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Received 21 September 2009; Accepted 1 December 2009

Recommended by Akio Matsumoto
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1. Introduction

The economic empirical evidence [1–3] suggests that consumer sentiment influences
household expenditure and thus confirms Keynes’ assumption that consumer “attitudes”
and ”animalic spirit” may cause fluctuations in the economic activity. On the other hand,
Dobrescu and Opris [4, 5] analyzed the bifurcation aspects in a discrete-delay Kaldor
model of business cycle, which corresponds to a system of equations with discrete time
and delay. Following these studies, we develop a dynamic economic model in which the
agents’ consumption expenditures depend on their sentiment. As particular cases, the model
contains the Hick-Samulson [6], Puu [7], and Keynes [3] models as well as the model
from [3]. The model possesses a flip and Neimark-Sacker bifurcation, if the autonomous
consumption is variable.
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The implications of the stochastic noise on the economic process are studied. The
stochastic difference equation with noise terms is scaled appropriately to account for intrinsic
as well as extrinsic fluctuations. Under the influence of noise the difference equation behaves
qualitatively different compared to its deterministic counterpart.

The paper is organized as follows. In Section 2, we describe the dynamic model
with discrete time using investment, consumption, sentiment, and saving functions. For
different values of the model parameters we obtain well-known dynamic models (Hick-
Samuelson, Keynes, Pu). In Section 3, we analyze the behavior of the dynamic system in
the fixed point’s neighborhood for the associated map. We establish asymptotic stability
conditions for the flip and Neimark-Sacker bifurcations. In both the cases of flip and
Neimark-Sacker bifurcations, the normal forms are described in Section 4. Using the QR
method, the algorithm for determining the Lyapunov exponents is presented in Section 5.
In Section 6, a stochastic model with multiplicative noise is associated to the deterministic
model. These equations are obtained by randomizing one parameter of the deterministic
equation or by adding one stochastic control. Finally, the numerical simulations are done
for the deterministic and stochastic equations. The obtained simulations show major changes
between the deterministic and stochastic cases. The analysis of the present model proves
its complexity and allows the description of the different scenarios which depend on
autonomous consumption.

2. The Mathematical Model with Discrete Time and
Consumer Sentiment

Let y(t), t ∈N be the income at time step t and let

(1) the investment function I(t), t ∈ N, be given by

I(t) = v
(
y(t − 1) − y(t − 2)

)
−w
(
y(t − 1) − y(t − 2)

)3
, v > 0, w ≥ 0; (2.1)

(2) the consumption function C(t), t ∈ N, be given by

C(t) = a + y(t − 1)(b + cS(t − 1)), a ≥ 0, b > 0, c ≥ 0, (2.2)

where S(t), t ∈ N, is the sentiment function given by

S(t) =
1

1 + ε exp
(
y(t − 1) − y(t)

) , ε ∈ [0, 1]; (2.3)

(3) the saving function E(t), t ∈ N, be given by

E(t) = d
(
y(t − 2) − y(t − 1)

)
+mS(t − 1), d ≥ 0, m ≥ 0. (2.4)

The mathematical model is described by the relation:

y(t) = I(t) + C(t) + E(t). (2.5)
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From (2.1), (2.2), (2.3), (2.4), and (2.5) the mathematical model with discrete time and
consumer sentiment is given by

y(t) = a + dy(t − 2) + (b − d)y(t − 1) + v
(
y(t − 1) − y(t − 2)

)

−w(y(t − 1) − y(t − 2))3 +
cy(t − 1) +m

1 + ε exp
(
y(t − 2) − y(t − 1)

) , t ∈ N.
(2.6)

