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1. Introduction

Consider the following HHNNs with time-varying delays:

dxi(t)
dt

= −ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj

(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))

+ Ii(t), i = 1, 2, . . . , n,

(1.1)

where n corresponds to the number of units in a neural network, xi(t) corresponds to the
state vector of the ith unit at the time t, ci(t) represents the rate with which the ith unit will
reset its potential to the resting state in isolation when disconnected from the network and
external inputs, aij(t) and bijl(t) are the first- and second-order connection weights of the
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neural network, γij(t) ≥ 0, σijl(t) ≥ 0, and vijl(t) ≥ 0 correspond to the transmission delays,
Ii(t) denote the external inputs at time t, and fj and gj are the activation functions of signal
transmission.

Due to the fact that high-order neural networks have stronger approximation property,
faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order
neural networks, high-order neural networks have been the object of intensive analysis by
numerous authors in the recent years. In particular, there have been extensive results on the
problem of the existence and stability of equilibrium points and periodic solutions of HHNNs
(1.1) in the literature. We refer the reader to [1–9] and the references cited therein. In fact,
both continuous and discrete systems are very important in implementing and applications.
The theory of calculus on time scales (see [10, 11] and references cited therein) was initiated
by Stefan Hilger in his Ph.D. thesis in 1988 [12] in order to unify continuous and discrete
analysis, and it has a tremendous potential for application and has recently received much
attention since his foundational work. Therefore, it is meaningful to study that on time scales
which can unify the continuous and discrete situations.

Our purpose of this paper is to consider the model

xΔ
i (t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj

(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))

+ Ii(t), i = 1, 2, . . . , n, t ∈ T,

(1.2)

where T is an ω-periodic time scale which has the subspace topology inherited from the
standard topology on R, I(t) = (I1(t), I2(t), . . . , In(t))

T is an input periodic vector function
with period ω; that is, there exists ω > 0 such that Ii(t + ω) = Ii(t) (i = 1, 2, . . . , n) for all
t ∈ (0,+∞)

⋂
T, and x = (x1, x2, . . . , xn)

T ∈ R
n, f(x) = (f1(x1), f2(x2), . . . , fn(xn))

T , and g(x) =
(g1(x1), g2(x2), . . . , gn(xn))

T is the activation function of the neurons.
System (1.2) is supplemented with initial values given by

xi(s) = ϕi(s), s ∈ [−θ, 0]
⋂

T, i = 1, 2, . . . , n, (1.3)

where ϕi(·) denotes continuous ω-periodic function defined on [−θ, 0]⋂T, θ =
max{γ, σ, v}, γ = max1≤i,j≤n{γ+ij}, σ = max1≤i,j,l≤n{σ+

ijl
}, v = max1≤i,j,l≤n{v+

ijl
}, γ+ij =

maxt∈[0,ω]
⋂

Tγij(t), σ+
ijl = maxt∈[0,ω]

⋂
Tσijl(t), v+

ijl = maxt∈[0,ω]
⋂

Tvijl(t), i, j, l = 1, 2, . . . , n. To
the best of our knowledge, this is the first paper to study the stability and existence of periodic
solutions of (1.2).

Throughout this paper, we assume the following.

(H1) For i, j, l = 1, 2, . . . , n, ci(t), aij(t), bijl(t), Ii(t), γij(t), σijl(t), vijl(t) are positive continu-
ous periodic functions with period ω > 0, and ci(t) is regressive.

(H2) There exist positive constants Mj,Nj, j = 1, 2, . . . , n such that |fj(x)| ≤ Mj, |gj(x)| ≤
Nj for j = 1, 2, . . . , n, x ∈ R.
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(H3) Functions fj(u), gj(u) (j = 1, 2, . . . , n) satisfy the Lipschitz condition; that is, there
exist constants Lj,Hj > 0 such that |fj(u1) − fj(u2)| ≤ Lj |u1 − u2|, |gj(u1) − gj(u2)| ≤
Hj |u1 − u2|, j = 1, 2, . . . , n.

