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We consider the multi-point discrete boundary value problem with one-dimensional p-Laplacian
operator Δ(φp(Δu(t − 1)) + q(t)f(t, u(t),Δu(t)) = 0, t ∈ {1, . . . , n − 1} subject to the boundary
conditions: u(0) = 0, u(n) =

∑m−2
i=1 aiu(ξi), where φp(s) = |s|p−2s, p > 1, ξi ∈ {2, . . . , n − 2} with

1 < ξ1 < · · · < ξm−2 < n − 1 and ai ∈ (0, 1), 0 <
∑m−2

i=1 ai < 1. Using a new fixed point theorem
due to Avery and Peterson, we study the existence of at least three positive solutions to the above
boundary value problem.
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1. Introduction

The second-order differential and difference boundary value problems arise in many
branches of both applied and basic mathematics and have been extensively studied in
literature. We refer the reader to some recent results for second-order nonlinear two-point [1–
6] and multipoint [7–9] boundary value problems. The main tools used in the above works
are fixed point theorems.

Recently, Feng and Ge in [9] considered the following multipoint BVPs:

(
φp(u(t − 1))′

)′ + q(t)f
(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1),

u(0) = 0, u(n) =
m−2∑

i=1

aiu(ξi).
(1.1)

The authors obtained sufficient conditions that guarantee the existence of at least three
positive solutions by using fixed point theorems due to Avery-Peterson.
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In this work, we study the existence of multiple positive solutions to the discrete
boundary value problem for the one-dimensional p-Laplacian:

Δ
(
φp(Δu(t − 1))

)
+ q(t)f(t, u(t),Δu(t)) = 0, t ∈ {1, . . . , n − 1}

u(0) = 0, u(n) =
m−2∑

i=1

aiu(ξi),
(1.2)

where Δu(t) = u(t + 1) − u(t) for t ∈ {0, 1, . . . , n − 1}, Δ2u(t) = u(t + 2) − 2u(t + 1) + u(t), for
t ∈ {0, 1, . . . , n− 2}, and φp(s) = |s|p−2s, p > 1, ξi ∈ {2, . . . , n− 2}with 1 < ξ1 < · · · < ξm−2 < n− 1.

In order to study the existence of at least three positive solutions to the above boundary
value problem, we assume that ai, f, q satisfy the following.

(H1) ai ∈ (0, 1) satisfy 0 <
∑m−2

i=1 ai < 1.

(H2) f : {1, . . . , n − 1} × [0,+∞) × R → (0,+∞) is continuous.

(H3) q(t) > 0 for t ∈ {1, 2, . . . , n − 1}.
Wewill depend on an application of a fixed point theorems due to Avery and Peterson,

which deals with fixed points of a cone-preserving operator defined on an ordered Banach
space to obtain our main results.

2. Preliminaries

For the convenience of readers, we provide some background material from the theory of
cones in Banach spaces. In this section, we also state Avery-Peterson’s fixed point theorem.

Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed set P ⊂ E is
said to be a cone of E if it satisfies the following conditions:

(i) au + bv ∈ P for all u, v ∈ p and all a ≥ 0, b ≥ 0;

(ii) u,−u ∈ P implies u = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y − x ∈ P .

Definition 2.2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Definition 2.3. The map α is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that α : P → [0,∞) is continuous and

α
(
tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y) (2.1)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say that the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E provided that β : P → [0,∞) is
continuous and

β
(
tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y) (2.2)

for all x, y ∈ P and 0 ≤ t ≤ 1.
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Let γ and θ be nonnegative continuous convex functionals on a cone P , let α be
a nonnegative continuous concave functional on a cone P , and let ψ be a nonnegative
continuous functional on a cone P . Then for positive real numbers a, b, c, and d, we define
the following convex sets:

P
(
γ, d
)
=
{
u ∈ P | γ(u) < d},

P
(
γ, α, b, d

)
=
{
u ∈ P | b ≤ α(u), γ(u) ≤ d},

P
(
γ, θ, α, b, c, d

)
=
{
u ∈ P | b ≤ α(u), θ(u) ≤ c, γ(u) ≤ d}

(2.3)

and a closed set

R
(
γ, ψ, a, d

)
=
{
u ∈ P | a ≤ ψ(u), γ(u) ≤ d}. (2.4)

To prove our results, we need the following fixed point theorem due to Avery and
Peterson in [1].

