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1. Introduction

Every year billions of population suffer or die of various infectious disease. Mathematical
models have become important tools in analyzing the spread and control of infectious
diseases. Differential equation models have been used to study the dynamics of many
diseases in wild animal population. Birth is one of the very important dynamic factors. Many
models have invariably assumed that the host animals are born throughout the year, whereas
it is often the case that births are seasonal or occur in regular pulse, such as the blue whale,
polar bear, Orinoco crocodile, Yangtse alligator, and Giant panda. The dynamic factors of the
population usually impact the spread of epidemic. Therefore, it is more reasonable to describe
the natural phenomenon by means of the impulsive differential equation [1, 2].

Roberts and Kao established an SI epidemic model with pulse birth, and they found
the periodic solutions and determined the criteria for their stability [3]. In view of animal
life histories which exhibit enormous diversity, some authors studied the model with stage
structure and pulse birth for the dynamics in some species [4–6]. Vaccination is an effective
way to control the transmission of a disease. Mathematical modeling can contribute to the
design and assessment of the vaccination strategies. Many infectious diseases always take on
strongly infectivity during a period of the year; therefore, seasonal preventing is an effective
and practicable way to control infectious disease [7]. Nokes and Swinton studied the control
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of childhood viral infections by pulse vaccination [8]. Jin studied the global stability of the
disease-free periodic solution for SIR and SIRS models with pulse vaccination [9]. Stone et
al. presented a theoretical examination of the pulse vaccination policy in the SIR epidemic
model [10]. They found a disease-free periodic solution and studied the local stability of
this solution. Fuhrman et al. studied asymptotic behavior of an SI epidemic model with
pulse removal [11]. d’Onofrio studied the use of pulse vaccination strategy to eradicate
infectious disease for SIR and SEIR epidemic models [12–15]. Shi and Chen studied stage-
structured impulsive SI model for pest management [16]. And the incidence of a disease is the
number of new cases per unit time and plays an important role in the study of mathematical
epidemiology. Many works have focused on the epidemic models with bilinear incidence
whereas Anderson and May and De Jong et al. pointed out that the epidemic models
with standard incidence provide a more natural description for humankind and gregarious
animals [17–19].

The purpose of this paper is to study the dynamical behavior of an SIR model
with pluse birth and standard incidence. We suppose that a mass vaccination program is
introduced, under which newborn animals are vaccinated at a constant rate p (0 < p < 1)
and vaccination confers lifelong immunity. Immunity is not conferred at birth, and thus
all newborns are susceptible.This paper is organized as follows. In the next section, we
present an SIR model with pulse birth and standard incidence and obtain the existence of
the infection-free periodic solution. In Section 3, the basic reproductive number R∗ is defined.
Local stability and the global asymptotically stable of the infection-free periodic solution are
obtained when R∗ < 1. Section 4 concentrates on the uniform persistence of the infectious
disease when R∗ > 1. Numerical simulation is given in Section 5.

2. The SIR Model with Pulse Birth

In our study, we analyze the dynamics of the SIR model of a population of susceptible
(S), infective (I), and recovered (R) with immunity individuals. Immunity is not conferred
at birth, and thus all newborns are susceptible. Vaccination gives lifelong immunity to
pS susceptible who are, as a consequence, transferred to the recovered class (R) of the
population. Using the impulsive differential equation, we have

S′ = −β S
N
I − dS − pS,

I ′ = β
S

N
I − (d + θ + α)I,

R′ = θI − dR + pS, t /=nτ,

S(nτ+) = S(nτ) + b1S(nτ) + b1γ1I(nτ) + b1γ2R(nτ),

I(nτ+) = I(nτ) + b1
(
1 − γ1

)
I(nτ),

R(nτ+) = R(nτ) + b1
(
1 − γ2

)
R(nτ), t = nτ.

(2.1)

The total population size is denoted byN, withN = S+I+R. Here the parameters β, d, p, θ, α,
b1, γ1, γ2 are all positive constants. β is adequate contact rate, d is the per capita death rate, θ is
the removed rate, and p is vaccination, a fraction of the entire susceptible population. b1 is the
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proportion of the offspring of population. To some diseases, all the offspring of susceptible
parents are still susceptible individuals, but it is different to the recovered. Because individual
differences cause different immune response, a fraction γ2 (0 < γ2 < 1) of their offspring are
the susceptible; the rest are immunity (e.g., when Giant panda gives the breast to her baby,
the immunity of Giant panda baby is obtained. But if Giant panda baby did not eat breast,
their immunity to disease is very poor. They are vulnerable to suffering from respiratory and
digestive disease. Therefore, they become the susceptible.). Similarly, a fraction γ1 (0 < γ1 < 1)
of the infectious offspring are susceptible, and the rest are infectious. Due to the effect of the
diseases to the infectious, the ratio of the susceptible in their offspring is relatively low. So we
assume the fraction γ1 < γ2. α represents the death rate due to disease. From biological view,
we assume β ≥ α.