The parameters from (2.6) have the following economic interpretations. The parameter
a represents the autonomous expenditures. The parameter d is the control, d ∈ [0, 1], and it
characterizes a part of the difference between the incomes obtained at two time steps t−2 and
t − 1, which is used for consumption or saving in the time step t. The parameter c, c ∈ [0, 1],
is the trend towards consumption. The parameter m, m ∈ [0, 1], is the trend towards the
saving. The parameter b, b ∈ (0, 1), represents the consumer’s reaction against the increase
or decrease of his income. When the income (strongly) decreases, the consumer becomes
pessimistic and consumes 0 < b < 1 of his income. When the income (strongly) increases, the
consumer becomes optimistic and consumes b < b + c < 1 of his income. Note that Souleles
[8] finds, in fact, that higher consumer confidence is correlated with less saving and increases
in relation to expected future resources. The parameters v and w, v > 0, w ≥ 0 describe the
investment function. If w = 0, the investment function is linear. The parameter ε, ε ∈ [0, 1],
describes a family of the sentiment functions.

For different values of the model parameters, we obtain the following classical models:

(1) for a = 0, b = 1 − s, d = 0, m = 0, ε = 0, s ∈ (0, 1) from (2.6) we obtain the Hick-
Samuelson model [6]:

y(t) = (1 + v − s)y(t − 1) − vy(t − 2), v > 0, s ∈ (0, 1); (2.7)

(2) for v = w = 0, ε = 0, m = 0, (2.6) gives us the Keynes model [6]:

y(t) = d
(
y(t − 2) − y(t − 1)

)
+ a + by(t − 1); (2.8)

(3) for v = w = 0, ε = 1, (2.6) leads to the model from [4]:

y(t) = d
(
y(t − 2) − y(t − 1)

)
+ a + by(t − 1) +

cy(t − 1) +m
1 + exp

(
y(t − 2) − y(t − 1)

) , t ∈ N; (2.9)

(4) for a = 0, b = s − 1, d = 0, m = 0, w = 1 + v, ε = 0, from (2.6) we get the Puu model
[7]:

y(t) = v
(
y(t − 1) − y(t − 2)

)
− (1 + v)(y(t − 1) − y(t − 2))3 − (1 − s)y(t − 1). (2.10)
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3. The Dynamic Behavior of the Model (2.6)

Using the method from Kusnetsov [4, 6, 9], we will analyze the system (2.6), considering the
parameter a as bifurcation parameter. The associated map of (2.6) is F : R

2 → R
2 given by

F

(
y

z

)

=

⎛

⎜
⎝
a + (b − d + v)y + (d − v)z −w(y − z)3 +

(
cy +m

)

1 + ε exp
(
z − y

)

y

⎞

⎟
⎠. (3.1)

Using the methods from [5, 6, 9], the map (3.1) has the following properties.

Proposition 3.1. (i) If (1+ ε)(1− b)− c > 0, then, for the map (3.1), the fixed point with the positive
components is E0(y0, z0), where

y0 = p1a + p2, z0 = y0, (3.2)

p1 =
(1 + ε)

(1 + ε)(1 − b) − c , p2 =
m

(1 + ε)(1 − b) − c . (3.3)

(ii) The Jacobi matrix of the map F in E0 is given by

A =

(
a11 a12

1 0

)

, (3.4)

where: a11 = p3a − p4 + p5, a12 = −p3a + p4,

p3 =
εc

(1 + ε)2
p1, p4 = d − v − εm

(1 + ε)2
− εc

(1 + ε)2
p2, p5 = b +

c

(1 + ε)
. (3.5)

(iii) The characteristic equation of matrix A is given by

λ2 − a11λ − a12 = 0. (3.6)

(iv) If the model parameters d, v, ε, b, c,m satisfy the following inequality:

(1 + d − v)(1 + ε)((1 + ε)(1 − b) − c) −mε(1 − b) > 0, (3.7)

then, for (3.6), the roots have the modulus less than 1, if and only if a ∈ (a1, a2), where

a1 =
2p4 − p5 − 1

2p3
, a2 =

1 + p4

p3
. (3.8)

(v) If the model parameters d, v, ε, b, c, m satisfy the inequality (3.7) and a = a1, then, one
of equation (3.6)’s roots is −1, while the other one has the modulus less than 1.
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(vi) If the model parameters d, v, ε, b, c,m satisfy the inequality (3.7) and a = a2, then, (3.6)
has the roots μ1(a) = μ(a), μ2(a) = μ(a), where |μ(a)| = 1.