Theorem 2.4. Let P be a cone in a real Banach space E. Let γ and θ be nonnegative continuous
convex functionals on P , let α be a nonnegative continuous concave functional on P , and let ψ be a
nonnegative continuous functional on P satisfying ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1, such that for some
positive numbersM and d,

α(u) ≤ ψ(u), ‖u‖ ≤Mγ(u) (2.5)

for all u ∈ P(γ , d). Suppose that

T : P(γ, d) −→ P(γ, d) (2.6)

is completely continuous and there exist positive numbers a, b, and c with a < b such that

(S1) {u ∈ P(γ, θ, α, b, c, d) | α(u) > b}/= ∅ and α(Tu) > b for u ∈ P(γ, θ, α, b, c, d);
(S2) α(Tu) > b for u ∈ P(γ, α, b, d) with θ(Tu) > c;
(S3) 0∈R(γ, ψ, a, d) and ψ(Tu) < a for u ∈ R(γ, ψ, a, d) with ψ(u) = a.

Then T has at least three fixed points u1, u2, u3 ∈ P(γ, d), such that

γ(ui) ≤ d for i = 1, 2, 3,

b < α(u1)

a < ψ(u2), with α(u2) < b,

ψ(u3) < a.
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3. Related Lemmas

Let the Banach space E = {u : {0, 1, . . . , n} → R} be endowed with the ordering x ≤ y if
x(t) ≤ y(t) for all t ∈ {0, 1, . . . , n}, and the maximum norm

‖u‖ = max
{

max
t∈{0,1,...,n}

|u(t)| , max
t∈{0,1,...,n−1}

|Δu(t)|
}

. (3.1)

Then, we define the cone P in E by

P =
{
u ∈ E | u(t) ≥ 0, t ∈ {0, 1, . . . , n};u(0) = 0, Δ2u(t) ≤ 0, t ∈ {0, 1, . . . , n − 2}

}
. (3.2)

Let k be a natural number, such that k < min{ξ1, n − ξm−2}.
Let the nonnegative continuous concave functional α, the nonnegative continuous

convex functionals θ, γ , and the nonnegative continuous functional ψ be defined on the cone
P by

γ(u) = max
t∈{0,1,...,n−1}

|Δu(t)|, ψ(u) = θ(u) = max
t∈{0,1,...,n}

|u(t)|,

α(u) = min
t∈{k+1,...,n−k−1}

|u(t)|
(3.3)

for u ∈ P .
In order to prove our main results, we need the following lemma.

Lemma 3.1. If u ∈ P , then

max
t∈{0,1,...,n}

|u(t)| ≤ n max
t∈{0,1,...,n−1}

|Δu(t)|, that is, θ(u) ≤ nγ(u). (3.4)

Proof. Suppose that the maximum of u occurs at t0 ∈ {0, 1, . . . , n}; by the definition of the cone
P , we know Δu(t + 1) ≤ Δu(t), and then,

u(t0) = u(t0) − u(0) = Δu(0) + Δu(1) + · · · + Δu(t0 − 1)

≤ t0Δu(0) ≤ nΔu(0) ≤ n max
t∈{0,1,...,n−1}

|Δu(t)|. (3.5)

So, we have

max
t∈{0,1,...,n}

|u(t)| ≤ n max
t∈{0,1,...,n−1}

|Δu(t)|. (3.6)

The proof is complete.
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By Lemma 3.1 and the definitions, the functionals defined above satisfy

1
[n/k] + 1

θ(u) ≤ α(u) ≤ θ(u) = ψ(u), ‖u‖ = max
{
θ(u), γ(u)

