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1. Introduction

In recent years, neural networks (especially recurrent neural networks, Hopfield neural
networks, and cellular neural networks) have been successfully applied in many areas
such as signal processing, image processing, pattern recognition, fault diagnosis, associative
memory, and combinatorial optimization; see, for example, [1–5]. One of the best important
works in these applications is to study the stability of the equilibrium point of neural
networks. A major purpose that is concerned with is to find stability conditions (i.e.,
the conditions for the stability of the equilibrium point of neural networks). To do this,
existensive literature has been presented; see, for example, [6–22] and references therein.
It should be noted that the methods in the literature have seldom considered the case
that the systems have Markovian jump parameters due to the difficulty of mathematics.
However, neural networks in real life often have a phenomenon of information latching.
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It is recognized that a way for dealing with this information latching problem is to extract
finite state representations (also called modes or clusters). In fact, such a neural network with
information latching may have finite modes, and the modes may switch (or jump) from one to
another at different times, and the switching (or jumping) between two arbitrarily different
modes can be governed by a Markov chain. Hence, the neural networks with Markovian
jump parameters are of great significance in modeling a class of neural networks with finite
modes.

On the other hand, the time delay is frequently a major source of instability and poor
performance in neural networks (e.g., see [6, 23, 24]), and so the stability analysis for neural
networks with time delays is an important research topic. The existing works on neural
networks with time delays can be classified into three categories: constant delays, time-
varying delays, and distributed delays. It is noticed that most works in the literature have
focused on the former two simple cases: constant delays or time-varying delays (e.g., see
[6, 8–10, 12–16, 19–22]). However, as pointed out in [18], neural networks usually have a
spatial nature due to the presence of a multitude of parallel pathways with a variety of axon
sizes and lengths, and so it is desired to model them by introducing continuously distributed
delays on a certain duration of time such that the distant past has less influence than the
recent behavior of the state. But discussions about the neural networks with continuously
distributed delays are only a few researchers [18, 25]. Therefore, there is enough room to
develop novel stability conditions for improvement.

Motivated by the above discussion, the objective of this paper is to study the stability
for a class of neural networks with both Markovian jump parameters and continuously
distributed delays. Moreover, to make the model more general and practical, the factor
of noise disturbance is considered in this paper since noise disturbance is also a major
source leading to instability [7]. To the best of the authors’ knowledge, up to now, the
stability analysis problem for a class of stochastic neural networks with both Markovian
jump parameters and continuously distributed delays is still an open problem that has not
been properly studied. Therefore, this paper is the first attempt to introduce and investigate
the problem of stochastic stability for a class of neural networks with both Markovian jump
parameters and continuously distributed delays. By utilizing the Lyapunov stability theory
and linear matrix inequality (LMI) technique, some novel delay-dependent conditions are
obtained to guarantee the stochastically asymptotic stability of the equilibrium point. The
proposed LMI-based criteria are computationally efficient as they can be easily checked by
using recently developed standard algorithms such as interior point methods [24] in solving
LMIs. Finally, a numerical example is provided to illustrate the effectiveness of the theoretical
results and demonstrate the LMI criteria existed in the earlier literature fail. The results
obtained in this paper improve and generalize those given in the previous literature.

The remainder of this paper is organized as follows. In Section 2, the model of a
class of stochastic neural networks with both Markovian jump parameters and continuously
distributed delays is introduced, and some assumptions needed in this paper are presented.
By means of Lyapunov-Krasovskii functional approach, our main results are established in
Section 3. In Section 4, a numerical example is given to show the effectiveness of the obtained
results. Finally, in Section 5, the paper is concluded with some general conclusions.

Notation. Throughout this paper, the following notations will be used. R
n and R

n×n

denote the n-dimensional Euclidean space and the set of all n × n real matrices, respectively.
The superscript “T” denotes the transpose of a matrix or vector. Trace(·) denotes the trace
of the corresponding matrix, and I denotes the identity matrix with compatible dimensions.
For square matrices M1 and M2, the notation M1 > (≥, <,≤) M2 denotes that M1 −M2 is
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positive-definite (positive-semidefinite, negative, negative-semidefinite) matrix. Let w(t) =
(w1, . . . , wn)

T be an n-dimensional Brownian motion defined on a complete probability
space (Ω,F, P) with a natural filtration {Ft}t≥0. Also, let τ > 0 and C([−τ, 0]; Rn) denote
the family of continuous function φ from [−τ, 0] to R

n with the uniform norm ‖φ‖ =
sup−τ≤θ≤0|φ(θ)|. Denote by L2

Ft([−τ, 0]; R
n) the family of all Ft measurable, C([−τ, 0]; Rn)-

valued stochastic variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that
∫0
−τE|ξ(s)|

2ds < ∞, where
E[·] stands for the correspondent expectation operator with respect to the given probability
measure P .

2. Model Description and Problem Formulation

Let {r(t), t ≥ 0} be a right-continuous Markov chain on a complete probability space (Ω,F, P)
taking values in a finite state space S = {1, 2, . . . ,N} with generator Q = (qij)N×N given
by

P
{
r(t + Δt) = j | r(t) = i

}
=

⎧
⎪⎨

⎪⎩

qijΔt + o(Δt), if i /= j,

1 + qiiΔt + o(Δt), if i = j,
(2.1)

where Δt > 0 and limΔt→ 0(o(Δt)/Δt) = 0. Here, qij ≥ 0 is the transition rate from i to j if i /= j
while qii = −

∑
j /= i qij .