Using [7] and Proposition 3.1, with respect to parameter a, the asymptotic stability
conditions of the fixed point, the conditions for the existence of the flip and Neimark-Sacker
bifurcations are presented in the following.

Proposition 3.2. (i) If (1+ ε)(1− b)− c > 0, the inequality (3.7) holds and 2p4 −p5 − 1 > 0, then for
a ∈ (a1, a2) the fixed point E0 is asymptotically stable. If (1 + ε)(1 − b) − c > 0, the inequality (3.7)
holds, and 2p4 − p5 − 1 < 0, then for a ∈ (0, a2) the fixed point E0 is asymptotically stable.

(ii) If (1 + ε)(1 − b) − c > 0, the inequality (3.7) holds, and 2p4 − p5 − 1 > 0, then a = a1 is a
flip bifurcation and a = a2 is a Neimark-Sacker bifurcation.

(iii) If (1 + ε)(1 − b) − c > 0, the inequality (3.7) holds and 2p4 − p5 − 1 < 0, then a = a2 is a
Neimark-Sacker bifurcation.

4. The Normal Form for Flip and Neimark-Sacker Bifurcations

In this section, we describe the normal form in the neighborhood of the fixed point E0, for the
cases a = a1 and a = a2.

We consider the transformation:

u1 = y − y0, u2 = z − z0, (4.1)

where y0, z0 are given by (3.2). With respect to (4.1), the map (3.1) is G : R
2 → R

2, where

G(u1, u2) =

(
g1(u1, u2)

g2(u1, u2)

)

, (4.2)

g1(u1, u2) = −
r

1 + ε
+ (b − d + v)u1 + (d − v)u2 −w(u1 − u2)

3 +
cu1 + r

1 + ε exp(u2 − u1)
,

g2(u1, u2) = u1, r = cy0 +m.

(4.3)

The map (4.2) has O(0, 0) as fixed point.
We consider

a11 =
∂g1

∂u1
(0, 0), a12 =

∂g1

∂u2
(0, 0), l20 =

∂2g1

∂u2
1

(0, 0), l11 =
∂2g1

∂u1∂u2
(0, 0),

l02 =
∂2g1

∂u2
2

(0, 0), l30 =
∂3g1

∂u3
1

(0, 0), l21 =
∂3g1

∂u2
1∂u2

(0, 0), l12 =
∂3g1

∂u1∂u
2
2

(0, 0),

l03 =
∂3g1

∂u3
1

(0, 0).

(4.4)
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We develop the function G(u), u = (u1, u2)
T in the Taylor series until the third order

and obtain

G(u) = Au +
1
2
B(u, u) +

1
2
D(u, u, u) +O

(
|u|4
)
, (4.5)

where A is given by (3.4) and

B(u, u) = (B1(u, u), 0)
T
, D(u, u, u) = (D1(u, u, u), 0)

T
, (4.6)

B1(u, u) = uT
(
l20 l11

l11 l02

)

u,

D1(u, u, u) = uT
(

u1

(
l30 l21

l21 l12

)

+ u2

(
l21 l12

l12 l03

))

u.

(4.7)

For a = a1, given by (3.8) with the condition (v) from Proposition 3.1, we have the
following.