2. Preliminaries

In this section, we will first recall some basic definitions and lemmas which are used in what
follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then T

k = T \ {m}; otherwise T
k = T. If T has a right-scattered minimum m,

then Tk = T \ {m}; otherwise Tk = T.
A function f : T → R is right-dense continuous provided that it is continuous at

right-dense point in T and its left-side limits exist at left-dense points in T. If f is continuous
at each right-dense point and each left-dense point, then f is said to be continuous function
on T.

For y : T → R and t ∈ T
k, we define the delta derivative of y(t), yΔ(t) to be the

number (if it exists) with the property that for a given ε > 0, there exists a neighborhood U
of t such that

∣∣∣
[
y(σ(t)) − y(s)

] − yΔ(t)[σ(t) − s]
∣∣∣ < ε|σ(t) − s| (2.2)

for all s ∈ U.
If y is continuous, then y is right-dense continuous, and if y is delta differentiable at t,

then y is continuous at t.
A function r : T → R is called regressive if

1 + μ(t)r(t)/= 0 (2.3)

for all t ∈ T
k.

If r is regressive function, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s

ξμ(τ)(r(τ))Δτ

}
for s, t ∈ T, (2.4)

with the cylinder transformation

ξh(z) =

⎧
⎪⎨

⎪⎩

Log(1 + hz)
h

, if h/= 0,

z, if h = 0.
(2.5)
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Let p, q : T → R be two regressive functions, we define

p ⊕ q := p + q + μpq, �p := − p

1 + μp
, p � q := p ⊕ (�q

)
. (2.6)

Then the generalized exponential function has the following properties.

Lemma 2.1 (see [10]). Assume that p, q : T → R are two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) ep(t, σ(s)) = ep(t, s)/(1 + μ(s)p(s));

(iv) 1/ep(t, s) = e�p(t, s);

(v) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(vi) ep(t, s)ep(s, r) = ep(t, r);

(vii) ep(t, s)eq(t, s) = ep⊕q(t, s);

(viii) ep(t, s)/eq(t, s) = ep�q(t, s).

Lemma 2.2 (see [10]). Assume that f, g : T → R are delta differentiable at t ∈ T
k, then

(
fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t)). (2.7)

Let y be right-dense continuous. If YΔ(t) = y(t), then one defines the delta integral by

∫ t

a

y(s)Δs = Y (t) − Y (a). (2.8)

Lemma 2.3. If a, b ∈ T, α, β ∈ R and f, g ∈ C(T,R), then

(1)
∫b
a[αf(t) + βg(t)]Δt = α

∫b
af(t)Δt + β

∫b
ag(t)Δt;

(2) If f(t) ≥ 0 for all a ≤ t < b, then
∫b
af(t)Δt ≥ 0;

(3) If |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then |∫baf(t)Δt| ≤ ∫bag(t)Δt.

In this paper, one assumes that k = min{[0,+∞)
⋂

T}. Clearly, from Lemma 2.3, one
can obtain Lemma 2.4.

Lemma 2.4. If f, g ∈ C(T,R), and f(t) ≤ g(t) on t ∈ [k, k +ω), then
∫k+ω
k

f(t)Δt ≤ ∫k+ω
k

g(t)Δt.

In the proof of our main result, one will use the following three lemmas which can be
found in [13, 14].

Lemma 2.5 (see [13]). Let t1, t2 ∈ [k, k + ω]
⋂

T, and t ∈ T. If f : T → R is ω-periodic, then

f(t) ≤ f(t1) +
∫k+ω
k

|fΔ(s)|Δs, and f(t) ≥ f(t2) −
∫k+ω
k

|fΔ(s)|Δs.
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Lemma 2.6 ([14], Cauchy-Schwarz inequality on time scales). Let a, b ∈ T. For rd-continuous

functions f, g : [a, b] → R, one has (
∫b
a|f(t)g(t)|Δt)

2 ≤ ∫ba|f(t)|2Δt
∫b
a|g(t)|2Δt.