In this paper we consider a class of neural networks with both Markovian jump
parameters and continuously distributed delays, which is described by the following integro-
differential equation:

ẋ(t) = −D(r(t))x(t) +A(r(t))f(x(t)) + B(r(t))g(x(t − τ))

+ C(r(t))
∫ t

−∞
R(t − s)h(x(s))ds + V,

(2.2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T is the state vector associated with the n neurons,

and the diagonal matrix D(r(t)) = diag(d1(r(t)), d2(r(t)), . . . , dn(r(t))) has positive entries
di(r(t)) > 0 (i = 1, 2, . . . , n). The matrices A(r(t)) = (aij(r(t)))n×n, B(r(t)) = (bij(r(t)))n×n,
and C(r(t)) = (cij(r(t)))n×n are, respectively, the connection weight matrix, the discretely
delayed connection weight matrix, and the distributively delayed connection weight matrix.
f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]

T , g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]
T ,

and h(x(t)) = [h1(x1(t)), h2(x2(t)), . . . , hn(xn(t))]
T denote the neuron activation functions,

and V = [V1, V2, . . . , Vn]
T denotes a constant external input vector. The constant τ > 0 denotes

the time delay, and R = [R1, R2, . . . , Rn]
T denotes the delay kernel vector, where Ri is a real

value nonnegative continuous function defined on [0,∞) and such that
∫∞

0 Ri(s)ds = 1 for
i = 1, 2, . . . , n.
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In this paper we will investigate a more general model in which the environmental
noise is considered on system (2.2), and so this model can be written as the following
integrodifferential equation:

dx(t) =

[

−D(r(t))x(t) +A(r(t))f(x(t)) + B(r(t))g(x(t − τ))

+C(r(t))
∫ t

−∞
R(t − s)h(x(s))ds + V

]

dt + σ(x(t), x(t − τ), t, r(t))dw(t),

(2.3)

where σ : R
n × R

n × R
+ × S → R

n×n is the noise perturbation.
Throughout this paper, the following conditions are supposed to hold.

Assumption 2.1. There exist six diagonal matrices U− = diag(u−1 , u
−
2 , . . . , u

−
n), U

+ = diag(u+1 ,
u+2 , . . . , u

+
n), V

− = diag(v−1 , v
−
2 , . . . , v

−
n), V

+ = diag(v+
1 , v

+
2 , . . . , v

+
n), W

− = diag(w−1 , w
−
2 , . . . , w

−
n),

andW+ = diag(w+
1 , w

+
2 , . . . , w

+
n) satisfying

u−i ≤
fi(α) − fi

(
β
)

α − β ≤ u+i ,

v−i ≤
gi(α) − gi

(
β
)

α − β ≤ v+
i ,

w−i ≤
hi(α) − hi

(
β
)

α − β ≤ w+
i

(2.4)

for all α, β ∈ R, α/= β, i = 1, 2, . . . , n.

Assumption 2.2. There exist two positive definite matrices Σ1i and Σ2i such that

trace
[
σT

(
x, y, t, r(t)

)
σ
(
x, y, t, r(t)

)]
≤ xTΣ1ix + yTΣ2iy (2.5)

for all x, y ∈ R
n and r(t) = i, i ∈ S.

Assumption 2.3. σ(0, 0, t, r(t)) ≡ 0.

Under Assumptions 2.1 and 2.2, it is well known (see, e.g., Mao [16]) that for any
initial data x(θ) = ξ(θ) on −τ ≤ θ ≤ 0 in L2

Ft([−τ, 0]; R
n), (2.3) has a unique equilibrium point.

Now, let x∗ = (x∗1, x
∗
2, . . . , x

∗
n) be the unique equilibrium point of (2.3), and set y(t) = x(t)−x∗.

Then we can rewrite system (2.3) as

dy(t) =

[

−D(r(t))y(t) +A(r(t))f ′
(
y(t)

)
+ B(r(t))g ′

(
y(t − τ)

)

+C(r(t))
∫ t

−∞
R(t − s)h′

(
y(s)

)
ds

]

dt + σ
(
y(t), y(t − τ), t, r(t)

)
dw(t),

(2.6)
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where f ′(y) = [f ′1(y1), f ′2(y2), . . . , f ′n(yn)]
T , g ′(y) = [g ′1(y1), g ′2(y2), . . . , g ′n(yn)]

T , h′(y) =
[h′1(y1), h′2(y2), . . . , h′n(yn)]

T , and f ′i(yi) = fi(yi + x∗i ) − fi(x
∗
i ), g

′
i(yi) = gi(yi + x∗i ) − gi(x

∗
i ),

h′i(yi) = hi(yi + x
∗
i ) − hi(x

∗
i ) (i = 1, 2, . . . , n).

Noting the facts that f(0) = g(0) = h(0) = 0 and σ(0, 0, t, r(t)) = 0, the trivial solution
of system (2.6) exists. Hence, to prove the stability of x∗ of (2.3), it is sufficient to prove the
stability of the trivial solution of system (2.6). On the other hand, by Assumption 2.1 we have

u−i ≤
f ′i(α) − f

′
i

(
β
)

α − β ≤ u+i , (2.7)

v−i ≤
g ′i(α) − g

′
i

(
β
)

α − β ≤ v+
i , (2.8)

w−i ≤
h′i(α) − h

′
i

(
β
)

α − β ≤ w+
i (2.9)

for all α, β ∈ R, α/= β, i = 1, 2, . . . , n.
Let y(t; ξ) denote the state trajectory from the initial data y(θ) = ξ(θ) on −τ ≤ θ ≤ 0

in L2
Ft([−τ, 0]; R

n). Clearly, system (2.6) admits a trivial solution y(t; 0) ≡ 0 corresponding to
the initial data ξ = 0. For simplicity, we write y(t; ξ) = y(t). Let C2