Proposition 4.1. (i) The eigenvector q ∈ R
2, given by Aq = −q, has the components:

q1 = 1, q2 = −1. (4.8)

(ii) The eigenvector h ∈ R
2, given by hTA = −hT , has the components:

h1 =
1

1 + a12
, h2 = − a12

1 + a12
. (4.9)

The relation 〈q, h〉 = 1 holds.
(iii) The normal form of the map (3.1) on the center manifold in O(0, 0) is given by

η −→ −η +
1
6
νη3 +O

(
η4
)
, (4.10)

where ν = (1/(1 + a12))(l30 − 3l21 + 3l12 − l03) + (3/(1 − a11 − a12))(l20 − 2l11 + l02)
2.

The proof results from straight calculus using the formula (2.6):

ν =
〈
r,D
(
q, q, q

)〉
+ 3B

(
q, (I −A)−1B

(
q, q
))
, I =

(
1 0

0 1

)

. (4.11)

For a = a2, given by (3.8) with the condition (vi) from Proposition 3.1, one has the
following.
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Proposition 4.2. (i) The eigenvector q ∈ C
2, given by Aq = μ1q, where μ1 is the eigenvalue of the

matrix A, has the components:

q1 = 1, q2 = μ2 = μ1. (4.12)

(ii) The eigenvector h ∈ C
2, given by hTA = μ2h

T , where μ2 = μ1, has the components:

h1 =
1

1 + μ2
1a12

, h2 =
μ1a12

1 + μ2
1a12

. (4.13)

The relation 〈q, h〉 = 1 holds.

Using (4.6) and (4.8) one has

B1(q, q
)
= l20 + 2l11μ2 + l02μ

2
2,

B1(q, q) = l20 + l11
(
μ1 + μ2

)
+ l02μ1μ2,

B1(q, q
)
= l20 + 2l11μ1 + l02μ

2
1.

(4.14)

We denoted by

g20 = v1B
1(q, q

)
, g11 = v1B

1(q, q
)
, g02 = v1B

1(q, q
)
,

h1
20 = (1 − v1 − v1)g20, h1

11 = (1 − v1 − v1)g11, h1
02 = (1 − v1 − v1)g02,

h2
20 = −

(
v1μ2 + v1μ1

)
B1(q, q

)
, h2

11 = −
(
v1μ2 + v1μ1

)
B1(q, q

)
,

h2
02 = −

(
v1μ2 + v1μ1

)
B1(q, q

)
,

(4.15)

w20 =
(
μ2

1I −A
)−1
(
h1

20

h2
20

)

, w11 = (I −A)−1

(
h1

11

h2
11

)

, w02 =
(
μ2

2 −A
)−1
(
h1

02

h2
02

)

, (4.16)

where I =
(

1 0

0 1

)
, A is given by (3.4), and

r20 = B1(q,w20
)
, r11 = B1(q,w11

)
,

D0 = D1(q, q, q
)
= l30 +

(
μ1 + 2μ2

)
l21 + μ2

(
2μ1 + μ2

)
l12 + μ1μ

2
2l03,

g21 = v2(r20 + 2r11 +D0).

(4.17)

Using the normal form for the Neimark-Sacker bifurcation of the dynamic systems
with discrete time [6] and (4.15), (4.16), and (4.17), we obtain the following.



8 Discrete Dynamics in Nature and Society

Proposition 4.3. (i) The solution of the system (2.6) in the neighborhood of the fixed point (y0, z0) ∈
R
n is given by

y(t) = y0 + μ2x(t) + μ1x(t) +
1
2
w2

20x(t)
2 +w2

11x(t)x(t) +
1
2
w2

02x(t)
2,

y(t − 1) = z(t) = z0 + x(t) + x(t) +
1
2
w1

20x(t)
2 +w1

11x(t)x(t) +
1
2
w1

02x(t)
2,

(4.18)

where x(t) ∈ C is the solution of the following equation:

x(t + 1) = μ1x(t) +
1
2
g20x(t)2 + g11x(t)x(t) +

1
2
g02x(t)2 +

1
2
g21x(t)2x(t). (4.19)