From (2.1), we obtain

N ′ = −dN − αI, t /=nτ,

N(nτ+) = (1 + b1)N(nτ), t = nτ.
(2.2)

Let s = S/N, i = I/N, r = R/N, then systems (2.1) and (2.2) can be written as follows:

s′ = −ps +
(
α − β

)
si,

i′ =
(
βs − θ − α

)
i + αi2,

r ′ = ps + θi + αir, t /=nτ,

s(nτ+) = s(nτ) +
b1γ1

1 + b1
i(nτ) +

b1γ2

1 + b1
r(nτ),

i(nτ+) =
1 + b1

(
1 − γ1

)

(1 + b1)
i(nτ),

r(nτ+) =
1 + b1

(
1 − γ2

)

(1 + b1)
r(nτ), t = nτ.

(2.3)

The total population size is normalized to one. By virtue of the equation s(t) + i(t) + r(t) = 1,
we ignore the third and the sixth equations of system (2.3) to study the two-dimensional
system:

s′ = −ps +
(
α − β

)
si,

i′ =
(
βs − θ − α

)
i + αi2, t /=nτ,

s(nτ+) =
b1γ2

1 + b1
+
(

1 −
b1γ2

1 + b1

)
s(nτ) +

(
b1γ1

1 + b1
−

b1γ2

1 + b1

)
i(nτ),

i(nτ+) =
1 + b1

(
1 − γ1

)

1 + b1
i(nτ), t = nτ.

(2.4)
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From biological view, we easily see that the domain

Ω = {(s, i, r) : s ≥ 0, i ≥ 0, r ≥ 0, s + i + r = 1} (2.5)

is the positive invariant set of system (2.3).
We first demonstrate the existence of infection-free periodic solution of system (2.4),

in which infectious individuals are entirely absent from the population permanently, that is,
i(t) = 0, t ≥ 0. Under this condition, the growth of susceptible individuals and the population
must satisfy

s′ = −ps, t /=nτ,

s(nτ+) =
b1γ2

1 + b1
+
(

1 −
b1γ2

1 + b1

)
s(nτ), t = nτ.

(2.6)

Integrating the first equation in system (2.6) between pulses, it is easy to obtain the solution
with initial value s(0+) = s0,

s(t) = s(nτ+)e−p(t−nτ), nτ < t ≤ (n + 1)τ. (2.7)

Equation (2.7) holds between pulses. At each successive pulse, it yields

s((n + 1)τ+) =
b1γ2

1 + b1
+
(

1 −
b1γ2

1 + b1

)
e−pτs(nτ+) = F(s(nτ+)). (2.8)

Equation (2.8) has a unique fixed point s∗ = b1γ2e
pτ/((1+b1)epτ−(1+b1−b1γ2)). The fixed point

s∗ is locally stable because dF(s(nτ+))/ds|s(nτ+)=s∗ = (1−b1γ2/(1+b1))e−pτ < 1, By substituting
s(nτ+) = s∗ to (2.7), we obtain the complete expression for the infection-free periodic solution
over the nth time-interval nτ < t ≤ (n + 1)τ ,

s̃(t) =
b1γ2e

pτ

(1 + b1)epτ −
(
1 + b1 − b1γ2

)e−p(t−nτ), ĩ(t) = 0. (2.9)

Therefore the system (2.4) has the infection-free periodic solution (s̃(t), ĩ(t)).

3. The Stability of the Infection-Free Periodic Solution

In this section,we will prove the local and global asymptotically stable of the infection-free
periodic solution (s̃(t), ĩ(t)).

