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1. Introduction

We will study the limiting behavior of multiple sums of random vectors indexed by lattice
points, so called random fields. Such research has roots in statistical mechanics and arised
in the context of ergodic theory. Almost 70 years ago, Wiener considered double sums over
lattice points with applications to homogenous chaos. Many aspects of present investigations
of models of critical phenomena in statistical physics, crystal physics or Euclidean quantum
field theories involve multiple sums of random variables with multidimensional indices.
Multiparameter processes arise in applied context such as brain data imaging, and so forth.

Let Nr , r ≥ 1 be the positive integer r-dimensional lattice points with coordinate wise
partial ordering, ≤. Points in Nr are denoted by m, n or more explicitly n = (n1, n2, . . . , nr)
and 1 stands for the r-tuple (1, . . . , 1). Also for n = (n1, n2, . . . , nr), we define |n| = ∏r

i=1ni

and (n) = {k : k ≤ n}. The notation n → ∞ means that max1≤i≤r ni → ∞ or equivalently
|n| → ∞.
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Let (Ω,F, P)—be a probability space, (B, ‖·‖)—a real separable Banach space, {Xk, k ∈
Nr}—a family of B-valued random vectors and set

Sn =
∑

k≤n
Xk. (1.1)

If E‖X‖ < ∞, then EX stands for the Bochner integral. Let {ak, k ∈ Nr} be a B-valued net
and a ∈ B. We say that an → a strongly as n → ∞ if for any ε > 0, there exists Nε ∈ Nr such
that n/≤Nε implies

∥
∥an − a

∥
∥ < ε or shortly for any ε > 0, ‖an − a‖ ≥ ε “occurs finitely often”

(see Smythe [1], Fazekas [2]). Furthermore, let {Fk, k ∈ Nr} be an increasing family of sub
σ-algebras of F, that is,

∧

k≤n
Fk ⊂ Fn ⊂ F. (1.2)

Now, we will introduce definition of martingale (submartingale) for real-valued random
fields, Smythe [3] (for more information see Merzbach [4]). Through this paper {Fk,k ∈ Nr}
satisfies condition CI (conditional independence)

E
(
E(· | Fm) | Fn

)
= E

(· | Fm∧n
)
a.s., (1.3)

where m ∧ n denotes the componentwise minimum of m and n. A{Fk, k ∈ Nr}-adapted,
integrable process {Zk, k ∈ Nr} is called martingale (submartingale) if

E
(
Zn | Fm

)
= Zm∧n

( ≥ Zm∧n
)

a.s. ∀m,n ∈ Nr. (1.4)

The main aim of this paper is to prove a couple Brunk type strong laws of large numbers for
independent B-valued random fields. To prove this we would like to apply, among others,
maximal inequalities for real-valued submartingale fields. Main results concerning maximal
inequalities for random variables indexed by multidimensional indices are due to Cairoli [5],
Gabriel [6], Klesov [7], Smythe [3], Shorack and Smythe [8], as well as Wichura [9]. In [5],
Cairoli gave counterexample that the well-known following Doob maximal inequality for
submartingales

λP
(
max
k≤n

Sk ≥ λ
)
≤ ES+

n (1.5)

cannot be proved for a discrete-time random fields, utilizing “one dimensional” idea, as well
as Hajek-Renyi-Chow inequality [10] and in consequence Chow or Brunk type strong law
of large numbers. This problem motivated us to make an effort to give some new results for
strong law of large numbers for random fields.

To get the above-mentioned result we will exploit the idea of maximal inequality
introduced by Christofides and Serfling [11].



Discrete Dynamics in Nature and Society 3

Theorem 1.1. Let {Yk,Fk, k ∈ Nr} be a submartingale, {Fk, k ∈ Nr} satisfies (1.3), and let
{Ck, k ∈ Nr} be a nonincreasing array of nonnegative numbers. Then for λ > 0,

λP

(

sup
k≤n

CkYk ≥ λ

)

≤ min
1≤s≤r

{
∑

k≤n

(
Ck − Ck;s;ks+1

)
EY+

k−
∑

ki,i /= s

Ck;s;ns

∫

[
⋃ns

ks=1
B
(s)
k1 ,...,kr

]
c
Y+
k;s;ns

dP

}

≤ min
1≤s≤r

{
∑

k≤n

(
Ck − Ck;s;ks+1

)
EY+

k

}

,

(1.6)

where Ck;s;α = Ck1,...,ks−1,α,ks+1,...,kr and Ck = 0 if ki > ni for some i = 1, 2, . . . , r.