(ii) A complex variable transformation exists so that (4.18) becomes

ω(t + 1) = μ1ω(t) + Lcω2
t ω(t) +O

(
|ω(t)|4

)
, (4.20)

where

Lc =
g20g11

(
μ2 − 3 − 2μ1

)

2
(
μ2

1 − μ1
)(
μ2 − 1

) +
|g11|2
(
1 − μ1

) +
|g20|2

2
(
μ2

1 − μ2
) +

g21

2
(4.21)

is the Lyapunov coefficient.
(iii) If l0 = Re(e−iθLc) < 0, where θ = arg(μ1), then in the neighborhood of the fixed point

(y0, z0) there is a stable limit cycle.

5. The Lyapunov Exponents

If a1 > 0, then for a ∈ (0, a1) or a ∈ (a2, 1) the system (2.6) has a complex behavior and
it can be established by computing the Lyapunov exponents. We will use the decomposed
Jacobi matrix of map (3.1) into a product of an orthogonal matrix Q and an uppertriangular
matrix R with positive diagonal elements (called QR algorithm [6]). The determination of the
Lyapunov exponents can be obtained by solving the following system:

y(t + 1) = a + (b − d + v)y(t) + (d − v)z(t) −w
(
y(t) − z(t)

)3 +
cy(t) +m

1 + exp
(
z(t) − y(t)

) ,

z(t + 1) = y(t),

x(t + 1) = arctan
(
− cosx(t)
f11 cosx(t) − f12 sinx(t)

)
,

λ(t + 1) = λ(t) + ln
(∣∣(f11 − tanx(t + 1)

)
cosx(t) cosx(t + 1) − f12 sinx(t) cosx(t + 1)

∣∣),

μ(t + 1) = μ(t) + ln
(∣∣(f11 − tanx(t + 1) + 1

)
sinx(t) cosx(t + 1) + f12 cosx(t) cosx(t + 1)

∣∣),
(5.1)
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with

f11 =
∂f1

∂y

(
y(t), z(t)

)
= b − d + v − 3w

(
y(t) − z(t)

)2

+
c + ε

(
c +m + cy(t)

)
exp
(
z(t) − y(t)

)

(
1 + ε exp

(
z(t) − y(t)

))2
,

f12 =
∂f1

∂z

(
y(t), z(t)

)
= d − v + 3w

(
y(t) − z(t)

)2 −
ε
(
m + cy(t)

)
exp
(
z(t) − y(t)

)

(
1 + ε exp

(
z(t) − y(t)

))2
.

(5.2)

The Lyapunov exponents are

L1 = lim
t→∞

λ(t)
t
, L2 = lim

t→∞

μ(t)
t
. (5.3)

If one of the two exponents is positive, the system has a chaotic behavior.

6. The Stochastic Difference Equation Associated to
Difference Equation (2.6)

Let (Ω, F, {Ft}t∈N, P) be a filtered probability space with stochastic basis and the filtration
{Ft}t∈N. Let {ξ(t)}t∈IN be a real valued independent random variable on (Ω,F, {Ft}t∈N, P)
with E(ξ(t)) = 0 and E(ξ(t))2 <∞.

The stochastic difference equation associated to the difference equation (2.6) is given
by

yt+1 = a + dy(t − 1) + (b − d)y(t) + v
(
y(t) − y(t − 1)

)
−w(y(t) − y(t − 1))3

+
cy(t) +m

1 + ε exp
(
y(t − 1) − y(t)

) + g
(
y(t), y(t − 1)

)
ξ(t).

(6.1)

The function g(y(t), y(t − 1)) is the contribution of the fluctuations while it is under certain
circumstances it is given by

g
(
y(t)
)
= α
(
y(t) − y0

)
, α ≥ 0 (6.2)

or

g
(
y(t − 1), y(t)

)
= α
(
y(t − 1) − y(t)

)
, α ≥ 0. (6.3)
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Figure 1: (t, y(t)) in the deterministic case for d = 0.