The local stability of the infection-free periodic solution (s̃(t), ĩ(t)) may be determined
by considering the linearized SIR equation of system (2.4) about the known periodic solution
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(s̃(t), ĩ(t)) by setting s(t) = s̃(t) + x(t), i(t) = ĩ(t) + y(t), where x(t) and y(t) are small
perturbation. The variables x(t) and y(t) are described by the relation

(
x(t)

y(t)

)

= Φ(t)

(
x(0)

y(0)

)

, (3.1)

where the fundamental solution matrix Φ(t) = ϕij(t) (i, j = 1, 2) satisfies

dΦ(t)
dt

=

(
−p

(
α − β

)
s̃(t)

0 βs̃(t) − θ − α

)

Φ(t), (3.2)

with Φ(0) = E, where E is the identity matrix. The resetting of the equations of (2.4) becomes

(
x(nτ+)

y(nτ+)

)

=

⎛

⎜⎜⎜
⎝

1 −
b1γ2

1 + b1

b1
(
γ1 − γ2

)

1 + b1

0
1 + b1 − b1γ1

1 + b1

⎞

⎟⎟⎟
⎠

(
x(nτ)

y(nτ)

)

. (3.3)

Hence, according to the Floquet theory, if all eigenvalues of

M(τ) =

⎛

⎜⎜⎜
⎝

1 −
b1γ2

1 + b1

b1
(
γ1 − γ2

)

1 + b1

0
1 + b1 − b1γ1

1 + b1

⎞

⎟⎟⎟
⎠

Φ(τ) (3.4)

are less than one, then the infection-free periodic solution (s̃(t), 0) is locally stable. By
calculating, we have

Φ(t) =

(
1 Φ12

0 Φ22

)

, (3.5)

where Φ22(t) = exp(β
∫
s̃(σ)dσ − (θ + α)t).

The eigenvalues of M denoted by μ1, μ2 are μ1 = (1 − b1γ2/(1 + b1))e−pτ < 1, and
μ2 = ((1+b1 −b1γ1)/(1+b1)) exp{β

∫τ
0 s̃(σ)dσ − (θ+α)τ}, if and only if μ2 < 1. Define threshold

of model (2.4) as follows:

R∗ =
β
∫τ

0 s̃(σ)dσ

ln
(
(1 + b1)/

(
1 + b1 − b1γ1

))
+ (θ + α)τ

, (3.6)
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where s̃(t) is the infection-free periodic solution. That is, the infection-free periodic solution
(s̃(t), ĩ(t)) is locally asymptotically stable if R∗ < 1. So we obtained following theorem.

Theorem 3.1. If R∗ < 1, then the infection-free periodic solution (s̃(t), ĩ(t)) of system (2.4) is locally
asymptotically stable.

Now we give the global asymptotically stable of the infection-free periodic solution. In order to
prove the global stability of the infection-free periodic solution (s̃(t), ĩ(t)), we need to use to comparison
theory and impulsive differential inequality [1, 2].

Theorem 3.2. If R∗ < 1, then the infection-free periodic solution (s̃(t), ĩ(t)) of system (2.4) is global
asymptotically stable.

Proof. Because of α ≤ β, and γ1 ≤ γ2, we have

s′ ≤ −ps, t /=nτ,

s(nτ+) ≤
b1γ2

1 + b1
+
(

1 −
b1γ2

1 + b1

)
s(nτ), t = nτ.

(3.7)

By impulsive differential inequality, we see that

s(t) ≤ s(0+)
∏

o<nτ<t

(
1 −

b1γ2

1 + b1

)
exp

{∫ t

0

(
−p
)
dσ

}

+
∑

o<nτ<t

⎧
⎨

⎩

∏

nτ<jτ<t

(
1 −

b1γ2

1 + b1

)
exp

[∫ t

nτ

(
−p
)
dσ

]
b1γ2

1 + b1

⎫
⎬

⎭

= s̃(t) + s(0+)
(

1 − b1γ2

1 + b1

)[t/T]

e−pt

−
(
b1γ2/(1 + b1)

)(
1 − b1γ2/(1 + b1)

)[t/T]
e−pt

(
1 − b1γ2/(1 + b1)

)
e−pT

.

(3.8)

Since

lim
t→∞

{

s(0+)
(

1 −
b1γ2

1 + b1

)[t/T]

e−pt −
(
b1γ2/(1 + b1)

)(
1 − b1γ2/(1 + b1)

)[t/T]
e−pt

(
1 − b1γ2/(1 + b1)

)
e−pT

}

= 0, (3.9)

for any given ε1 > 0, there exists T1 > 0, such that s(t) < s̃(t) + ε1, for all t > T1.
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Introduce the new variable u = s + r, then

u′ =
(
−βs + αu + θ

)
(1 − u), t /=nτ,

u(nτ+) =
b1γ1

1 + b1
+
(

1 −
b1γ1

1 + b1

)
u(nτ), t = nτ.

(3.10)

Consider the following comparison system with pulse:

v′ = −
(
βs̃(t) + βε1 + α − θ

)
v − αv2 + θ − β(s̃(t) + ε1), t /=nτ,

v(nτ+) =
b1γ1

1 + b1
+
(

1 −
b1γ1

1 + b1

)
v(nτ), t = nτ.