} ≤ nγ(u) (3.7)

for all u ∈ P(γ, d) ⊂ P . Therefore, condition (2.5) is satisfied.
Now, we show that (1/([n/k] + 1))θ(u) ≤ α(u). Here, we also suppose θ(u) = u(t0),

and by the definitions of α and the cone P , we can distinguish two cases.
(i) α(u) = u(k + 1), then we certainly have t0 ≥ k + 1, and

u(t0) = Δu(0) + · · · + Δu(k) + Δu(k + 1) + · · · + Δu(2k)

+ Δu(2k + 1) + · · · + Δu(3k) + · · · + Δu
([

t0
k

]

k

)

+ Δu
([

t0
k

]

k + 1
)

+ · · · + Δu(t0 − 1)

≤
([

t0
k

]

+ 1
)

u(k + 1) ≤
([

n

k

]

+ 1
)

u(k + 1),

(3.8)

that is, 1/([n/k] + 1)u(t0) ≤ u(k + 1).
(ii) α(u) = u(n − k − 1), then t0 ≤ n − k − 1, u(n) ≤ u(n − k − 1) and

u(t0) = u(n) +
(

−Δu(n − 1) − · · · −Δu(n − k − 1)

−Δu(n − k − 2) − · · · −Δu(n − 2k − 1)

−Δu(n − 2k − 2) − · · · −Δu
(

n −
[
n − t0
k

]

k − 1
)

−Δu
(

n −
[
n − t0
k

]

k − 2
)

− · · · −Δu(t0)
)

≤ u(n) +
([

n − t0
k

]

+ 1
)

[u(n − k − 1) − u(n)]

≤
([

n − t0
k

]

+ 1
)

u(n − k − 1) ≤
([

n

k

]

+ 1
)

u(n − k − 1),

(3.9)

that is, (1/([n/k] + 1))u(t0) ≤ u(n − k − 1). So, we have (1/([n/k] + 1))θ(u) ≤ α(u).

Lemma 3.2. Assume that (H1)–(H3) hold. Then, for any x ∈ E, x(t) ≥ 0,

Δ(φp(Δu(t − 1)) + q(t)f(t, x(t),Δx(t)) = 0, t ∈ {1, . . . , n − 1}, (3.10)

u(0) = 0, u(n) =
m−2∑

i=1

aiu(ξi) (3.11)
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has a unique solution u(t) given by

u(t) =
t−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

(3.12)

or

u(t) =
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

−
n−1∑

j=t

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

(3.13)

where Au satisfies

m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

=
n−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

.

(3.14)

Proof. For any x ∈ E suppose that u is a solution of the BVPs (3.7) and (3.11). According to
the property of the difference operator, it follows that

φp(Δu(1)) − φp(Δu(0)) = −q(1)f(1, x(1),Δx(1)),
φp(Δu(2)) − φp(Δu(1)) = −q(2)f(2, x(2),Δx(2)),

· · ·
φp(Δu(t)) − φp(Δu(t − 1)) = −q(t)f(t, x(t),Δx(t)),

(3.15)

then

φp(Δu(t)) − φp(Δu(0)) = −
t∑

i=1

q(i)f(i, x(i),Δx(i)),

φp(Δu(t)) = φp(Δu(0)) −
t∑

i=1

q(i)f(i, x(i),Δx(i)).

(3.16)

Let φp(Δu(0)) = Au,

Δu(t) = φ−1
p

(

Au −
t∑

i=1

q(i)f(i, x(i),Δx(i))

)

, (3.17)
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and by

Δu(0) = u(1) − u(0) = φ−1
p (Au),

Δu(1) = u(2) − u(1) = φ−1
p

(

Au −
1∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

· · ·

Δu(t − 1) = u(t) − u(t − 1) = φ−1
p

(

Au −
t−1∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

(3.18)

then

u(t) − u(0) =
t−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

. (3.19)

By

Δu(n − 1) = u(n) − u(n − 1) = φ−1
p

(

Au −
n−1∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

Δu(n − 2) = u(n − 1) − u(n − 2) = φ−1
p

(

Au −
n−2∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

· · ·

Δu(t) = u(t + 1) − u(t) = φ−1
p

(

Au −
t∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

(3.20)

so that

u(n) − u(t) =
n−1∑

j=t

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

u(t) = u(n) −
n−1∑

j=t

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

(3.21)

Using the boundary condition (3.11), we can easily obtain

u(t) =
t−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

(3.22)
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or

u(t) =
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

−
n−1∑

j=t

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, x(i),Δx(i))

)

,

(3.23)

where Au satisfies (3.14).
On the other hand, it is easy to verify that if u is the solution of (3.12) or (3.13), then u

is a solution of (3.10) and (3.11).