From (6.1) and (6.2) the difference equation with multiplicative noise associated to the
difference equation (2.6) is given by

y(t + 1) = a + dz(t) + (b − d)y(t) + v
(
y(t) − z(t)

)
−w(y(t) − z(t))3

+
cy(t) +m

1 + ε exp
(
z(t) − y(t)

) + α
(
y(t) − y0

)
ξ(t),

z(t + 1) = y(t),

(6.4)

where y0 is the fixed point of map (2.6).
Using (6.1) and (6.3) we have

y(t + 1) = a + dz(t) + (b − d)y(t) + v
(
y(t) − z(t)

)
−w(y(t) − z(t))3

+
cy(t) +m

1 + ε exp
(
z(t) − y(t)

) + α
(
z(t) − y(t)

)
ξ(t),

z(t + 1) = y(t).

(6.5)

By (2.6), randomizing parameter d equation (6.5) is obtained.
The analysis of the stochastic difference equations (6.4) and (6.5) can be done by using

the method from [10–12].
In what follows, we calculate an estimation of the upper (forward 2 th moment)

stability exponent (given in [12]) for the stochastic process (y(t), z(t))t∈N.
Let (y(t), z(t))t∈N be the process that satisfies (6.4). The system of stochastic difference

equations (6.4) has the form:

y(t + 1) = y(t) + f1
(
y(t), z(t)

)
+ f2
(
y(t)
)
ξ(t),

z(t + 1) = z(t) + f3
(
y(t), z(t)

)
,

(6.6)
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Figure 2: (y(t − 1), y(t)) in the deterministic case for d = 0.
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Figure 3: (t, y(t)) in the stochastic case for d = 0.

where

f1
(
y(t), z(t)

)
= (b − d + v − 1)y(t) + (d − v)z(t) −w(y(t) − z(t))3

+
cy(t) +m

1 + ε exp
(
z(t) − y(t)

) ,

f2
(
y(t)
)
= α
(
y(t) − y0

)
,

f3
(
y(t), z(t)

)
= y(t) − z(t).

(6.7)
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Figure 4: (y(t − 1), y(t)) in the stochastic case for d = 0.
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Figure 5: (t, y(t)) in the deterministic case for d = 0.6.

The upper (forward 2 th moment) stability exponent of the stochastic process
(y(t), z(t))t∈N is defined by [12]

λ2 = lim sup
t→∞

1
t

ln E

(
y(t)2 + z(t)2

)
, (6.8)

provided that this limit exists.
Using Theorem 2.2 [12], for (6.5), with f1, f2, f3 given by (6.7) and w = 0, we get the

following.
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Figure 6: (y(t − 1), y(t)) in the deterministic case for d = 0.6.
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Figure 7: (t, y(t)) in the stochastic case for d = 0.6.

Proposition 6.1. Let (y(t), z(t)) be the process which satisfies the stochastic difference equation (6.6)
with w = 0. Assume that, for all t ∈ N, (y(t), z(t)) ∈ R

2,

f1
(
y(t), z(t)

)
y(t) + f3

(
y(t), z(t)

)
z(t) ≤ k1

(
y(t)2 + z(t)2

)
,

f1(y(t), z(t))
2 + f3(y(t), z(t))

2 ≤ k2

(
y(t)2 + z(t)2

)
,

f2(y(t), z(t))
2 ≤ k3

(
y(t)2 + z(t)2

)
,

(6.9)
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Figure 8: (y(t − 1), y(t)) in the stochastic case for d = 0.6.
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Figure 9: (t, λ(t)/t) the Lyapunov exponent in the deterministic case for d = 0.6.

where k1, k2, k3 are finite, deterministic, real numbers. Then

λ2 ≤ 2k1 + k2 + σ2k3, (6.10)

with E(ξ(t))2 = σ2.