(3.11)

The first equation of (3.11) is Riccati equation. It is easy to see that v(t) = 1 is a solution
of system (3.11). Let y = v − 1, then

y′ = −
(
βs̃(t) − α − θ + βε1

)
y − αy2, t /=nτ,

y(nτ+) =
(

1 −
b1γ1

1 + b1

)
y(nτ), t = nτ.

(3.12)

Let z = 1/y, then

z′ = −
(
βs̃(t) − α − θ + βε1

)
z − α, t /=nτ,

z(nτ+) =
(

1 + b1

1 + b1 − b1γ1

)
z(nτ), t = nτ.

(3.13)

Let q(t) = βs̃(t)−α−θ+βε1, solving system (3.13) between pulses (T1+nτ, T1+(n+1)τ],
we have

z(t) = e−
∫ t
T1+nτ

q(σ)dσ

[

α

∫ t

T1+nτ
e
∫u
T1+nτ

q(σ)dσ
du +

1 + b1

1 + b1 − b1γ1
z(T1 + nτ)

]

, (3.14)

when t = T1 + (n + 1)τ , (3.14) can be written as follows:

z(T1 + (n + 1)τ) = e−
∫T1+(n+1)τ
T1+nτ

q(σ)dσ

[

α

∫T1+(n+1)τ

T1+nτ
e
∫u
T1+nτ

q(σ)dσ
du +

1 + b1

1 + b1 − b1γ1
z(T1 + nτ)

]

. (3.15)
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On the other hand, solving system (3.13) between pulses (T1 + (n − 1)τ, T1 + nτ], we obtain

z(t) = e−
∫ t
T1+(n−1)τ q(σ)dσ

[

α

∫ t

T1+(n−1)τ
e
∫u
T1+(n−1)τ q(σ)dσdu +

1 + b1

1 + b1 − b1γ1
z(T1 + (n − 1)τ)

]

, (3.16)

then

z(T1 + nτ) = e
−
∫T1+(n+1)τ
T1+nτ

q(σ)dσ

[

α

∫T1+nτ

T1+(n−1)τ
e
∫u
T1+(n−1)τ q(σ)dσdu +

1 + b1

1 + b1 − b1γ1
z(T1 + (n − 1)τ)

]

.

(3.17)

Similarly, we can get the expressions of z(T1 +(n−1)τ), z(T1 +(n−2)τ), . . . , z(T1). Then
using iterative technique step by step,

z(T1 + nτ) = e−
∫nτ

0 q(σ)dσ
(

1 + b1

1 + b1 − b1γ1

)n
[
∑

1≤k≤n

(
1 + b1

1 + b1 − b1γ1

)k−n−1

e
∫T1+(n−k)τ
T1

q(σ)dσ
du

+
∫T1+(n−k+1)τ

T1+(n−k)τ
e
∫u
T1+(n−k)τ

q(σ)dσ
du + z(T1)

]

,

(3.18)

where

e−
∫nτ

0 q(σ)dσ
(

1 + b1

1 + b1 − b1γ1

)n

= exp
{
n

[
−β
∫ τ

0
s̃(σ)dσ + (θ + α)τ − βε1τ + ln

1 + b1

1 + b1 − b1γ1

]}
.

(3.19)

The condition R∗ < 1 implies that limn→∞z(nτ) = ∞, then limt→∞x(t) = 1. The

comparison principle and the condition u(t) < 1 imply that limt→∞u(t) = 1, so we have

limt→∞i(t) = 0.

Because we have proved that limt→∞i(t) = 0 when R∗ < 1, for any given ε2 > 0, there

exists T2 > 0, such that −ε2 < i(t) < ε2, for all t > T2.
When t > T2, from system (2.4), we have

s′ ≥ −ps +
(
α − β

)
ε2s, t /=nτ,

s(nτ+) ≥
b1γ1

1 + b1
+
(

1 −
b1γ2

1 + b1

)
s(nτ), t = nτ.