Lemma 2.7. Let r : T → R be right-dense continuous and regressive. a ∈ T, and ya ∈ R. The
unique solution of the initial value problem

yΔ(t) = r(t)y(t) + h(t), y(a) = ya (2.9)

is given by

y(t) = er(t, a)ya +
∫ t

a

er(t, σ(s))h(s)Δs. (2.10)

For the sake of convenience, one introduces the following notations:

ci =
1
ω

∫k+ω

k

ci(t)Δt, aij =
1
ω

∫k+ω

k

aij(t)Δt, Ii =
1
ω

∫k+ω

k

Ii(t)Δt,

bijl =
1
ω

∫k+ω

k

bijl(t)Δt, c+i = max
t∈
[
k,k+ω

]⋂
T

|ci(t)|, c−i = min
t∈
[
k,k+ω

]⋂
T

|ci(t)|,

a+
ij = max

t∈
[
k,k+ω

]⋂
T

∣∣aij(t)
∣∣, b+ijl = max

t∈[k,k+ω]
⋂

T

∣∣bijl(t)
∣∣, I+i = max

t∈
[
k,k+ω

]⋂
T

|Ii(t)|,

Ai(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj

(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))
+ Ii(t), i, j, l = 1, 2, . . . n.

(2.11)

Obliviously, for system (1.2), finding the periodic solutions is equivalent to finding those of
the following boundary-value problem:

xΔ
i (t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj

(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))
+ Ii(t),

t ∈
[
k, k +ω

]
∩ T, i = 1, 2, . . . , n,

xi

(
k
)
= xi

(
k +ω

)
, i = 1, 2, . . . , n.

(2.12)

Now, one states Mawhin’s continuous theorem [15].
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Theorem 2.8. Let X and Z be two Banach spaces and let L be a Fredholm mapping of index zero. let
Ω ⊂ X be an open bounded set and let N : Ω → Z be a continuous operator which is L-compact on
Ω. Assume that

(1) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx /=λNx;

(2) for each x ∈ ∂Ω ∩ KerL,QNx/= 0;

(3) deg(JNQx,Ω ∩ KerL, 0)/= 0, where JQN : KerL → KerL.

Then Lx = Nx has at least one solution in Ω ∩DomL.

In order to apply Theorem 2.8 to system (2.12), we first define

X = Z =
{
x = (x1, x2, . . . , xn)T ∈ C(T,Rn) : x(t +ω) = x(t), t ∈ T

}
,

‖x‖ =
∥∥∥(x1, x2, . . . , xn)T

∥∥∥ =
n∑

i=1

max
t∈
[
k,k+ω

]⋂
T

|xi(t)|
(2.13)

for any x ∈ X(or Z). Then X and Z are Banach spaces with the norm ‖ · ‖ . Let

Nx = (A1(t), A2(t), . . . , An(t))T , x ∈ X (2.14)

Lx =
(
xΔ
1 , x

Δ
2 , . . . , x

Δ
n

)T
(2.15)

Px =

(
1
ω

∫k+ω

k

x1(t)Δt,
1
ω

∫k+ω

k

x2(t)Δt, . . . ,
1
ω

∫k+ω

k

xn(t)Δt

)T

,

Qz =

(
1
ω

∫k+ω

k

z1(t)Δt,
1
ω

∫k+ω

k

z2(t)Δt, . . . ,
1
ω

∫k+ω

k

zn(t)Δt

)T

, z ∈ Z.

(2.16)

Then it follows that

Ker L =
{
(x1, x2, . . . , xn)T ∈ X : (x1, x2, . . . , xn)T = (w1(t), w2(t), . . . , wn(t))T ∈ R

n, t ∈ T

}
,

ImL =

⎧
⎨

⎩z ∈ Z :

(
1
ω

∫k+ω

k

z1(t)Δt,
1
ω

∫k+ω

k

z2(t)Δt, . . . ,
1
ω

∫k+ω

k

zn(t)Δt

)T

= 0

⎫
⎬

⎭

(2.17)

is closed in Z, dim KerL = n = codim ImL. It is not difficult to show that P and Q are
continuous and satisfy Im P = KerL, ImL = KerQ = Im (I −Q). It is easy to see that ImL is
closed in Z, which leads to the following lemma.

Lemma 2.9. Let L andN be defined by (2.14) and (2.15), respectively, then L is a Fredholm operator
of index zero.
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Lemma 2.10. Let L and N be defined by (2.14) and (2.15), respectively, suppose that Ω is an open
bounded subset of DomL, thenN is L-compact on Ω.