1(R
+ × R

n × S; R+) denote
the family of all nonnegative functions V (t, y, i) on R

+ ×R
n × S which are continuously twice

differentiable in y and differentiable in t. If V ∈ C2
1(R

+ ×R
n × S; Rn), then along the trajectory

of system (2.6) we define an operator LV from R
+ × R

n × S to R by

LV
(
t, y(t), i

)
= Vt

(
t, y(t), i

)
+ Vy

(
t, y(t), i

)
[

−D(r(t))y(t) +A(r(t))f ′
(
y(t)

)

+ B(r(t))g ′
(
y(t − τ)

)

+C(r(t))
∫ t

−∞
R(t − s)h′

(
y(s)

)
ds

]

+
1
2

trace
[
σT

(
y(t), y(t − τ), t, r(t)

)
Vyy

(
t, y(t), i

)
σ
(
y(t), y(t − τ), t, r(t)

)]

+
N∑

j=1

qijV
(
t, y(t), j

)
,

(2.10)

where

Vt
(
t, y(t), i

)
=
∂V

(
t, y(t), i

)

∂t
, Vy

(
t, y(t), i

)
=

(
∂V

(
t, y(t), i

)

∂y1
, . . . ,

∂V
(
t, y(t), i

)

∂yn

)

,

Vyy
(
t, y(t), i

)
=

(
∂2V (t, y(t), i)

∂yi∂yj

)

n×n
.

(2.11)

Now we give the definition of stochastic asymptotically stability for system (2.6).
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Definition 2.4. The equilibrium point of (2.6) (or (2.3) equivalently) is said to be stochastic
asymptotically stable in the mean square if, for every ξ ∈ L2

F0
([−τ, 0]; Rn), the following

equality holds:

lim
t→∞

E|y(t; ξ)|2 = 0. (2.12)

In the sequel, for simplicity, when r(t) = i, the matrices C(r(t)), A(r(t)), and B(r(t))
will be written as Ci, Ai and Bi, respectively.

3. Main Results and Proofs

In this section, the stochastic asymptotically stability in the mean square of the equilibrium
point for system (2.6) is investigated under Assumptions 2.1–2.3.

Theorem 3.1. Under Assumptions 2.1–2.3, the equilibrium point of (2.6) (or (2.3) equivalently) is
stochastic asymptotically stable, if there exist positive scalars λi, positive definite matrices G, H, M,
Pi, Ki, Li (i ∈ S), and four positive diagonal matrices Q1, Q2, Q3, and F = diag(f1, f2, . . . , fn) such
that the following LMIs hold:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ11 0 PiAi 0 0 0 PiBi PiCi

� Γ22 0 0 0 0 0 0

� � Γ33 0 0 0 0 0

� � � Γ44 0 0 0 0

� � � � −Q3 + F 0 0 0

� � � � � −Ki 0 0

� � � � � � −Li 0

� � � � � � � −F

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.1)

Pi ≤ λiI, (3.2)

H ≥
N∑

j=1
qijKj , (3.3)

M ≥
N∑

j=1
qijLj , (3.4)

where the symbol “�” denotes the symmetric term of the matrix:

Γ11 = −2PiDi +G + λiΣ1i +UQ1U + VQ2V +WQ3W +
N∑

j=1

qijPj ,

Γ22 = −G + λiΣ2i, Γ33 = −Q1 +Ki + τH, Γ44 = −Q2 + Li + τM,

U = diag(u1, u2, . . . , un), V = diag(v1, v2, . . . , vn), W = diag(w1, w2, . . . , wn),

ui = max
{∣∣u−i

∣∣,
∣∣u+i

∣∣}, vi = max
{∣∣v−i

∣∣,
∣∣v+

i

∣∣}, wi = max
{∣∣w−i

∣∣,
∣∣w+

i

∣∣} (i = 1, 2, . . . , n).
(3.5)
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Proof. Fixing ξ ∈ L2
Ft([−τ, 0]; R

n) arbitrarily and writing y(t; ξ) = y(t), consider the following
Lyapulov-Krasovskii functional:

V
(
t, y(t), i

)
=

7∑

k=1

Vk
(
t, y(t), i

)
, (3.6)

where

V1
(
t, y(t), i

)
= yT (t)Piy(t),

V2
(
t, y(t), i

)
=
∫ t

t−τ
f ′T

(
y(s)

)
Kif

′(y(s)
)
ds,

V3
(
t, y(t), i

)
=
∫0

−τ
dθ

∫ t

t+θ
f ′T

(
y(s)

)
Hf ′

(
y(s)

)
ds,

V4
(
t, y(t), i

)
=

n∑

j=1

fj

∫∞

0
Rj(θ)

∫ t

t−θ
h′2j

(
yj(s)

)
dsdθ,

V5
(
t, y(t), i

)
=
∫ t

t−τ
yT (s)Gy(s)ds,

V6
(
t, y(t), i

)
=
∫ t

t−τ
g ′T

(
y(s)

)
Lig

′(y(s)
)
ds,

V7
(
t, y(t), i

)
=
∫0

−τ
dθ

∫ t

t+θ
g ′T

(
y(s)

)
Mg ′

(
y(s)

)
ds.

(3.7)

For simplicity, denote σ(y(t), y(t−τ), t, r(t)) by σ(t). Then it follows from (2.10) and (2.6) that

LV1
(
t, y(t), i

)
= 2yT (t)Pi

[

−Diy(t) +Aif
′(y(t)

)
+ Big ′

(
y(t − τ)

)

+Ci

∫ t

−∞
R(t − s)h′

(
y(s)

)
ds

]

+
N∑

j=1

qijy
T (t)Pjy(t) + trace

[
σT (t)Piσ(t)

]

= yT (t)(−2PiDi)y(t) + 2yT (t)PiAif
′(y(t)

)
+ 2yT (t)PiBig ′

(
y(t − τ)

)

+ 2yT (t)PiCi

∫ t

−∞
R(t − s)h′

(
y(s)

)
ds + yT (t)

N∑

j=1

qijPjy(t)

+ trace
[
σT (t)Piσ(t)

]
.