(3.20)
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Therefore

s(t) ≥ s
(
T+

2
) ∏

T2<nτ<t

(
1 −

b1γ2

1 + b1

)
exp

{∫ t

T2

(
−p +

(
α − β

)
ε2
)
dσ

}

+
∑

T2<nτ<t

⎧
⎨

⎩

∏

T2<jτ<t

(
1 −

b1γ2

1 + b1

)
exp

{∫ t

nτ

(
−p +

(
α − β

)
ε2
)
dσ

}
b1γ1

1 + b1

⎫
⎬

⎭

= s
(
T+

2
)
(

1 −
b1γ2

1 + b1

)[t/T]−[T2/T]

exp
(
−p +

(
α − β

)
ε2
)
(t − T2)

+
b1γ1/(1 + b1)

1 −
(
1 − b1γ2/(1 + b1)

)
exp

(
−p +

(
α − β

)
ε2
)
T

exp
(
−p +

(
α − β

)
ε2
)
(
t −
[
t

T

]
T

)

−
b1γ1/(1 + b1)

1 −
(
1 − b1γ2/(1 + b1)

)
exp

(
−p +

(
α − β

)
ε2
)
T

×
(

1 −
b1γ2

1 + b1

)([t/T]−[T2/T]−1)

exp
(
−p +

(
α − β

)
ε2
)
T.

(3.21)

For any given ε2 > 0, we have

lim
t→∞

{

s
(
T+

2
)
(

1 −
b1γ2

1 + b1

)[t/T]−[T2/T]

exp
(
−p +

(
α − β

)
ε2
)
(t − T2)

−
b1γ1/(1 + b1)

1 −
(
1 − b1γ2/(1 + b1)

)
exp

(
−p +

(
α − β

)
ε2
)
T

×
(

1 −
b1γ2

1 + b1

)([t/T]−[T2/T]−1)

exp
(
−p +

(
α − β

)
ε2
)
(T)

}

= 0,

lim
t→∞

b1γ1/(1 + b1)
1 −

(
1 − b1γ2/(1 + b1)

)
exp

(
−p +

(
α − β

)
ε2
)
T

exp
(
−p +

(
α − β

)
ε2
)
(
t −
[
t

T

]
T

)
= s̃(t).

(3.22)

Therefore, for any given ε3 > 0, there exists T3 > 0, when t > T3, then we have

s(t) ≥ s̃(t) − ε3. (3.23)

For any given ε > 0. Let T = max{T1, T2, T3}, then t > T , then we have

s̃(t) − ε ≥ s(t) ≥ s̃(t) + ε, (3.24)

that is limt→∞ s(t) = s̃(t).
Therefore the infection-free periodic solution (s̃(t), 0) is global asymptotically stable.
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4. The Uniform Persistence of the Infectious Disease

In this section, we will discuss the uniform persistence of the infectious disease, that is,
limt→∞ inf i(t) ≥ ρ > 0 if R∗ > 1.

To discuss the uniform persistence, we need the following lemma.

Lemma 4.1. For the following impulsive equation,

x′ = −gx − h, t /=nτ,

x(nτ+) =
b1γ1

1 + b1
+
(

1 −
b1γ2

1 + b1

)
x(nτ), t = nτ,

(4.1)

has a unique positive τ-periodic solution x̃(t) for which x̃(0) > 0, t ∈ R+, and x̃(t) is global
asymptotically stable in the sense that limt→∞|x(t) − x̃(t)| = 0, where x(t) is any solution of system

(2.2) with positive initial value x(0) > 0 and g, h are positive constants.

Proof. Solving (4.1), we have

x(t) =W(t, 0)x(0) − h
∫ t

0
W(t, σ)dσ +

b1γ1

1 + b1

∑

0<nτ<t

W(t, nτ+), (4.2)

where

W(t, t0) =
∏

t0≤nτ<t

(
1 −

b1γ2

1 + b1

)
e−g(t−t0). (4.3)

Since W(τ, 0) = (1−b1γ2/(1+b1))e−gτ < 1, (4.1) has a unique positive τ-periodic solution x̃(t)
with the initial value x̃(0) = (−h

∫τ
0W(τ+, σ)dσ + (b1γ1/(1 + b1))W(τ, τ))/(1 −W(τ, 0)). Next,

we only need to prove that limt→∞|x(t) − x̃(t)| = 0.

Since

|x(t) − x̃(t)| =W(t, 0)|x(0) − x̃(0)|, (4.4)

the result is obtained if W(t, 0) → 0 as t → ∞. Suppose t ∈ (nτ, (n + 1)τ], then

W(t, 0) =
∏

0≤jτ<t

(
1 −

b1γ2

1 + b1

)
e−gt =

(
1 −

b1γ2

1 + b1

)[t/τ]

e−gt. (4.5)

Thus limt→∞W(t, 0) = 0. The proof is complete.