Lemma 3.3. For any u ∈ E, u(t) ≥ 0, there exists a unique Au ∈ (−∞,+∞) satisfying (3.14).
Moreover, there is a unique n0 ∈ {1, . . . , n − 1}, such that

n0−1∑

i=1

q(i)f(i, u(i),Δu(i)) < Au ≤
n0∑

i=1

q(i)f(i, u(i),Δu(i)). (3.24)

Proof. Let

ϕ(t) =
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

t −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
n−1∑

j=0

φ−1
p

(

t −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

, t ∈ (−∞,+∞),

(3.25)

so that

ϕ(0) =
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

−
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
n−1∑

j=0

φ−1
p

(

−
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

=
n−1∑

j=0

φ−1
p

(
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

>
m−2∑

i=1

ai

⎡

⎣
n−1∑

j=0

φ−1
p

(
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
ξi−1∑

j=0

φ−1
p

(
j∑

i=1

q(i)f(i, u(i),Δu(i))

)⎤

⎦

≥ 0,

ϕ

(
n−1∑

i=1

q(i)f(i, u(i),Δu(i))

)

=
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠ −
n−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠
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<
m−2∑

i=1

ai

⎡

⎣
ξi−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠ −
n−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠

⎤

⎦

≤ 0.

(3.26)

By the continuity of ϕ(t), we know that there exists at least one

Au ∈
(

0,
n−1∑

i=1

q(i)f(i, u(i),Δu(i))

)

⊂ (−∞,+∞) (3.27)

satisfying (3.14).
On the other hand,

ϕ′(t) =
m−2∑

i=1

ai

ξi−1∑

j=0

(
φ−1
p

)′
(

t −
j∑

i=1

q(t)f(i, u(i),Δu(i))

)

−
n−1∑

j=0

(
φ−1
p

)′
(

t −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

<
m−2∑

i=1

ai

⎡

⎣
ξi−1∑

j=0

(
φ−1
p

)′
(

t −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
n−1∑

j=0

(
φ−1
p

)′
(

t −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)⎤

⎦ ≤ 0.

(3.28)

Then ϕ(t) is strictly increasing on t ∈ (−∞,+∞).
So, there exists a unique Au ∈ (−∞,+∞) satisfying (3.14).
Moreover, there exists a n0 ∈ {1, . . . , n − 1}, such that

n0−1∑

i=1

q(i)f(i, u(i),Δu(i)) < Au ≤
n0∑

i=1

q(i)f(i, u(i),Δu(i)). (3.29)

Lemma 3.4. Assume that (H1)–(H3) hold. If x ∈ E, x(t) ≥ 0, then the unique solution u(t) of the
BVPs (3.10) and (3.11) has the following properties:

(i) Δ2u(t) ≤ 0, and u(t) ≥ 0;

(ii) there exists a unique n0 ∈ {0, 1, . . . , n}, such that u(n0) = maxt∈{0,1,...,n}u(t), which n0 is
given in Lemma 3.3.
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Proof. Suppose that u(t) is the solution of (3.10) and (3.11). Then we have the following.

(i) By Lemma 3.2, it is easy to see that Δ2u(t) ≤ 0. Without loss of generality,
we assume that u(n) = min{u(0), u(n)}. By Δ2u(t) ≤ 0, we know that u(t) ≥
u(n), t ∈ {0, 1, . . . , n}. So we get u(n) =

∑m−2
i=1 aiu(ξi) ≥ ∑m−2

i=1 aiu(n), that is,
(1 − ∑m−2

i=1 ai)u(n) ≥ 0. Hence u(n) ≥ 0. So, from the concavity of u(t), we know
that u(t) ≥ 0, t ∈ {0, 1, . . . , n}.