(3.8)

On the other hand, by Assumption 2.2 and condition (3.2) we obtain

trace
[
σT (t)Piσ(t)

]
≤ λitrace

[
σT (t)σ(t)

]
≤ λiyT (t)Σ1iy(t) + λiyT (t − τ)Σ2iy(t − τ), (3.9)
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which together with (3.8) gives

LV1
(
t, y(t), i

)
≤ yT (t)(−2PiDi)y(t) + 2yT (t)PiAif

′(y(t)
)
+ 2yT (t)PiBig ′

(
y(t − τ)

)

+ 2yT (t)PiCi

∫ t

−∞
R(t − s)h′

(
y(s)

)
ds + yT (t)

N∑

j=1

qijPjy(t)

+ λiyT (t)Σ1iy(t) + λiyT (t − τ)Σ2iy(t − τ).

(3.10)

Also, from direct computations, it follows that

LV2
(
t, y(t), i

)
= f ′T

(
y(t)

)
Kif

′(y(t)
)
− f ′T

(
y(t − τ)

)
Kif

′(y(t − τ)
)

+
∫ t

t−τ
f ′T

(
y(s)

)
⎛

⎝
N∑

j=1

qijKj

⎞

⎠f ′
(
y(s)

)
ds,

LV3
(
t, y(t), i

)
= τf ′T

(
y(t)

)
Hf ′

(
y(t)

)
−
∫ t

t−τ
f ′T

(
y(s)

)
Hf ′

(
y(s)

)
ds,

LV4
(
t, y(t), i

)
=

n∑

j=1

fj

∫∞

0
Rj(θ)h′2j

(
yj(t)

)
dθ −

n∑

j=1

fj

∫∞

0
Rj(θ)h′2j

(
yj(t − θ)

)
dθ

= h′T
(
y(t)

)
Fh′

(
y(t)

)
−

n∑

j=1

fj

∫∞

0
Rj(θ)dθ

∫∞

0
Rj(θ)h′2j

(
yj(t − θ)

)
dθ

≤ h′T
(
y(t)

)
Fh′

(
y(t)

)
−

n∑

j=1

fj

[∫∞

0
Rj(θ)h′j(yj(t − θ))dθ

]2

= h′T
(
y(t)

)
Fh′

(
y(t)

)

−
(∫ t

−∞
R(t − s)h′

(
y(s)

)
ds

)T

F

∫ t

−∞
R(t − s)h′

(
y(s)

)
ds,

LV5
(
t, y(t), i

)
= yT (t)Gy(t) − yT (t − τ)Gy(t − τ),

LV6
(
t, y(t), i

)
= g ′T

(
y(t)

)
Lig

′(y(t)
)
− g ′T

(
y(t − τ)

)
Lig

′(y(t − τ)
)

+
∫ t

t−τ
g ′T

(
y(s)

)
⎛

⎝
N∑

j=1

qijLj

⎞

⎠g ′
(
y(s)

)
ds,

LV7
(
t, y(t), i

)
= τg ′T

(
y(t)

)
Mg ′

(
y(t)

)
−
∫ t

t−τ
g ′T

(
y(s)

)
Mg ′

(
y(s)

)
ds.

(3.11)
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It should be mentioned that the calculation of LV4(t, y(t), i) has applied the following
inequality:

[∫∞

0
l1(θ)l2(θ)dθ

]2

≤
∫∞

0
l21(θ)dθ

∫∞

0
l22(θ)dθ (3.12)

with l1(θ) := [R(θ)]1/2 and l2(θ) := [R(θ)]1/2h′(y(t − θ)).
Furthermore, it follows from the conditions (3.3) and (3.4) that

∫ t

t−τ
f ′T

(
y(s)

)
⎛

⎝
N∑

j=1

qijKj

⎞

⎠f ′
(
y(s)

)
ds −

∫ t

t−τ
f ′T

(
y(s)

)
Hf ′

(
y(s)

)
ds ≤ 0,

∫ t

t−τ
g ′T

(
y(s)

)
⎛

⎝
N∑

j=1

qijLj

⎞

⎠g ′
(
y(s)

)
ds −

∫ t

t−τ
g ′T

(
y(s)

)
Mg ′

(
y(s)

)
ds ≤ 0.

(3.13)

On the other hand, by Assumption 2.1 we have

f ′T
(
y(t)

)
Q1f

′(y(t)
)
≤ yT (t)UQ1Uy(t),

g ′T
(
y(t)

)
Q2g

′(y(t)
)
≤ yT (t)VQ2Vy(t),

h′T
(
y(t)

)
Q3h

′(y(t)
)
≤ yT (t)WQ3Wy(t).

(3.14)

Hence, by (3.8)–(3.14), we get

LV
(
t, y(t), i

)
≤ ζT (t)Πiζ(t), (3.15)

where

ζT (t) =

[

yT (t) yT (t − τ) f ′T
(
y(t)

)
g ′T

(
y(t)

)
h′T

(
y(t)

)

f ′T (y(t − τ)) g ′T (y(t − τ))
(∫ t

−∞
R(t − s)h′

(
y(s)

)
ds

)T
⎤

⎦,
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Πi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ11 0 PiAi 0 0 0 PiBi PiCi

� Γ22 0 0 0 0 0 0

� � Γ33 0 0 0 0 0

� � � Γ44 0 0 0 0

� � � � −Q3 + F 0 0 0

� � � � � −Ki 0 0

� � � � � � −Li 0

� � � � � � � −F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.16)

Γ11 = −2PiDi +G + λiΣ1i +UQ1U + VQ2V +WQ3W +
N∑

j=1

qijPj ,

Γ22 = −G + λiΣ2i, Γ33 = −Q1 +Ki + τH, Γ44 = −Q2 + Li + τM.