Proof. In the multidimensional martingale case, Theorem 1.1 was proved by Christofides
and Serfling [11, Theorem 2.2] using properties of submartingale fields, thus assertion of
Theorem 1.1 is true.

The following remark concerns the technique of the proof of Theorem 1.1 inmartingale
case.

Remark 1.2. In the proof of Theorem 2.2 of [11], the authors construct the sets B
(i)
k (see the

algorithm in [11]) and say “An explicit expression of the sets B(i)
k in terms of the sets Ak is

possible to derive, but such formula is notationally messy and complicated.” It seems that in
the proof, we can use the sets B̃(i)

k constructed as follows (in the case r = 2, for simplicity).
Let n = (n1, n2), set Zi(ω) = sup1≤j≤n2

CijYij(ω),

I(1)(ω) = inf
1≤i≤n1

{
i : Zi(ω) ≥ λ

} (
or n1 + 1 if no such i exists

)
,

J(1)(ω) = inf
1≤j≤n2

{
j : CIjYIj(ω) ≥ λ

}
,

(1.7)

and set

B̃
(1)
ij =

{
I(1)(ω) = i, J(1)(ω) = j

}
. (1.8)

We obtain the sets B̃
(2)
k by changing the order of taking maximum. In this construction we

used idea introduced by Zimmerman [12]. Similarly to the sets constructed by Christofides
and Serfling, B̃(1)

k , B̃(2)
k are disjoint, Fin2 and Fn1j , respectively, measurable, and

⋃

1≤i≤n1,1≤j≤n2

B̃
(1)
ij =

⋃

1≤i≤n1,1≤j≤n2

B̃
(2)
ij =

[

sup
1≤i≤n1,1≤j≤n2

CijYij ≥ λ

]

. (1.9)

Such construction gives a simple formula and is very intuitive.

2. The Main Results

We start from the following generalization of Theorem 1.1.



4 Discrete Dynamics in Nature and Society

Theorem 2.1. Let {Yk,Fk, k ∈ Nr} be a submartingale,
{
Fk, k ∈ Nr} satisfies (1.3), and let

{
Ck, k ∈ Nr

}
be a nonincreasing array of nonnegative numbers. Then for λ > 0 and m ≤ n,

λP

(

sup
k∈[(n)\(m)]

CkYk ≥ λ

)

≤ min
1≤s≤r

∑

k∈[(n)\(m)]

(
Ck − Ck;s;ks+1

)
EY+

k , (2.1)

where Ck;s;α = Ck1,...,ks−1,α,ks+1,...,kr , and Ck = 0 if ki > ni for some i = 1, 2, . . . , r.

Proof. Assume without loss of generality that the sum on right-hand side of (2.1) has
minimum for s0 = 1. Let us put D = (n) \ (m) and define disjoint partition of D as follow:

D1 =
{
j =

(
j1, . . . , jr

)
: m1 + 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ m2, . . . , 1 ≤ jr ≤ mr

}
,

Di =
{
j =

(
j1, . . . jr

)
: 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, . . . , mi + 1 ≤ ji ≤ ni,

1 ≤ ji+1 ≤ mi+1, . . . , 1 ≤ jr ≤ mr

}
,

(2.2)

for i = 2, 3, . . . , r.
It is easy to see that

⋃r
i=1Di = D and Di ∩Dj = ∅ for i /= j. Now, let us observe that we

can apply Theorem 1.1 to the “cubes” {k ∈ Nr : l ≤ k ≤ n}, where 1 ≤ l < n. Thus we have

λP

(

sup
k∈[(n)\(m)]

CkYk ≥ λ

)

= λP

( ⋃

k∈[(n)\(m)]

[
CkYk ≥ λ

]
)

= λP

( r⋃

i=1

⋃

k∈Di

[CkYk ≥ λ]
)

≤ λ
r∑

i=1

P

( ⋃

k∈Di

[
CkYk ≥ λ

]
)

≤ λ
r∑

i=1

P

(

sup
k∈Di

CkYk ≥ λ

)

≤
r∑

i=1

min
1≤s≤r

∑

k∈Di

{(
Ck − Ck;s;ks+1

)
EY+

k

}

≤ min
1≤s≤r

r∑

i=1

∑

k∈Di

{(
Ck − Ck;s;ks+1

)
EY+

k

}

≤ min
1≤s≤r

∑

k∈[(n)\(m)]

{(
Ck − Ck;s;ks+1

)
EY+

k

}
.