Lemma 4.2. If R∗ > 1, then the disease uniformly weakly persists in the population, in the sense that
there exists some c > 0 such that limt→∞ sup i(t) > c for all solutions of (2.4).
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Proof. Suppose that for every ε > 0, there is some solution with limt→∞ sup i(t) < ε. From the

first equation of (2.4), we have

s′ = −ps +
(
α − β

)
si ≥ −ps +

(
α − β

)
ε, t /=nτ. (4.6)

Consider the following equation:

w′ = −pw +
(
α − β

)
ε, t /=nτ,

w(nτ+) =
b1γ1

1 + b1
+
(

1 −
b1γ2

1 + b1

)
w(nτ), t = nτ.

(4.7)

By Lemma 4.1, we see that (4.7) has a unique positive τ-periodic solution w̃(t), and w̃(t) is
global asymptotically stable. Solving (4.7), we have

w(t) =W(t, 0)w(0) +
(
α − β

)
ε

∫ t

0
W(t, σ)dσ +

b1γ1

1 + b1

∑

0<nτ<t

W(t, nτ+), (4.8)

w̃(t) =
(
α − β

)
ε

(
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

)

+
(

1 −
b1γ2

1 + b1

)
W(t, 0)W(τ, τ)

1 −W(τ, 0)
+

b1γ1

1 + b1

∑

0<nτ<t

W(t, nτ+),

(4.9)

and w̃(t) is global asymptotically stable. By (4.9), let α = β, we obtain the periodic solution of
(2.6) that

s̃(t) =
(

1 −
b1γ2

1 + b1

)
W(t, 0)W(τ, τ)

1 −W(τ, 0)
+

b1γ1

1 + b1

∑

0<nτ<t

W(t, nτ+). (4.10)

and we have

s̃(t) − w̃(t) =
(
β − α

)
ε

(
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

)

. (4.11)

Let

Δ =
(
β − α

)
max
0≤t≤τ

{
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

}

, (4.12)

by (4.11), we can see that

w̃(t) ≥ s̃(t) −Δε. (4.13)
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By comparison theory, we obtain that

i′ ≥ −(θ + α)i + βiw(t) + αi2. (4.14)

Since w̃(t) is global asymptotically stable, for above ε, there exists T4 > 0, such that w(t) ≥
w̃(t) − ε, t > T4. From (4.13) and (4.14), we have that

i′ ≥
[
βs̃(t) − (θ + α) − (1 + Δ)βε

]
i. (4.15)

Consider the following equation:

i′ ≥
[
βs̃(t) − (θ + α) − (1 + Δ)βε

]
i, t /=nτ,

i(nτ+) =
1 + b1

(
1 − γ1

)

1 + b1
i(nτ), t = nτ.

(4.16)

By impulsive differential inequality, for t ∈ (T4 + nτ, T4 + (n + 1)τ], we see that

i(t) ≥ i(T4)
∏

T4<jτ<t

1 + b1
(
1 − γ1

)

1 + b1
exp

{∫ t

T4

[
βs̃(σ) − (θ + α) − (1 + Δ)βε

]
dσ

}

= i(T4)
(

1 + b1(1 − γ1)
1 + b1

)n

exp

{∫T4+nτ

T4

[
βs̃(σ) − (θ + α) − (1 + Δ)βε

]
dσ

+
∫ t

T4+nτ

[
βs̃(σ) − (θ + α) − (1 + Δ)βε

]
dσ

}

≥ C exp

{

n

[

(R∗ − 1)

(

ln
1 + b1

1 + b1
(
1 − γ1

) + (θ + α)τ

)

− (1 + Δ)βετ

]}

,

(4.17)

where C = i(T4) exp{−[(θ + α) + (1 + Δ)βε]τ}. Taking

0 < ε <
(R∗ − 1)

[
ln
(
(1 + b1)/

(
1 + b1

(
1 − γ1

)))
+ (θ + α)τ

]

(1 + Δ)βτ
, (4.18)

thus i(t) → ∞ as t → ∞, a contradiction to the fact that i(t) is bounded. The proof is
complete.

Theorem 4.3. If R∗ > 1, then the disease is uniformly persistent, that is, there exists a positive
constant ρ such that for every positive solution of (2.4), limt→∞ inf i(t) ≥ ρ > 0.

Proof. Let

0 < η ≤ 1
2

(
1 − 1

R∗

)
s̃(t)

M(θ + α)
, (4.19)
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where

M = max
0≤t≤τ

{
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

}

,

W(t, t0) =
∏

t0≤nτ<t

1 + b1
(
1 − γ1

)

1 + b1
e−p(t−t0).