Proof. Through an easy computation, we find that the inverse KP : ImL → KerP
⋂
DomL

of LP has the form

(KPz)(t) =
∫ t

k

z(s)Δs − 1
ω

∫k+ω

k

∫ t

k

z(s)ΔsΔt. (2.18)

Thus, the expression of QNx is

QNx =

(
1
ω

∫k+ω

k

A1(t)Δt,
1
ω

∫k+ω

k

A2(t)Δt, . . . ,
1
ω

∫k+ω

k

An(t)Δt

)T

, (2.19)

and then

KP (I −Q)Nx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫ t

k

A1(s)Δs

...
∫ t

k

An(s)Δs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
ω

∫k+ω

k

∫ t

k

A1(s)ΔsΔt

...

1
ω

∫k+ω

k

∫ t

k

An(s)ΔsΔt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
t − k

ω
− 1

(ω)2

∫k+ω

k

(
t − k
)
Δt

)∫k+ω

k

A1(s)Δs

...
(

t − k

ω
− 1

(ω)2

∫k+ω

k

(
t − k
)
Δt

)∫k+ω

k

An(s)Δs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.20)

Thus, QN and KP (I − Q)N are continuous. Since X is a Banach space, it is not difficult to

show that KP (I −Q)N(Ω) is compact. Moreover, QN(Ω) is bounded. Thus, N is L-compact
on Ω for any open bounded set Ω ⊂ X. The proof of Lemma 2.10 is completed.

3. Existence of Periodic Solution

In this section, we study the existence of periodic solution of (1.2) based on Mawhin’s
continuation theorem.
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Theorem 3.1. Assume that (H1)-(H2) hold, then system (1.2) has at least one ω-periodic solution.

Proof. Based on the Lemma 2.9 and Lemma 2.10, now, what we need to do is just to search
for an appropriate open, bounded subset Ω for the application of the continuation theorem.
Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have

xΔ
i (t) = λ

⎡

⎣−ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj

(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))

+Ii(t), t ∈ T

⋂[
k, k +ω

]
⎤

⎦, i = 1, 2, . . . , n,

xi

(
k
)
= xi

(
k +ω

)
, i = 1, 2, . . . , n.

(3.1)

For the sake of convenience, defined ‖x‖2 by

‖x‖2 =
(∫k+ω

k

|x(t)|2Δt

)1/2

(3.2)

for x ∈ C(T,R). Suppose that (x1(t), x2(t), . . . , xn(t))
T ∈ X is a solution of system (3.1) for a

certain λ ∈ (0, 1). Integrating (3.1) over [k, k +ω], we obtain

∫k+ω

k

Ai(t)Δt = 0. (3.3)

Hence

∫k+ω

k

ci(s)xi(s)Δs

=

⎡

⎣
∫k+ω

k

n∑

j=1

aij(t)fj
(
xj

(
t−γij(t)

))
+

n∑

j=1

n∑

l=1

bijl(t)gj
(
xj

(
t−σijl(t)

))
gl
(
xl

(
t−vijl(t)

))
+Ii(t)

⎤

⎦Δt,

i = 1, 2, . . . , n.
(3.4)
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Let ζi, ηi ∈ T
⋂
[k, k + ω], such that xi(ζi) = inft∈T

⋂
[k,k+ω]xi(t), xi(ηi) = supt∈T

⋂
[k,k+ω]xi(t).

Then by (3.4) and Lemma 2.4, we have

ωcixi(ζi) ≤
∫k+ω

k

⎡

⎣

∣∣∣∣∣∣

n∑

j=1

aij(s)fj
(
xj

(
s − γij(s)

))

+
n∑

j=1

n∑

l=1

bijl(s)gj
(
xj

(
s − σijl(s)

))
gl
(
xl

(
s − vijl(s)

))
+ Ii(s)

∣∣∣∣∣∣

⎤

⎦Δs

≤
∫k+ω

k

n∑

j=1

∣∣aij(s)
∣∣∣∣fj
(
xj

(
s − γij(s)

))∣∣Δs

+
∫k+ω

k

n∑

j=1

n∑

l=1

∣∣bijl(s)
∥∥gj
(
xj

(
s − σijl(s)

))∥∥gl
(
xl

(
s − vijl(s)

))∣∣Δs +
∫k+ω

k

Ii(s)Δs

≤ ω

⎡

⎣
n∑

j=1

a+
ijMj +

n∑

j=1

n∑

l=1

b+ijlNjNl + I+i

⎤

⎦, i = 1, 2, . . . , n.