(2.3)

The next lemma is an equivalent version of the result obtained by Martikainen [13,
page 435] of Kronecker lemma in multidimensional case. Let l =

(
l1, . . . , ls

)
, m = (m1, . . . , mt)

thenNs+t � (l,m) := (l1, . . . , ls,m1, . . . , mt).
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Lemma 2.2. Let s, t ≥ 1 be natural numbers, with s + t = r and {al, l ∈ Ns}, {bm, m ∈ Nt}
families of increasing, positive numbers such that al → ∞, bm → ∞ strongly as l and m → ∞.
Furthermore {x(l,m), (l,m) ∈ Nr} be an array of positive numbers such that

∑

(l,m)∈Nr

x(l,m)

albm
< ∞. (2.4)

Then

1
aN1

∑

(l,m)≤(N1,N2)

x(l,m)

bm
−→ 0 strongly as Ns � N1 −→ ∞ (2.5)

for everyN2 ∈ Nt.

Proof. By applying the Martikainen lemma to

y(l,N2) =
∑

m≤N2

x(l,m)

bm
where N2 ∈ Nt. (2.6)

Lemma 2.3. Let (B, ‖·‖) be a real separable Banach space and 1 ≤ p ≤ 2 and q ≥ 1, then the following
properties are equivalent.

(i) B is R-type p.

(ii) There exists positive constant C such that for every n ∈ Nr and for any family {Xk, k ∈
Nr} of independent random vectors in B with EXk = 0,

E

∥
∥
∥
∥
∥

∑

k≤n
Xk

∥
∥
∥
∥
∥

q

≤ CE

(
∑

k≤n

∥
∥Xn

∥
∥p

)q/p

. (2.7)

Proof. For r = 1 (Woyczyński [14]) and since {Xk, k ∈ Nr} are independent, the lemma is
also valid for r > 1.

Theorem 2.4. Let 1 ≤ p ≤ 2, q > 1 and {Xk, k ∈ Nr} be field of independent, zero-mean, B-valued
random vectors such that

min
1≤s≤r

∑

k∈Nr

E
∥
∥Xk

∥
∥pq

ks|k|pq−q < ∞. (2.8)

If B is R-type p, then

Sn

|n| −→ 0 strongly a.s. as n −→ ∞. (2.9)
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Proof. Let Fn = σ(Xk, k ≤ n), since Xk are independent,
{
Fk, k ∈ Nr

}
satisfies (1.3)

and {‖Sk‖pq, Fk, k ∈ Nr} is real, nonnegative submartingale. By the definition of strong
convergence of elements of B and “event occurs finitely (infinitely) often,” it is enough to
prove

lim
N→∞

P

(

sup
k/≤N

∥
∥Sk

∥
∥

|k| ≥ λ

)

= 0 where Nr � N = (N, . . . ,N) (2.10)

for any λ > 0. Let us observe, that by Theorem 2.1, Lemma 2.3 and Hölder’s inequality for
some constants C, we get

λpqP

(

sup
k/≤N

∥
∥Sk

∥
∥

|k| ≥ λ

)

≤ min
1≤s≤r

∑

k/≤N

(
1

|k|pq − 1
(|k|pq; s; ks + 1

)

)

E
∥
∥Sk

∥
∥pq

≤ Cmin
1≤s≤r

∑

k/≤N

(
1

|k|pq − 1
(|k|pq; s; ks + 1

)

)

E

(
∑

j≤k

∥
∥Xj

∥
∥p

)q

≤ Cmin
1≤s≤r

∑

k/≤N

(
1

|k|pq − 1
(
kpq; s; ks + 1

)

)

|k|q−1
∑

j≤k
E
∥
∥Xj

∥
∥pq

≤ Cmin
1≤s≤r

∑

k/≤N

1
ks|k|pq−q+1

∑

j≤k
E
∥
∥Xj

∥
∥pq

,

(2.11)

where (|k|β; s;α) := k
β

1 ·, . . . , ·k
β

s−1α
βk

β

s+1·, . . . , ·k
β
r .