(4.20)

It can be obtained from Lemma 4.1 that for any positive solution of (2.4) there exists at least
one t0 > 0 such that i(t0) > η > 0. Then, we are left to consider two case. The first case is
i(t) ≥ η for all large t ≥ t0. The second case is i(t) oscillates about η for large t. The conclusion
of Theorem 4.3 is obvious in the first case since we can choose ρ = η. For the second case, let
t1 > t0, and let t2 > t1 satisfy

i(t1) = i(t2) = η, i(t) < η for t1 < t < t2. (4.21)

Next, we introduce the new variable V = s + i, and it follows from the first two equations of
(2.4) that

V ′ = −pV − (θ + α)i +
(
αV + p

)
i,

i′ = −(θ + α)i + β(V − i)i + αi2, t /=nτ,

V (nτ+) =
b1γ2

1 + b1
+
(

1 −
b1γ2

1 + b1

)
V (nτ),

i(nτ+) =
1 + b1

(
1 − γ1

)

1 + b1
i(nτ), t = nτ.

(4.22)

If i(t) ≤ η, then V ′ ≥ −pV − (θ + α)η, t /=nτ.
Consider the following equation:

x′ = −px − (θ + α)η, t /=nτ,

x(nτ+) =
b1γ2

1 + b1
+
(

1 −
b1γ2

1 + b1

)
x(nτ), t = nτ.

(4.23)

By Lemma 4.1, we see that (4.23) has a unique positive τ-periodic solution x̃(t), and
x̃(t) is global asymptotically stable. Solving (4.23), we have

x̃(t) = −(θ + α)η

(
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

)

+
(

1 −
b1γ2

1 + b1

)
W(t, 0)W(τ+, τ+)
(1 −W(τ, 0))

+
b1γ2

1 + b1

∑

0<nτ<t

W(t, nτ+).

(4.24)
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From (4.10) and (4.24), it is easy to see that

x̃(t) − s̃(t) ≥ −(θ + α)η

(
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

)

. (4.25)

By 0 < η ≤ (1/2)(1−1/R∗)(s̃(t)/M(θ+α)),M = max0≤t≤τ{W(t, 0)
∫τ

0W(τ+, σ)dσ/(1−W(τ, 0))+
∫ t

0W(t, σ)dσ}, and (W(t, 0)
∫τ

0W(τ+, σ)dσ/(1 −W(τ, 0)) +
∫ t

0W(t, σ)dσ)(1/M) ≤ 1, we obtain

−(θ + α)η

(
W(t, 0)

∫τ
0W(τ+, σ)dσ

1 −W(τ, 0)
+
∫ t

0
W(t, σ)dσ

)

≥ −1
2

(
1 − 1

R∗

)
s̃(t), (4.26)

namely,

x̃(t) ≥ 1
2

(
1 +

1
R∗

)
s̃(t). (4.27)

The comparison principle and the global asymptotically stable of x̃(t) imply that there exists
a positive constant T5 > 0 such that

V (t) ≥ 1
2

(
1 +

1
R∗

)
s̃(t), ∀t > t1 + T5. (4.28)

From (4.28) and the second equation of (4.22), we can see that

i′ ≥
[
β

2

(
1 +

1
R∗

)
s̃(t) − (θ + α)

]
i +
(
α − β

)
i2. (4.29)

Consider the following equation:

y′ =
[
β

2

(
1 +

1
R∗

)
s̃(t) − (θ + α)

]
y +

(
α − β

)
y2, t /=nτ,

y(nτ+) =
1 + b1

(
1 − γ1

)

1 + b1
y(nτ), t = nτ.

(4.30)

Let z = y−1, then we have

z′ =
[
(θ + α) −

β

2

(
1 +

1
R∗

)
s̃(t)

]
z +

(
β − α

)
, t /=nτ,

z(nτ+) =
1 + b1

1 + b1
(
1 − γ1

)z(nτ), t = nτ.

(4.31)
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Figure 1: The time series and the orbits of the system (2.4) with R∗ < 1. (a) and (b) show the time series for
susceptible and infective, respectively. (c) shows the orbits s − i plane.

By the same method of Lemma 4.1, we can get a conclusion that z̃(t) = (β−α)(W(t, 0)×∫τ
0W(τ+, σ)dσ/(1 −W(τ, 0)) +

∫ t
0W(t, σ)dσ) + (1 + b1)/(1 + b1(1 − γ1))(W(t, 0)W(τ, τ)/(1 −

W(τ, 0))) is global asymptotically stable. Thus system (4.30) has a unique positive τ-periodic
solution ỹ(t), and ỹ(t) is global asymptotically stable,

lim
t→∞

∣∣y(t) − ỹ(t)
∣∣ = 0. (4.32)

From (4.32) we see that there exists a positive constant T6 > 0 such that

y(t) > ρ ≡ 1
2

min
t1≤t≤t1+τ

ỹ(t) > 0, ∀t > t1 + T6. (4.33)

