π/2n)cos2nθ

n2(cos θ − cos((2k − 1)π/2n))2

≤ 1
n3

n−1∑
j=m+1

∣∣∣∣∣
sin
((
2j − 1

)
π/2n

)
(
cos((2m − 1)π/2n) − cos

((
2j − 1

)
π/2n

))
∣∣∣∣∣

×
n∑

k=j+1

sin2((2k − 1)π/2n)

(cos((2m − 1)π/2n) − cos((2k − 1)π/2n))2

=
1
4n3

n−1∑
j=m+1

∣∣∣∣∣
sin
((
2j − 1

)
π/2n

)
(
sin
((
j −m

)
π/2n

)
sin
((
j +m − 1

)
π/2n

))
∣∣∣∣∣

×
n∑

k=j+1

sin2((2k − 1)π/2n)

(sin((k −m)π/2n) sin((k +m − 1)π/2n))2
.

(2.13)

By sinx + siny = 2 sin((x + y)/2) cos(x − y)/2 we know that for 0 < x, y < π , thus

0 < sinx ≤ 2 sin
x + y

2
. (2.14)

It is easy to know

n∑
k=j+1

1

(k −m)2
<

n∑
k=j+1

1
(k −m)(k −m − 1)

=
1

j −m
− 1
n −m

≤ 1
j −m

. (2.15)

By 2x/π ≤ sinx, ∀x ∈ (0, π/2], (2.16), (2.17), and (2.18)we can obtain

n−1∑
j=m

∣∣lj(x)∣∣
n∑

k=j+1

l2k(x) = |lm(x)|
n∑

k=m+1

l2k(x) +
n−1∑

j=m+1

∣∣lj(x)∣∣
n∑

k=j+1

l2k(x) ≤ C. (2.16)

From (2.12) and (2.16) we can obtain

|J2(x)| ≤ C

n
. (2.17)

Similarly

|J3(x)| ≤ C

n
. (2.18)
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From (2.3), (2.8), (2.11), (2.17), and (2.18)we can obtain

∫1

−1
|I2(x)|p/2dx ≤ C

np/2
. (2.19)

By (2.1), (2.3), (2.6), and (2.19) we can obtain the upper estimate.
Now we consider the lower estimate. For 1 ≤ p ≤ 4, we can obtain the lower estimate

from [2]. For p > 4, from (2.4)we know that

∫1

−1

⎛
⎝
∫
F

∣∣∣∣∣
(
1 −

n∑
k=1

l2k(x)

)
f(x)

∣∣∣∣∣
2

μ(df)

⎞
⎠

p/2

dx =
∫1

−1

∣∣∣∣1 + x

2

∣∣∣∣
p/2
∣∣∣∣∣
(
1 −

n∑
k=1

l2k(x)

)∣∣∣∣∣
p

dx. (2.20)

Let x = cos θ, then from (2.5) we know that

n∑
k=1

l2k(x) − 1 =
cos θ sin 2nθ

2n sin θ
− cos2nθ

n
. (2.21)

Hence we can verify that for θ ∈ [5π/8n, 7π/8n],

∣∣∣∣∣
n∑

k=1

l2k(x) − 1

∣∣∣∣∣ ≥
|sin 2nθ|
4n sin θ

≥ 1
7
. (2.22)

From (2.20) and (2.22) and a simple computation we can obtain

∫1

−1

⎛
⎝
∫
F

∣∣∣∣∣
(
1 −

n∑
k=1

l2k(x)

)
f(x)

∣∣∣∣∣
2

μ(df)

⎞
⎠

p/2

dx ≥ cos 5π/8n − cos 7π/8n
14p

≥ 3
8 · 14pn2

.