(ii) From
u(n0) =

n0−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

,

u(n0 + 1) =
n0−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

+ φ−1
p

(

Au −
n0∑

i=1

q(i)f(i, u(i),Δu(i))

)

,

(3.30)

and by Lemma 3.3, we have Au −
∑n0

i=1 q(i)f(i, u(i),Δu(i)) < 0, so that u(n0) > u(n0 + 1).
Also

u(n0 − 1) =
n0−2∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

= u(n0) − φ−1
p

(

Au −
n0−1∑

i=1

q(i)f(i, u(i),Δu(i))

)

,

(3.31)

and one arrives at u(n0) ≥ u(n0 − 1). So, u(n0) = maxt∈{0,1,...,n}u(t).
If there exist n1, n2 ∈ {0, 1, . . . , n}, n1 < n2 such that Δu(n1) = Δu(n2), then

0 = φp(Δu(n1)) − φp(Δu(n2)) =
n2∑

n1+1

q(i)f(i, x(i),Δx(i)) > 0, (3.32)

which is a contradiction.

Lemma 3.5. For any u ∈ P, define the operator

(Tu)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

, 0 ≤ t ≤ n0,

m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
n−1∑

j=t

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

, n0 + 1 ≤ t ≤ n.

(3.33)

Then T : P → P is completely continuous.
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Proof. Using the continuity of f and the definition of T , it is easy to show that T : P → P is
continuous. Next, we prove that T is completely continuous.

Suppose that the sequence {ui} ⊆ P is bounded, then there exists M > 0, such that
ui(j) ≤ M, for any i = 1, 2, . . . , j = 0, 1, . . . , n. By the continuity of f , φ−1

p and Au are bounded,
and we know that there exists M′ > 0, such that |Tui(t)| ≤ M′, for t ∈ {0, 1, . . . , n} and
i = 1, 2, . . . , n, . . .. In view of the bounded sequence {Tui(0)}, there exists {ui0} ⊆ {ui}, such
that limi→∞Tui0(0) = a0. For the bounded sequence {Tui0(1)}, there exists {ui1} ⊆ {ui0}, such
that limi→∞Tui1(1) = a1. By repetition in this way, we have that there exists {uij} ⊆ {uij−1} for
j = 2, 3, . . . , n, such that limi→∞Tuij(j) = aj . Let y = {a0, a1, . . . , an}; by the definition of the
norm on E, there exists {uin} ⊆ {ui}, such that limi→∞Tuin(j) = y.

Hence, T : P → P is completely continuous.

4. Existence of Triple Positive Solutions to (1.2)

We are now ready to apply Avery-Peterson’s fixed point theorem to the operator T to give
sufficient conditions for the existence of at least three positive solutions to the BVPs (1.2).

Now for convenience we introduce the following notations. Let

L = φ−1
p

(
n−1∑

i=1

q(i)

)

,

M = min

⎧
⎨

⎩

[n/2]∑

j=k+1

φ−1
p

⎛

⎝
[n/2]∑

i=j+1

q(i)

⎞

⎠,
n−k−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)

⎞

⎠

⎫
⎬

⎭
,

N = max

⎧
⎨

⎩

[n/2]∑

j=0

φ−1
p

⎛

⎝
[n/2]+1∑

i=j+1

q(i)

⎞

⎠,
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)

⎞

⎠ +
n−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)

⎞

⎠

⎫
⎬

⎭
.

(4.1)

Theorem 4.1. Assume that conditions (H1)–(H3) hold. Let 0 < a < b < ([n/k] + 1)b < d, and
suppose that f satisfies the following conditions:

(A1) f(t, u, v) ≤ φp(d/L), for (t, u, v) ∈ {0, 1, . . . , n} × [0, nd] × [−d, d];
(A2) f(t, u, v) > φp(([n/k] + 1)b/M), for (t, u, v) ∈ {k + 1, . . . , n − k − 1} × [b, ([n/k] +

1)b] × [−d, d];
(A3) f(t, u, v) < φp(a/N), for (t, u, v) ∈ {0, 1, . . . , n} × [0, a] × [−d, d].