If the parameters of the model are a = 250, v = 0.1, w = 0, c = 0.1, b = 0.45, ε = 1,
m = 0.5, d = 0.8, σ = 0.5, and α = 1, then for k1 = 15, k2 = 350, k3 = 1, the inequalities (6.9) are
satisfied and λ2 ≤ 380.25.

A similar result can be obtained for (6.5).
The qualitative analysis of the difference equations (6.4) and (6.5) is more difficult than

that in the deterministic case and it will be done in our next papers.
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Figure 10: (t, y(t)) in the deterministic case for d = 0.8.
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Figure 11: (y(t − 1), y(t)) in the deterministic case for d = 0.8.

7. Numerical Simulation

The numerical simulation is done using a Maple 13 program. We consider different values for
the parameters which are used in the real economic processes. We use Box-Muller method for
the numerical simulation of (6.4).

For system (6.4) with α = 1, a = 250, v = 0.1, w = 0, c = 0.1, b = 0.45, ε = 1, m = 0.5
and the control parameter d = 0 we obtain in Figure 1 the evolution of the income in the time
domain (t, y(t)), in Figure 2 the evolution of the income in the phase space (y(t − 1), y(t)), in
Figure 3 the evolution of the income in the stochastic case, and in Figure 4 the evolution of
the income in the phase space in the stochastic case. In the deterministic case the Lyapunov
exponent is negative and the system has not a chaotic behavior.

Comparing Figures 1 and 2 with Figures 3 and 4 we observe the solution behaving
differently in the deterministic and stochastic cases.
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Figure 12: (t, y(t)) in the stochastic case for d = 0.8.
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Figure 13: (y(t − 1), y(t)) in the stochastic case for d = 0.8.

For the control parameter d = 0.6 Figure 5 displays the evolution of the income in the
time domain (t, y(t)), Figure 6 the evolution of the income in the phase space (y(t − 1), y(t)),
Figure 7 the evolution of the income in the stochastic case, Figure 8 the evolution of the
income in the phase space in the stochastic case, and Figure 9 shows the Lyapunov exponent
(t, λ(t)/t).

Comparing Figures 5 and 6 with Figures 7 and 8 we observe the solution behaving
differently in the deterministic and stochastic cases.

The Lyapunov exponent is positive, therefore the system has a chaotic behavior.
For the control parameter d = 0.8, Figure 10 shows the evolution of the income in the

time domain (t, y(t)), Figure 11 the evolution of the income in the phase space (y(t−1), y(t)),
Figure 12 the evolution of the income in the stochastic case, Figure 13 the evolution of the
income in the phase space in the stochastic case, and Figure 14 shows the Lyapunov exponent
(t, λ(t)/t).
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Figure 14: (t, λ(t)/t) the Lyapunov exponent in the deterministic case for d = 0.8.

Comparing Figures 10 and 11 with Figures 12 and 13 we notice the solution behaving
differently in the deterministic and stochastic cases.

The Lyapunov exponent is positive; therefore the system has a chaotic behavior.
Considering a as parameter, we can obtain a Neimark-Sacker bifurcation point or a

flip bifurcation point.

8. Conclusion

A dynamic model with discrete time using investment, consumption, sentiment, and saving
functions has been studied. The behavior of the dynamic system in the fixed point’s
neighborhood for the associated map has been analyzed. We have established asymptotic
stability conditions for the flip and Neimark-Sacker bifurcations. The QR method is used for
determining the Lyapunov exponents and they allows us to decide whether the system has a
complex behavior. Also, two stochastic models with multiplicative noise have been associated
to the deterministic model. One model was obtained by adding one stochastic control and the
other by randomizing the control parameter d. Using a program in Maple 13, we display the
Lyapunov exponent and the evolution of the income in the time domain and the phase space,
in both deterministic and stochastic cases. A qualitative analysis of the stochastic models will
be done in our next papers.
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