Now, it is enough to prove that appropriatemultiple series is finite. Changing the order
of summation and comparing to integrals, for some constant C > 0 and for every s, 1 ≤ s ≤ r,
we have

∑

k≤N

1
ks|k|pq−q+1

∑

j≤k
E
∥
∥Xj

∥
∥pq =

∑

k≤N
E
∥
∥Xk

∥
∥pq

∑

k≤j≤N

1
js|j|pq−q+1

≤ C
∑

k≤N
E
∥
∥Xk‖pq

(
1

Npq−q+1 − 1

k
pq−q+1
s

) r∏

i=1,i /= s

(
1

Npq−q − 1

k
pq−q
i

)

.

(2.12)

The above expression contains the following types of sums:

∑

k≤N

E
∥
∥Xk

∥
∥pq

Npq−q+1Nl(pq−q)(ki1 · . . . · kim
)pq−q , (2.13)

∑

k≤N

E
∥
∥Xk

∥
∥pq

k
pq−q+1
s Nl(pq−q)(ki1 · . . . · kim

)pq−q , (2.14)

where l,m = 0, 1, . . . , r − 1, l +m = r − 1, and {i1, · . . . ·, im} is any subset of {1, 2, . . . , r} \ {s}.
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Now, by Lemma 2.2, (2.13) tends to 0 as N → ∞ as well as (2.14) for l /= 0. Hence, we
have

∑

k∈Nr

1
ks|k|pq−q+1

∑

j≤k
E
∥
∥Xj

∥
∥pq ≤ C

∑

k∈Nr

E
∥
∥Xk

∥
∥pq

ks|k|pq−q . (2.15)

We complete the proof by taking the minimum over s ∈ {1, . . . , r} of both sides of (2.15),
combined with (2.8) and (2.11).

For r = 1, we let obtain the following result.

Corollary 2.5. Let 1 ≤ p ≤ 2, q > 1 and let {Xk, k ∈ N} be sequence of independent, zero-mean,
B-valued random vectors such that

∞∑

n=1

E
∥
∥Xn

∥
∥pq

npq−q+1 < ∞. (2.16)

If B is R-type p, then

Sn

n
−→ 0 a.s. as n −→ ∞. (2.17)

Corollary 2.5 for q ≥ 1 is due to Woyczyński [14], which generalized results of
Hoffman-Jørgensen, Pisier and Woyczyński [15] (1 ≤ p ≤ 2, q = 1), and results due to Brunk
[16], Prohorov [17] (B = R, p = 2, q ≥ 1).

Example 2.6. Let r = 2 and let {Xk, k ∈ N2} be a field of random vectors fulfilling the
assumptions of Theorem 2.4. For θ ∈ R+, we define 2-dimensional sector N2

θ as follow:

N2
θ =

{(
k1, k2

) ∈ N2 : 1 ≤ k2 ≤ θk1
}
. (2.18)

Assume that {E‖Xn‖pq, n ∈ N2} are uniformly bounded by constant M and pq − q > 1/2.
Hence by comparison to integrals, we have

∑

(k1,k2)∈N2
θ

E
∥
∥X(k1,k2)

∥
∥pq

ks
(
k1k2

)pq−q ≤ M
∑

(k1,k2)∈N2
θ

1

ks
(
k1k2

)pq−q < ∞, (2.19)

for s = 1, 2.
Thus, the condition (2.8) of Theorem 2.4 is met and we have

∑
N2

θ
�k≤nXk

|n| −→ 0 strongly a.s. as n −→ ∞. (2.20)

In Theorem 2.7, we will give necessary and sufficient probabilistic condition for the
geometry of Banach space associated with the above-mentioned strong law. In Theorem 2.12
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we will replace geometric condition of Theorem 2.4 mentioned by probabilistic one to obtain
SLLN (2.9).

Theorem 2.7. Let 1 ≤ p ≤ 2, q ≥ 1. The following conditions are equivalent:

(i) B is R-type p.

(ii) For every λ > 0 there exists Cλ such that for any independent, B-valued, zero-mean random
vectors {Xk, k ∈ Nr},

∑

k∈Nr

|k|−1P
(

‖Sk‖
|k| ≥ λ

)

≤ Cλ

∑

k∈Nr

E
∥
∥Xk

∥
∥pq

|k|pq−q+1 . (2.21)

For r = 1, the theorem is due to Woyczyński [14].