Then BVPs (1.2) have at least three positive solutions u1, u2, and u3 such that

max
t∈{0,1,...,n−1}

|Δui(t)| ≤ d, i = 1, 2, 3,

b < min
t∈{k+1,...,n−k−1}

|u1(t)|, max
t∈{0,1,...,n}

|u1(t)| ≤ b,

a < max
t∈{0,1,...,n}

|u2(t)| <
([

n

k

]

+ 1
)

b, with min
t∈{k+1,...,n−k−1}

|u2(t)| < b,

max
t∈{0,1,...,n}

|u3(t)| < a.

(4.2)
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Proof. The BVPs (1.2) have a solution u = u(t) if and only if u solves the operator equation
u = Tu. Thus we set out to verify that the operator T satisfies Avery-Peterson’s fixed point
theoremwhich will prove the existence of three fixed points of T which satisfy the conclusion
of the theorem. Now the proof is divided into some steps.

(1)We will show that (A1) implies that T : P(r, d) → P(r, d).

In fact, for u ∈ P(r, d), there is γ(u) = maxt∈{0,1,...,n−1}|Δu(t)| ≤ d. With Lemma 3.1,
there is maxt∈{0,1,...,n}|u(t)| ≤ nd, and then condition (A1) implies f(t, u, v) ≤ φp(d/L). On
the other hand, for u ∈ P , there is Tu ∈ P , then Tu is concave on t ∈ {0, 1, . . . , n}, and
max |ΔTu(t)| = max{|ΔTu(0)|, |ΔTu(n − 1)|}, and so

γ(Tu) = max
t∈{0,1,...,n−1}

|ΔTu(t)| = max{|ΔTu(0)|, |ΔTu(n − 1)|}

= max

{

φ−1
p (Au),

∣
∣
∣
∣
∣
φ−1
p

(

Au −
n−1∑

i=1

q(i)f(i, u(i),Δu(i))

)∣
∣
∣
∣
∣

}

≤ φ−1
p

(
n−1∑

i=1

q(i)φp
(
d

L

))

=
d

L
L = d.

(4.3)

Thus, T : P(r, d) → P(r, d) holds.
(2)We show that condition (S1) in Theorem 2.4 holds.
We take u(t) = ([n/k] + 1)b, for t ∈ {1, 2, . . . , n}, and u(0) = 0. It is easy to see that

u(t) ∈ P(γ, θ, α, b, ([n/k]+1)b, d) and α(u) = ([n/k]+1)b > b. Hence {u ∈ P(γ, θ, α, b, ([n/k]+
1)b, d) | α(u) > b}/= ∅. Thus for u ∈ P(γ, θ, α, b, ([n/k] + 1)b, d), there is b ≤ u(t) ≤ ([n/k] +
1)b, |Δu(t)| ≤ d. Hence by condition (A2) of this theorem, one has f(t, u, v) > φp(([n/k] +
1)b/M) for t ∈ [k + 1, n − k − 1]. By Lemma 3.4 and combining the conditions on α and P ,
we have

α(Tu)

= min
k+1≤t≤n−k−1

|(Tu)(t)|

≥ 1
([n/k] + 1)

max
t∈{0,...,n}

|Tu(t)| = 1
([n/k] + 1)

(Tu)(n0)

=
1

([n/k] + 1)
min

⎧
⎨

⎩

n0−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

,

m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
n−1∑

j=n0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)⎫
⎬

⎭
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≥ 1
([n/k] + 1)

min

⎧
⎨

⎩

n0−1∑

j=k+1

φ−1
p

⎛

⎝
n0−1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠,

n−k−1∑

j=n0

φ−1
p

(
j∑

i=n0+1

q(i)f(i, u(i),Δu(i))

)⎫
⎬

⎭

≥ 1
([n/k] + 1)

min

⎧
⎨

⎩

[n/2]∑

j=k+1

φ−1
p

⎛

⎝
[n/2]∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠,

n−k−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)f(i, u(i),Δu(i))