(3.17)

By condition (3.1), there must exist a scalar βi > 0 (i ∈ S) such that Πi + βiI < 0. Setting
β = mini∈Sβi, it is clear that β > 0. Taking the mathematical expectation on both sides of
(3.15), we obtain

ELV
(
t, y(t), i

)
≤ EζT (t)Πiζ(t) ≤ −βiE

∣∣y(t; ξ)
∣∣2 ≤ −βE

∣∣y(t; ξ)
∣∣2
. (3.18)

Applying the Dynkin formula and from (3.18), it follows that

EV (t, x(t), i) − EV (0, x(0), r(0)) =
∫ t

0
ELV (s, x(s), r(s))ds < −β

∫ t

0
E|x(s)|2ds, (3.19)

and so

∫ t

0
E|x(s)|2ds < −1

β
EV (t, x(t), i) +

1
β
EV (0, x(0), r(0)) <

1
β
EV (0, x(0), r(0)), (3.20)

which implies that the equilibrium point of (2.3) (or (2.2) equivalently) is stochastically
asymptotic stability in the mean square. This completes the proof

Remark 3.2. Theorem 3.1 provides a sufficient condition for the generalized neural network
(2.3) to ascertain the stochastic asymptotically stability in the mean square of the equilibrium
point. The condition is easy to be verified and can be applied in practice as it can be checked
by using recently developed algorithms in solving LMIs.

Remark 3.3. The generalized neural network (2.3) is quite general since it considers the
effects of many factors including noise perturbations, Markovian jump parameters, and
continuously distributed delays. Furthermore, the constants u−i , v−i , w−i , u+i , v+

i , w+
i in

Assumption 2.1 are allowed to be positive, negative, or zero. To the best of our knowledge,
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the generalized neural network (2.3) has never been considered in the previous literature.
Hence, the LMI criteria existed in all the previous literature fail in our results.

Remark 3.4. If we take Ai = 0 (i ∈ S), then system (2.3) can be written as

dx(t) =

[

−D(r(t))x(t) + B(r(t))g(x(t − τ)) + C(r(t))
∫ t

−∞
R(t − s)h(x(s))ds + V

]

dt

+ σ(x(t), x(t − τ), t, r(t))dw(t).

(3.21)

If we take Bi = 0 (i ∈ S), then system (2.3) can be written as

dx(t) =

[

−D(r(t))x(t) +A(r(t))f(x(t)) + C(r(t))
∫ t

−∞
R(t − s)h(x(s))ds + V

]

dt

+ σ(x(t), x(t − τ), t, r(t))dw(t).

(3.22)

If we do not consider noise perturbations, then system (2.3) can be written as

dx(t) =

[

−D(r(t))x(t) +A(r(t))f(x(t))

+B(r(t))g(x(t − τ)) + C(r(t))
∫ t

−∞
R(t − s)h(x(s))ds + V

]

dt.

(3.23)

To the best of our knowledge, even systems (3.21)–(3.23) still have not been investigated in
the previous literature.

Remark 3.5. We now illustrate that the neural network (2.3) generalizes some neural networks
considered in the earlier literature. For example, if we take

Ri(s) =

⎧
⎨

⎩

0 s ≥ τ ′,

1 s < τ ′,
τ ′ > 0, i = 1, 2, . . . , n, (3.24)

then system (2.3) can be written as

dx(t) =

[

−D(r(t))x(t) +A(r(t))f(x(t)) + B(r(t))g(x(t − τ)) + C(r(t))
∫ t

t−τ ′
h(x(s))ds + V

]

dt

+ σ(x(t), x(t − τ), t, r(t))dw(t).
(3.25)
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System (3.25) was discussed by Liu et al. [26] and Wang et al. [27], although the delays are
time-varyings in [27]. Nevertheless, we point out that system (3.25) can be generalized to
the neural networks with time-varying delays without any difficulty. If we take Ci = 0 (i ∈ S)
and do not consider noise perturbations, then system (2.3) can be written as

dx(t) =
[
−D(r(t))x(t) +A(r(t))f(x(t)) + B(r(t))g(x(t − τ)) + V

]
dt. (3.26)

The stability analysis for system (3.26) was investigated by Wang et al. [20]. In [15], Lou and
Cui also consider system (3.26) with Ai = 0 (i ∈ S).

The next five corollaries follow directly from Theorem 3.1, and so we omit their
proofs.

Corollary 3.6. Under Assumptions 2.1–2.3, the equilibrium point of (3.21) is stochastic asymptot-
ically stable, if there exist positive scalars λi, positive definite matrices G, M, Pi, Li (i ∈ S), and
three positive diagonal matrices Q2, Q3, and F = diag(f1, f2, . . . , fn) such that the following LMIs
hold:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ11 0 0 0 PiBi PiCi

� Γ22 0 0 0 0

� � Γ44 0 0 0

� � � −Q3 + F 0 0

� � � � −Li 0

� � � � � −F

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

Pi ≤ λiI,

M ≥
N∑

j=1

qijLj ,

(3.27)

where the symbol “�” denotes the symmetric term of the matrix:

Γ11 = −2PiDi +G + λiΣ1i + VQ2V +WQ3W +
N∑

j=1

qijPj ,

Γ22 = −G + λiΣ2i, Γ44 = −Q2 + Li + τM,

V = diag(v1, v2, . . . , vn), W = diag(w1, w2, . . . , wn),

vi = max
{∣∣v−i

∣∣,
∣∣v+

i

∣∣}, wi = max
{∣∣w−i

∣∣,
∣∣w+

i

∣∣} (i = 1, 2, . . . , n).