Let T ∗ = max{T5, T6}, and define ρ = min{ρ, η exp(−(θ + α)τ)}. If t2 − t1 < T ∗, from the second
equation of (4.22), we have the inequality

i′(t) ≥ −(θ + α)i, (4.34)
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Figure 2: The time series and the orbits of the system (2.4) with R∗ > 1. (a) and (b) show the time series for
susceptible and infective, respectively. (c) shows the orbits s − i plane.

and the comparison principle implies that i(t) ≥ η exp{−(θ + α)(t − t1)} ≥ η exp{−(θ + α)T ∗},
that is, i(t) ≥ ρ for all t ∈ (t1, t2).

If t2 − t1 > T ∗, we divide the interval [t1, t2] into two subintervals [t1, t1 + T ∗] and
[t1 + T ∗, t2], i(t) ≥ ρ is obvious in the interval [t1, t1 + T ∗]. In the interval [t1 + T ∗, t2], we have
the inequality (4.29) and (4.33). The comparison principle shows that i(t) ≥ y(t) ≥ ρ ≥ ρ
for t ∈ [t1 + T ∗, t2]. The analysis above is the independent of the selection of interval [t1, t2],
and the choice of ρ is the independent of the selection of interval independent of any positive
solution of (2.4). The persistence is uniform to all positive solution. The proof is complete.

5. Numerical Simulation

For the birth pulses of SIR model with standard incidence, we know that the periodic
infection-free solution is global asymptotically stable if the basic reproductive number R∗ < 1.
The periodic infection-free solution is unstable if the basic reproductive number R∗ > 1, in
this case, the disease will be uniform persistent. Here we do computer simulation to give a
geometric impression on our results. In all simulation unit was set to unity (scaled to unity).

In Figure 1, we show the case report with the outcome of the system (2.4) when the
basic reproductive number R∗ < 1. The parameters are chosen as p = 0.03, β = 0.8, α = 0.002,
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θ = 0.2, b1 = 0.4, γ1 = 0.86, γ2 = 0.9, and τ = 40. The three Figures 1(a), 1(b), and 1(c) in have
the same initial value as s(0) = 0.6296, i(0) = 0.006. We fixed p = 0.03 and changed parameter
τ . Figures 1(a), 1(b), and 1(c) show the solutions for τ = 40 and R∗ = 0.9876. It suggests that
the disease-free periodic solution is global asymptotically stable when R∗ < 1.

Figure 2 shows that the positive periodic solution is existence when R∗ → 1+, more-
over, the positive periodic solution is global asymptotically stable. The parameters are chosen
as p = 0.005, β = 0.8, α = 0.002, θ = 0.2, b1 = 0.4, γ1 = 0.32,γ2 = 0.9, and τ = 8. Here we choose
the initial value of (2.4) s(0) = 0.3080, i(0) = 0.006. In Figures 2(a), 2(b) and 2(c) with τ = 15
and R∗ = 1.0236, the other parameters are the same as Figure 1.

6. Discussion

In this paper, we have investigated the dynamic behaviors of the classical SIR model. A
distinguishing feature of the SIR model considered here is that the epidemic incidence
is standard form instead of bilinear form as usual. The basic reproductive number R∗ is
identified and is established as a sharp threshold parameter. If R∗ < 1, the infection-free
periodic solution is global asymptotically stable which implies that the disease will extinct.
If R∗ > 1, the disease will have uniform persistence and lead to epidemic disease eventually.
Our theoretical results are confirmed by numerical results.

When we are modeling the transmission of some infectious diseases with pulse birth,
the introduction of the standard incidence can make the model more realistic, whereas it
raises hardness of the problem at the same time. For example, we attempted to achieve the
global stability of infection-free periodic solution in Section 3, and we found it is impossible
to prove limt→∞i(t) = 0 by traditional techniques. In this case, we made the conclusion by
making use of the new variable v = s + r. The SIR epidemic model with pulse birth is one of
the simple and important epidemic models.

At the same time, the paper assumes the susceptible, infectious, and recovered have
the same birth rate. But by the effect of the infectious diseases to the fertility of the infected, we
can also assume that the susceptible and recovered have the same birth rate, which is higher
than the infectious birth rate. Furthermore, we can assume that the infectious has a lower
fertility than the susceptible and recovered due to the effect of the disease. So a distinguishing
feature of the model considered here is that the susceptible, infectious, and recovered have
different birth rates, which makes the model more realistic. For the above models we could
get the similar condition for the stability of the infection-free periodic solution.
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