⎞

⎠

⎫
⎬

⎭

>
1

([n/k] + 1)
min

⎧
⎨

⎩

[n/2]∑

j=k+1

φ−1
p

⎛

⎝
[n/2]∑

i=j+1

q(i)φp
(
([n/k] + 1)b

M

)
⎞

⎠,

n−k−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)φp
(
([n/k] + 1)b

M

)
⎞

⎠

⎫
⎬

⎭

=
1

([n/k] + 1)
([n/k] + 1)b

M
min

⎧
⎨

⎩

[n/2]∑

j=k+1

φ−1
p

⎛

⎝
[n/2]∑

i=j+1

q(i)

⎞

⎠,
n−k−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)

⎞

⎠

⎫
⎬

⎭

=
b

M
M = b.

(4.4)

Therefore we have

α(Tu) > b ∀u ∈ P
(

γ, θ, α, b,

([
n

k

]

+ 1
)

b, d

)

. (4.5)

Consequently, condition (S1) in Theorem 2.4 is satisfied.
(3)We now prove that (S2) in Theorem 2.4 holds.
With (3.7), we have

α(Tu) ≥ 1
([n/k] + 1)

θ(Tu) >
1

([n/k] + 1)

([
n

k

]

+ 1
)

b = b (4.6)

for u ∈ P(γ, α, b, d) with θ(Tu) > ([n/k] + 1)b. Hence, condition (S2) in Theorem 2.4 is
satisfied.

(4) Finally, we prove that (S3) in Theorem 2.4 is also satisfied.
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Since ψ(0) = 0 < a, so 0∈R(γ, ψ, a, d). Suppose that u ∈ R(γ, ψ, a, d) with ψ(u) = a.
Then, by the condition (S3) of this theorem,

ψ(Tu)

= max
t∈{0,1,...,n}

|Tu(t)| = Tu(n0)

= max

⎧
⎨

⎩

n0−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

,

m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)

−
n−1∑

j=n0

φ−1
p

(

Au −
j∑

i=1

q(i)f(i, u(i),Δu(i))

)⎫
⎬

⎭

≤ max

⎧
⎨

⎩

[n/2]∑

j=0

φ−1
p

⎛

⎝
[n/2]+1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠,

m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)f(i, u(i),Δu(i))

⎞

⎠

+
n−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)f(i, u(i),Δu(i))

⎞

⎠

⎫
⎬

⎭

≤ max

⎧
⎨

⎩

[n/2]∑

j=0

φ−1
p

⎛

⎝
[n/2]+1∑

i=j+1

q(i)φp
( a

N

)
⎞

⎠,

m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)φp
( a

N

)
⎞

⎠ +
n−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)φp
( a

N

)
⎞

⎠

⎫
⎬

⎭

=
a

N
max

⎧
⎨

⎩

[n/2]∑

j=0

φ−1
p

⎛

⎝
[n/2]+1∑

i=j+1

q(i)

⎞

⎠,
m−2∑

i=1

ai

ξi−1∑

j=0

φ−1
p

⎛

⎝
n−1∑

i=j+1

q(i)

⎞

⎠ +
n−1∑

j=[n/2]

φ−1
p

⎛

⎝
j∑

i=[n/2]+1

q(i)

⎞

⎠

⎫
⎬

⎭

=
a

N
N = a.

(4.7)

Thus condition (S3) in Theorem 2.4 holds.
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Therefore an application of Theorem 2.4 implies that BVPs (1.2) have at least three
positive solutions u1, u2, and u3 such that

max
t∈{0,1,...,n−1}

|Δui(t)| ≤ d, i = 1, 2, 3,

b < min
t∈{k+1,...,n−k−1}

|u1(t)|, max
t∈{0,1,...,n}

|u1(t)| ≤ b,

a < max
t∈{0,1,...,n}

|u2(t)| <
([

n

k

]

+ 1
)

b, with min
t∈{k+1,...,n−k−1}

|u2(t)| < b,

max
t∈{0,1,...,n}

|u3(t)| < a.

(4.8)
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