(3.28)

Corollary 3.7. Under Assumptions 2.1–2.3, the equilibrium point of (3.22) is stochastic asymptoti-
cally stable, if there exist positive scalars λi, positive definite matrices G,H, Pi, Ki (i ∈ S), and three
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positive diagonal matrices Q1, Q3, and F = diag(f1, f2, . . . , fn) such that the following LMIs hold:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

Γ11 0 PiAi 0 0 PiCi

� Γ22 0 0 0 0

� � Γ33 0 0 0

� � � −Q3 + F 0 0

� � � � −Ki 0

� � � � � −F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

< 0,

Pi ≤ λiI,

H ≥
N∑

j=1

qijKj ,

(3.29)

where the symbol “�” denotes the symmetric term of the matrix:

Γ11 = −2PiDi +G + λiΣ1i +UQ1U +WQ3W +
N∑

j=1

qijPj ,

Γ22 = −G + λiΣ2i, Γ33 = −Q1 +Ki + τH,

U = diag(u1, u2, . . . , un), W = diag(w1, w2, . . . , wn),

ui = max
{∣∣u−i

∣∣,
∣∣u+i

∣∣}, wi = max
{∣∣w−i

∣∣,
∣∣w+

i

∣∣} (i = 1, 2, . . . , n).

(3.30)

Corollary 3.8. Under Assumptions 2.1–2.3, the equilibrium point of (3.23) is stochastic asymptoti-
cally stable, if there exist positive scalars λi, positive definite matricesG,H,M, Pi,Ki, Li (i ∈ S), and
three positive diagonal matrices Q1, Q2, and F = diag(f1, f2, . . . , fn) such that the following LMIs
hold:

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ11 0 PiAi 0 0 0 PiBi PiCi

� −G 0 0 0 0 0 0

� � Γ33 0 0 0 0 0

� � � Γ44 0 0 0 0

� � � � −Q3 + F 0 0 0

� � � � � −Ki 0 0

� � � � � � −Li 0

� � � � � � � −F

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

H ≥
N∑

j=1

qijKj ,

M ≥
N∑

j=1

qijLj ,

(3.31)
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where the symbol “�” denotes the symmetric term of the matrix:

Γ11 = −2PiDi +G +UQ1U + VQ2V +WQ3W +
N∑

j=1

qijPj ,

Γ33 = −Q1 +Ki + τH, Γ44 = −Q2 + Li + τM,

U = diag(u1, u2, . . . , un), V = diag(v1, v2, . . . , vn), W = diag(w1, w2, . . . , wn),

ui = max
{∣∣u−i

∣
∣,
∣
∣u+i

∣
∣}, vi = max

{∣∣v−i
∣
∣,
∣
∣v+

i

∣
∣}, wi = max

{∣∣w−i
∣
∣,
∣
∣w+

i

∣
∣} (i = 1, 2, . . . , n).

(3.32)

Corollary 3.9. Under Assumptions 2.1–2.3, the equilibrium point of (3.25) is stochastic asymptot-
ically stable, if there exist positive scalars λi, positive definite matrices G, H, M, Pi, Ki, Li (i ∈ S),
and four positive diagonal matrices Q1, Q2, Q3, and F = diag(f1, f2, . . . , fn) such that the following
LMIs hold:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ11 0 PiAi 0 0 0 PiBi PiCi

� Γ22 0 0 0 0 0 0

� � Γ33 0 0 0 0 0

� � � Γ44 0 0 0 0

� � � � −Q3 + F 0 0 0

� � � � � −Ki 0 0

� � � � � � −Li 0

� � � � � � � −F

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

Pi ≤ λiI,

H ≥
N∑

j=1

qijKj ,

M ≥
N∑

j=1

qijLj ,

(3.33)

where the symbol “�” denotes the symmetric term of the matrix:

Γ11 = −2PiDi +G + λiΣ1i +UQ1U + VQ2V +WQ3W +
N∑

j=1

qijPj ,

Γ22 = −G + λiΣ2i, Γ33 = −Q1 +Ki + τH, Γ44 = −Q2 + Li + τM,

U = diag(u1, u2, . . . , un), V = diag(v1, v2, . . . , vn), W = diag(w1, w2, . . . , wn),

ui = max
{∣∣u−i

∣∣,
∣∣u+i

∣∣}, vi = max
{∣∣v−i

∣∣,
∣∣v+

i

∣∣}, wi = max
{∣∣w−i

∣∣,
∣∣w+

i

∣∣} (i = 1, 2, . . . , n).
(3.34)
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Corollary 3.10. Under Assumption 2.1, the equilibrium point of (3.26) is stochastic asymptotically
stable, if there exist positive scalars λi, positive definite matrices G, H, M, Pi, Ki, Li (i ∈ S), and
three positive diagonal matrices Q1, Q2, and F = diag(f1, f2, . . . , fn) such that the following LMIs
hold:

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

Γ11 0 PiAi 0 0 PiBi

� −G 0 0 0 0

� � Γ33 0 0 0

� � � Γ44 0 0

� � � � −Ki 0

� � � � � −Li

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

< 0,

H ≥
N∑

j=1

qijKj ,

M ≥
N∑

j=1

qijLj ,

(3.35)

where the symbol “�” denotes the symmetric term of the matrix:

Γ11 = −2PiDi +G +UQ1U + VQ2V +
N∑

j=1

qijPj ,

Γ33 = −Q1 +Ki + τH, Γ44 = −Q2 + Li + τM,

U = diag(u1, u2, . . . , un), V = diag(v1, v2, . . . , vn),

ui = max
{∣∣u−i

∣∣,
∣
∣u+i

∣∣}, vi = max
{∣∣v−i

∣∣,
∣
∣v+

i

∣∣} (i = 1, 2, . . . , n).