(2.23)

From (2.2), (2.3), and (2.19) it follows that

∫1

−1

⎛
⎝
∫
F

∣∣∣∣∣
n∑

k=1

(f(x) − f(tk))l2k(x)

∣∣∣∣∣
2

μ(df)

⎞
⎠

p/2

dx ≤ C

np/2
. (2.24)

From (2.1), (2.2), (2.23), and (2.24)we can obtain the lower estimate for p > 4.
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3. The Proof of Theorem 1.4

Let

Qn

(
f, x
)
=
(
1 + x

2
f(1) +

1 − x

2
f(−1)

)
u2
n(x)

(n + 1)2

+
n∑

k=1

f(xk)
(
1 − x2

)
(1 − xxk)

(
un(x)

(n + 1)(x − xk)

)2
(3.1)

be the quasi-Hermite-Fejer interpolation polynomial of degree ≤ 2n+1 based on the extended
Tchebycheff nodes of the second kind (see [8]); then by a simple computation we obtain

Gn

(
f, xk

) −Qn

(
f, xk

)
= 0, k = 1, . . . , n,

G
′
n

(
f, xk

) −Q′
n

(
f, xk

)
= f(xk)

3xk

1 − x2
k

, k = 1, . . . , n,

Gn

(
f, 1
) −Qn

(
f, 1
)
=

n∑
k=1

f(xk)(1 + xk)
2 − f(1),

Gn

(
f,−1) −Qn

(
f,−1) = n∑

k=1

f(xk)(1 − xk)
2 − f(−1).

(3.2)

Denote

ϕk(x) =
(
1 − x2

)
(1 − xxk)

(
un(x)

(n + 1)(x − xk)

)2

, k = 1, . . . , n,

ϕ0(x) =
1 + x

2
u2
n(x)

(n + 1)2
, ϕn+1(x) =

1 − x

2
u2
n(x)

(n + 1)2
,

φk(x) =

(
1 − x2)(1 − x2

k

)
u2
n(x)

(n + 1)2(x − xk)
, k = 1, . . . , n.

(3.3)

By (3.2) and the unique of the Hermite interpolation polynomial Hn(f, x) which satisfies
interpolation conditions,

Hn

(
f, xk

)
= f(xk), k = 0, . . . , n + 1,

H ′
n

(
f, xk

)
= f ′(xk), k = 1, . . . , n,

(3.4)



10 Discrete Dynamics in Nature and Society

we obtain

Gn

(
f, x
) −Qn

(
f, x
)

= ϕ0(x)

[
n∑

k=1

f(xk)(1+xk)
2−f(1)

]
+ϕn+1(x)

[
n∑

k=1

f(xk)(1 −xk)
2−f(−1)

]

+
n∑

k=1

f(xk)
3xk

1 − x2
k

φk(x)

=
u2
n(x)

(n + 1)2

n∑
k=1

f(xk)
(
1 + x2

k

)
+
2xu2

n(x)

(n + 1)2

n∑
k=1

f(xk) −
u2
n(x)

2(n + 1)2
[
f(1) + f(−1)]

− xu2
n(x)

2(n + 1)2
[
f(1) − f(−1)] + n∑

k=1

f(xk)
3xk

1 − x2
k

φk(x)

= A1(x) +A2(x) +A3(x) +A4(x) +A5(x).

(3.5)

By (3.5) and (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) we know that

e2
(
Gn, L2

)
=
∫
F

∫1

−1
|f(x) −Gn(f, x)|

2
dx μ

(
df
)

≤ 4
∫
F

∫1

−1
|f(x) −Qn

(
f, x
)|2dx μ

(
df
)
+ 4
∫
F

∫1

−1
[A1(x) +A2(x)]

2dx μ
(
df
)

+ 4
∫
F

∫1

−1
[A3(x) +A4(x)]

2dx μ
(
df
)
+ 4
∫
F

∫1

−1
[A5(x)]

2dx μ
(
df
)

= 4I1 + 4I2 + 4I3 + 4I4.