Proof. (i)⇒(ii) Using Chebyshev inequality ,Lemma 2.3 and Hölder’s inequality ,we have

∑

k∈Nr

|k|−1P
(∥
∥Sk

∥
∥

|k| ≥ λ

)

≤ λ−pq
∑

k∈Nr

E
∥
∥Sk

∥
∥pq

|k|pq+1

≤ Cλ−pq
∑

k∈Nr

|k|−pq+q−2
∑

i≤k
E
∥
∥Xi

∥
∥pq

≤ Cλ−pq
∑

k∈Nr

E
∥
∥Xk

∥
∥pq

∑

i≥k
|i|−pq+q−2

≤ Cλ−pq
∑

k∈Nr

E
∥
∥Xk

∥
∥pq

|k|pq−q+1 .

(2.22)

(ii)⇒(i) Let n = (n1, . . . , nr) and let {Yn1 , n1 ≥ 1} be an arbitrary sequence of
independent random vectors in B, with EYn1 = 0 and Tm =

∑m
n1=1Yn1 . Set

Xn =

⎧
⎨

⎩

Yn1 for
(
n1, n2, . . . , nr

)
=
(
n1, 1, . . . , 1

)
,

0 for
(
n1, n2, . . . , nr

)
/=
(
n1, 1, . . . , 1

)
.

(2.23)

Then

∞∑

n1=1

n−1
1 P

(∥
∥Tn1

∥
∥

n1
≥ λ

)

=
∑

n∈Nr

|n|−1P
(∥
∥Sn

∥
∥

|n| ≥ λ

)

≤ Cλ

∑

n∈Nr

E
∥
∥Xn

∥
∥pq

|n|pq−q+1

= Cλ

∞∑

n1=1

E
∥
∥Yn1

∥
∥pq

n
pq−q+1
1

.

(2.24)

Thus, (i) follows directly from Theorem 3.1 of Woyczyński [14].
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Combining Theorem 2.7 with the result of Rosalsky and Van Thanh [18, Theorem 3.1],
we get the following corollary.

Corollary 2.8. Let 1 ≤ p ≤ 2, q ≥ 1, and let B be a separable Banach space. If {Xk, k ∈ Nr} is family
of independent, B-valued, zero-mean random vectors, then the following conditions are equivalent.

(i) for every q ≥ 1 and λ > 0, there exists Cλ such that for any vectors {Xk, k ∈ Nr},

∑

k∈Nr

|k|−1P
(‖Sk‖

|k| ≥ λ

)

≤ Cλ

∑

k∈Nr

E
∥
∥Xk

∥
∥pq

|k|pq−q+1 . (2.25)

(ii) For every random vectors {Xk, k ∈ Nr}, the condition

∑

k∈Nr

E
∥
∥Xk

∥
∥p

|k|p < ∞ (2.26)

implies that the SLLN holds.

Before we state the next theorem, we need more notations and present some useful
lemmas. Let N0 = (0, 1, 2, . . .) and 2n=(2n1 , . . . , 2nr ), where 2−1 is defined as 0 and

for k < n denote Sn
k =

∑

k<j≤n
Xj. (2.27)

Lemma 2.9 (Fazekas [2, Lemma 2.5]). Let {Xk, k ∈ Nr} be independent symmetric B-valued
random vectors. Assume that for all λ > 0,

∑

k∈Nr
0

P

(∣
∣
∥
∥S2k

2k−1
∥
∥ − E

∥
∥S2k

2k−1
∥
∥
∣
∣

∣
∣2k−1

∣
∣

> λ

)

< ∞,

E

(
Sn

|n|
)

−→ 0 strongly as n −→ ∞,

(2.28)

then SLLN (2.9) holds.

Lemma 2.10 (Fazekas [2, Lemma 2.3]with ak = |k|). Let {Xk, k ∈ Nr} be a field of independent,
symmetric, B-valued random vectors. If

‖Xk‖ ≤ |k| a.s. for every k ∈ Nr,

Sn

|n| −→ 0 strongly in probability,
(2.29)

then E‖Sn‖/|n| → 0 strongly as n → ∞.