(3.36)

Remark 3.11. As discussed in Remark 3.4, Corollaries 3.6–3.8 are “new” since they have never
been considered in the previous literature. Corollary 3.9 was discussed by Liu et al. [26] and
Wang et al. [27], although the delays are time-varyings in [27]. Nevertheless, we point out
that our results can be generalized to the neural networks with time-varying delays without
any difficulty. Corollary 3.10 has been discussed by Wang et al. [20] and Lou and Cui [15],
but our conditions are weaker than those in [15, 20], for the constants u−i , v−i , u+i , v+

i in
Corollary 3.10 are allowed to be positive, negative, or zero.

4. Illustrative Example

In this section, a numerical example is given to illustrate the effectiveness of the obtained
results.
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Example 4.1. Consider a two-dimensional stochastic neural network with both Markov jump
parameters and continuously distributed delays:

dx(t) =

[

−D(r(t))x(t) +A(r(t))f(x(t)) + B(r(t))g(x(t − τ))

+C(r(t))
∫ t

−∞
e−(t−s)h(x(s))ds + V

]

dt + σ(x(t), x(t − τ), t, r(t))dw(t),

(4.1)

where x(t) = (x1(t), x2(t))
T , V = (0, 0)T , w(t) is a two dimensional Brownian motion, and r(t)

is a right-continuous Markov chain taking values in S = {1, 2} with generator

Q =

[
−8 8

5 −5

]

. (4.2)

Let

fi(xi) = 0.01 tan hxi =
0.01(exi − e−xi)
(exi + e−xi)

, gi(xi) = hi(xi) = 0.005(|xi + 1| − |xi − 1|) (i = 1, 2),

(4.3)

then system (4.1) satisfies Assumption 2.1 with U− = V − = W− = −0.01I,U+ = V + = W+ =
0.01I. Take

σ(x(t), x(t − τ), t, i) =
(

0.2xi(t) 0.4xi(t − τ)
0.4xi(t) 0.2xi(t − τ)

)

(i = 1, 2), (4.4)

then system (4.1) satisfies Assumptions 2.2 and 2.3 with Σ1i = Σ2i = 0.2I (i = 1, 2).

Other parameters of the network (4.1) are given as follows:

D1 = diag(0.3, 0.1), A1 =

[
0.2 −0.2

0.4 0.1

]

, B1 =

[
0.1 −0.2

0.3 0.2

]

, C1 =

[
0.1 0.2

−0.3 0.3

]

,

D2 = diag(0.4, 0.3), A2 =

[
0.3 0.2

−0.1 0.2

]

, B2 =

[
0.2 0.1

−0.2 0.1

]

, C2 =

[
0.2 0.2

−0.3 0.1

]

.

(4.5)
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Here we let τ = 2. By using the Matlab LMI toolbox, we can obtain the following feasible
solution for the LMIs (3.1)–(3.4):

G =

[
18.71 1.41

1.41 4.68

]

, H =

[
39.69 −6.32

−6.32 44.13

]

,

M =

[
29.85 −1.07

−1.07 33.32

]

, E = diag(55.09, 55.09),

Q1 =

[
224.65 0

0 224.65

]

, Q2 =

[
163.84 0

0 163.84

]

,

Q3 =

[
72.69 0

0 72.69

]

, F = diag(31.88, 31.88),

P1 =

[
57.77 1.91

1.91 39.25

]

, P2 =

[
56.59 1.66

1.66 37.41

]

, K1 =

[
46.70 −4.19

−4.19 49.63

]

, λ1 = 83.25,

K2 =

[
46.40 −4.17

−4.17 49.33

]

, L1 =

[
64.95 3.06

3.06 55.17

]

, L2 =

[
64.41 2.99

2.99 54.64

]

, λ2 = 79.06.

(4.6)

Therefore, it follows from Theorem 3.1 that the network (4.1) is stochastic asymptotically
stable.

By using the Euler-Maruyama numerical scheme, simulation results are as follows:
T = 50 and step size δt = 0.02. Figure 1 is the state response of model 1 (i.e., the network
(4.1) when r(t) = 1) with the initial condition [0.5,−0.7]T , for −2 ≤ t ≤ 0, and Figure 2 is the
state response of model 2 (i.e., the network (4.1) when r(t) = 2) with the initial condition
[−0.6, 0.4]T , for −2 ≤ t ≤ 0.

Remark 4.2. As discussed in Remarks 3.2–3.11, the LMI criteria existed in all the previous
literature (e.g., Liu et al. [26], Wang et al. [20, 27], Lou and Cui [15], etc.) fail in
Example 4.1 since many factors including noise perturbations, Markovian jump parameters,
and continuously distributed delays are considered in Example 4.1.

5. Concluding Remarks

In this paper we have investigated the stochastic stability analysis problem for a class of
neural networks with both Markovian jump parameters and continuously distributed delays.
It is worth mentioning that our obtained stability condition is delay-dependent, which is
less conservative than delay-independent criteria when the delay is small. Furthermore, the
obtained stability criteria in this paper are expressed in terms of LMIs, which can be solved
easily by recently developed algorithms. A numerical example is given to show the less
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Figure 1: The state response of the model 1 in Example 4.1.
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Figure 2: The state response of the model 2 in Example 4.1.

conservatism and effectiveness of our results. The results obtained in this paper improve and
generalize those given in the previous literature. On the other hand, it should be noted that
the explicit rate of convergence for the considered system is not given in this paper since it
is difficult to deal with continuously distributed delays. Therefore, investigating the explicit
rate of convergence for the considered system remains an open issue. Finally, we point out
that it is possible to generalize our results to a class of neural networks with uncertainties.
Research on this topic is in progress.