(3.6)

From [8] we know that for every f ∈ C[−1, 1],

∫1

−1
|f(x) −Qn(f, x)|2dx ≤

∫1

−1
|f(x) −Qn(f, x)|2(1 − x2)

−1/2
dx ≤ Cω2

(
f,

1
n

)
, (3.7)

where ω(f, t) is the modulus of continuity of f on [−1, 1] defined for every t ≥ 0, and C is
independent of n and f . By (3.7) and [6] we can obtain

I1 ≤ C

∫
F

ω2
(
f,

1
n

)
μ
(
df
) ≤ C ln n

n
. (3.8)
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By using A1(x) and A2(x) we obtain

I2 =
∫
F

∫1

−1
[A1(x)]

2dx μ
(
df
)
+
∫
F

∫1

−1
[A2(x)]

2dx μ
(
df
)

=
1

(n + 1)4

∫1

−1
u4
n(x)dx

∫
F

[
n∑

k=1

f(xk)(1 + x2
k)

]2
μ
(
df
)

+
4

(n + 1)4

∫1

−1
x2u4

n(x)dx
∫
F

[
n∑

k=1

f(xk)

]2
μ
(
df
)
.

(3.9)

By (1.3)we obtain

∫
F

[
n∑

k=1

f(xk)

]2
μ
(
df
)
=
∫
X

[
n∑

k=1

g

(
1 + xk

2

)]2
ω
(
dg
)
=

n∑
k=1

n∑
j=1

min
{
1 + xk

2
,
1 + xj

2

}
� n2.

∫
F

[
n∑

k=1

f(xk)(1 + x2
k)

]2
μ
(
df
) � n2.

(3.10)

From (3.9) and (3.10)we obtain

I2 � 1
n2

∫1

−1
u4
n(x)dx � 1. (3.11)

Similar to (3.11), we have

|I3| = 1

4(n + 1)4

∫1

−1

(
1 + x2

)
u4
n(x)dx ≤ C

n2
. (3.12)

By (3.3) and 0 ≤ (1 − x2)u2
n(x) ≤ 1 we obtain

0 ≤ I4

=
9

(n + 1)4

∫
F

∫1

−1
(1 − x2)

2
u2
n(x)

[
n∑

k=1

f(xk)xk
un(x)
x − xk

]2
dx μ

(
df
)

≤ 9

(n + 1)4

∫
F

∫1

−1
(1 − x2)

1/2
[

n∑
k=1

f(xk)xk
un(x)
x − xk

]2
dx μ

(
df
)

=
9

(n + 1)4

n∑
k=1

n∑
j=1

∫1

−1
(1 − x2)

1/2 u2
n(x)

(x − xk)
(
x − xj

)dx
∫
F

xkxjf(xk)f
(
xj

)
μ
(
df
)
.

(3.13)
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By [8]we know that

∫1

−1

(
1 − x2)u2

n(x)

(x − xk)
(
x − xj

) 1√
1 − x2

dx =

⎧⎪⎨
⎪⎩

(n + 1)π
1 − x2

j

, j = k,

0, j /= k.

(3.14)

By (1.3), (3.13), (3.14), and (2/π)x < sinx < x, 0 < x < π/2, we obtain

0 ≤ I4

≤ 9π

2(n + 1)3

n∑
k=1

x2
k(1 + xk)

1 − x2
k

≤ 9π

(n + 1)3

n∑
k=1

1

sin2kπ/(n + 1)

≤ C

n
.

(3.15)

By (3.6), (3.8), (3.11), (3.12), and (3.15) we can obtain the upper estimate of Theorem 1.4. On
the other hand, by (3.5) we can verify that

|f(x) −Gn(f, x)|
2 ≥ [A1(x) +A2(x)]

2

4
− |f(x) −Qn(f, x)|2

− [A3(x) +A4(x)]
2 − [A5(x)]

2.

(3.16)

From (3.16), (3.8), (3.11), (3.12), and (3.15)we can obtain the lower estimate of Theorem 1.4.
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