10 Discrete Dynamics in Nature and Society

Lemma 2.11. For q ≥ 1, there exists a positive constant Cq such that for any separable Banach space
B and any finite set {Xk, k ≤ n} of independent B-valued random vectors withXk ∈ Lq for all k ≤ n,
the following holds.

For 1 ≤ q ≤ 2,

E
∣
∣
∥
∥Sn

∥
∥ − E

∥
∥Sn

∥
∥
∣
∣q ≤ Cq

∑

k≤n
E
∥
∥Xk

∥
∥q

, (2.30)

if q = 2, then it is possible to take C2 = 4.
For q > 2,

E
∣
∣
∥
∥Sn

∥
∥ − E

∥
∥Sn

∥
∥
∣
∣q ≤ Cq

[(
∑

k≤n
E
∥
∥Xk

∥
∥2

)q/2

+
∑

k≤n
E
∥
∥Xk

∥
∥q

]

. (2.31)

Proof. For r = 1, the result is due to de Acosta [19, Theorem 2.1]. Since {Xk, k ∈ Nr} are
independent the theorem is true in the multidimensional case.

Theorem 2.12. Let {Xk, k ∈ Nr} be a family of independent B-valued zero-mean, random vectors
and assume ‖Sn‖/|n| → 0 strongly in probability. Then

(i) if 1 ≤ q ≤ 2, then
∑

n∈Nr (E‖Xn‖q/|n|q) < ∞ implies SLLN (2.9),

(ii) if 2 ≤ q, then
∑

n∈Nr (E‖Xn‖q/|n|q/2+1) < ∞ implies SLLN (2.9).

Theorem 2.12 is multiple sum analogue of a strong law of large numbers, Theorem 3.2
of de Acosta [19].

Proof. (i) Let us assume that {Xk, k ∈ Nr} are symmetric (desymmetryzation is standard)
and put

Yk = XkI
(∥
∥Xk

∥
∥ ≤ |k|), Tn =

∑

n∈Nr

Yk. (2.32)

By assumption, it follows that
∑

n∈NrP(‖Xk‖ ≥ |k|) < ∞ and by the Borell-Cantelli lemma, it
is enough to prove Tn/|n| → 0 strongly a.s. It follows from assumption that

Tn
|n| −→ 0 strongly in probability, (2.33)

thus by Lemma 2.10

E

∥
∥Tn

∥
∥

|n| −→ 0 strongly as n −→ ∞, (2.34)
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and on the virtue of Lemma 2.9 and the Borell-Cantelli lemma, the proof will be completed if
we show that for any λ > 0,

∑

n∈Nr

P

( ∣
∣Vk

∣
∣

∣
∣2k−1

∣
∣
> λ

)

< ∞, where V k =
∥
∥T2k

2k−1
∥
∥ − E

∥
∥T2k

2k−1
∥
∥. (2.35)

Now, for any λ > 0 by Chebyshev inequality and Lemma 2.11, we have

∑

k∈Nr

P

( ∣
∣Vk

∣
∣

∣
∣2k−1

∣
∣
> λ

)

≤
∑

k∈Nr

E
∣
∣Vk

∣
∣q

λq
∣
∣2k−1

∣
∣q

≤ Cq2rq

λq

∑

k∈Nr

∑

2k−1≤j<2k

E
∥
∥Yj

∥
∥q

|j|q

≤ Cq2rq

λq

∑

k∈Nr

E
∥
∥Xk

∥
∥q

|k|q < ∞.

(2.36)

(ii) The same arguments and Hölder’s inequality

∑

k∈Nr

P

( ∣
∣Vk

∣
∣

∣
∣2k−1

∣
∣
> λ

)

≤ Cq

λq

∑

k∈Nr

1
∣
∣2k−1

∣
∣q

[(
∑

2k−1≤j<2k
E
∥
∥Yj

∥
∥2

)q/2

+
∑

2k−1≤j<2k
E
∥
∥Yj

∥
∥q

]

≤ Cq

λq

∑

k∈Nr

1
|2k−1|q

[
∣
∣2k−1

∣
∣q/2−1

∑

2k−1≤j<2k
E
∥
∥Yj

∥
∥q +

∑

2k−1≤j<2k
E
∥
∥Yj

∥
∥q

]

≤ 2Cq

λq
2r(q/2+1)

∑

k∈Nr

E
∥
∥Xk

∥
∥q

|k|q/2+1
< ∞.

(2.37)
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