Discrete Dynamics in Nature and Society 19

Acknowledgments

The authors would like to thank the editor and five anonymous referees for their helpful
comments and valuable suggestions regarding this paper. This work was jointly supported
by the National Natural Science Foundation of China (10801056, 60874088), the Natural
Science Foundation of Guangdong Province (06300957), K. C. Wong Magna Fund in Ningbo
University, and the Specialized Research Fund for the Doctoral Program of Higher Education
(20070286003).

References

[1] A. Cichocki and R. Unbehauen, Neural Networks for Optimalition and Signal Processing, John Wiley &
Sons, New York, NY, USA, 1993.

[2] L. O. Chua and L. Yang, “Cellular neural networks: applications,” IEEE Transactions on Circuits and
Systems, vol. 35, no. 10, pp. 1273–1290, 1988.

[3] G. Joya, M. A. Atencia, and F. Sandoval, “Hopfield neural networks for optimization: study of the
different dynamics,” Neurocomputing, vol. 43, pp. 219–237, 2002.

[4] W.-J. Li and T. Lee, “Hopfield neural networks for affine invariant matching,” IEEE Transactions on
Neural Networks, vol. 12, no. 6, pp. 1400–1410, 2001.

[5] S. S. Young, P. D. Scott, and N. M. Nasrabadi, “Object recognition using multilayer Hopfield neural
network,” IEEE Transactions on Image Processing, vol. 6, no. 3, pp. 357–372, 1997.

[6] S. Arik, “Stability analysis of delayed neural networks,” IEEE Transactions on Circuits and Systems I,
vol. 47, no. 7, pp. 1089–1092, 2000.

[7] S. Blythe, X. Mao, and X. Liao, “Stability of stochastic delay neural networks,” Journal of the Franklin
Institute, vol. 338, no. 4, pp. 481–495, 2001.

[8] J. Cao, A. Chen, and X. Huang, “Almost periodic attractor of delayed neural networks with variable
coeffcients,” Physics Letters A, vol. 340, no. 1–4, pp. 104–120, 2005.

[9] J. Cao and J. Wang, “Global exponential stability and periodicity of recurrent neural networks with
time delays,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 5, pp. 920–931, 2005.

[10] W.-H. Chen and X. Lu, “Mean square exponential stability of uncertain stochastic delayed neural
networks,” Physics Letters A, vol. 372, no. 7, pp. 1061–1069, 2008.

[11] W.-H. Chen and W. X. Zheng, “Global asymptotic stability of a class of neural networks with
distributed delays,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 3, pp. 644–652, 2006.

[12] H. Huang, D. W. C. Ho, and J. Lam, “Stochastic stability analysis of fuzzy Hopeld neural networks
with time-varying delays,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 5, pp. 251–255,
2005.

[13] M. P. Joy, “Results concerning the absolute stability of delayed neural networks,” Neural Networks,
vol. 13, no. 6, pp. 613–616, 2000.

[14] Y. Liu, Z. Wang, and X. Liu, “On global exponential stability of generalized stochastic neural networks
with mixed time-delays,” Neurocomputing, vol. 70, no. 1–3, pp. 314–326, 2006.

[15] X. Lou and B. Cui, “Delay-dependent stochastic stability of delayed Hopfield neural networks with
Markovian jump parameters,” Journal of Mathematical Analysis and Applications, vol. 328, no. 1, pp.
316–326, 2007.

[16] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing Series in
Mathematics & Applications, Horwood Publishing, Chichester, UK, 1997.

[17] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, “Delay-dependent robust stabilization of uncertain
state-delayed systems,” International Journal of Control, vol. 74, no. 14, pp. 1447–1455, 2001.

[18] J. H. Park, “On global stability criterion of neural networks with continuously distributed delays,”
Chaos, Solitons & Fractals, vol. 37, no. 2, pp. 444–449, 2008.

[19] R. Rakkiyappan and P. Balasubramaniam, “Delay-dependent asymptotic stability for stochastic
delayed recurrent neural networks with time varying delays,” Applied Mathematics and Computation,
vol. 198, no. 2, pp. 526–533, 2008.

[20] Z. Wang, Y. Liu, L. Yu, and X. Liu, “Exponential stability of delayed recurrent neural networks with
Markovian jumping parameters,” Physics Letters A, vol. 356, no. 4-5, pp. 346–352, 2006.

[21] L. Wan and J. Sun, “Mean square exponential stability of stochastic delayed Hopfield neural
networks,” Physics Letters A, vol. 343, no. 4, pp. 306–318, 2005.



20 Discrete Dynamics in Nature and Society

[22] Q. Zhou and L. Wan, “Exponential stability of stochastic delayed Hopfield neural networks,” Applied
Mathematics and Computation, vol. 199, no. 1, pp. 84–89, 2008.

[23] P. Baldi and A. F. Atiya, “How delays affect neural dynamics and learning,” IEEE Transactions on
Neural Networks, vol. 5, no. 4, pp. 612–621, 1994.

[24] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control
Theory, vol. 15 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994.

[25] H. Yang and T. Chu, “LMI conditions for stability of neural networks with distributed delays,” Chaos,
Solitons & Fractals, vol. 34, no. 2, pp. 557–563, 2007.

[26] Y. Liu, Z. Wang, and X. Liu, “On delay-dependent robust exponential stability of stochastic neural
networks with mixed time delays and Markovian switching,” Nonlinear Dynamics, vol. 54, no. 3, pp.
199–212, 2008.

[27] G. Wang, J. Cao, and J. Liang, “Exponential stability in the mean square for stochastic neural networks
with mixed time-delays and Markovian jumping parameters,” Nonlinear Dynamics, vol. 57, no. 1-2, pp.
209–218, 2009.