(3.5)

Hence xi(ζi) ≤ (1/ci){[
∑n

j=1 a
+
ijMj +

∑n
j=1
∑n

l=1 b
+
ijl
NjNl + I+i ]} := Bi, i = 1, 2, . . . , n. By (3.4)

and Lemma 2.4, we can also have

ωcixi

(
ηi
) ≥ −

∫k+ω

k

⎡

⎣

∣∣∣∣∣∣

n∑

j=1

aij(s)fj
(
xj

(
s − γij(s)

))

+
n∑

j=1

n∑

l=1

bijl(s)gj
(
xj

(
s − σijl(s)

))
gl
(
xl

(
s − vijl(s)

))
+ Ii(s)

∣∣∣∣∣∣

⎤

⎦Δs

≥ −
∫k+ω

k

n∑

j=1

∣∣aij(s)
∣∣∣∣fj
(
xj

(
s − γij(s)

))∣∣Δs

−
∫k+ω

k

n∑

j=1

n∑

l=1

∣∣bijl(s)
∣∣∣∣gj
(
xj

(
s − σijl(s)

))∣∣∣∣gl
(
xl

(
s − vijl(s)

))∣∣Δs −
∫k+ω

k

|Ii(s)|Δs

≥ −ω
⎡

⎣
n∑

j=1

a+
ijMj +

n∑

j=1

n∑

l=1

b+ijlNjNl + I+i

⎤

⎦, i = 1, 2, . . . , n.

(3.6)
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Hence xi(ηi) ≥ (−1/ci){[
∑n

j=1 a
+
ijMj +

∑n
j=1
∑n

l=1 b
+
ijlNjNl + I+i ]} = −Bi, i = 1, 2, . . . , n. From

(3.1), (3.4), and Lemma 2.6, we have

∫k+ω

k

∣∣∣xΔ
i (t)
∣∣∣Δt

≤
∫k+ω

k

|ci(t)||xi(t)|Δt +
∫k+ω

k

n∑

j=1

∣∣aij(t)
∣∣∣∣fj
(
xj

(
t − γij(t)

))∣∣Δt

+
∫k+ω

k

n∑

j=1

n∑

l=1

∣∣bijl(t)
∣∣∣∣gj
(
xj

(
t − σijl(t)

))∣∣∣∣gl
(
xl

(
t − vijl(t)

))∣∣Δt +
∫k+ω

k

|Ii(t)|Δt

≤
(∫k+ω

k

|ci(t)|2Δt

)1/2(∫k+ω

k

|xi(t)|2Δt

)1/2

+
n∑

j=1

(∫k+ω

k

∣∣aij(t)
∣∣2Δt

)1/2(∫k+ω

k

∣∣fj
(
xj

(
t − γij(t)

))∣∣2Δt

)1/2

+
n∑

j=1

n∑

l=1

b+ijl

(∫k+ω

k

∣∣gj
(
xj

(
t − σijl(t)

))∣∣2Δt

)1/2(∫k+ω

k

∣∣gl
(
xl

(
t − σijl(t)

))∣∣2Δt

)1/2

+ I+i ω

≤ (ω)1/2c+i ‖xi‖2 +
n∑

j=1

ωa+
ijMj +

n∑

j=1

n∑

l=1

(ω)b+ijlNjNl + I+i ω.

(3.7)

From Lemma 2.7 and (3.1), for i = 1, 2, . . . , n, we can obtain

xi(t) = e−λci(t)
(
t, k
)
xi

(
k
)

+
∫ t

k

λe−λci(t)(t, σ(s))

⎡

⎣
n∑

j=1

aij(s)fj
(
xj

(
s − γij(s)

))

+
n∑

j=1

n∑

l=1

bijl(s)gj
(
xj

(
s − σijl(s)

))
gl
(
xl

(
s − vijl(s)

))
+ Ii(s)

⎤

⎦Δs.

(3.8)
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Hence

|xi(t)| ≤
∣∣∣xi

(
k
)∣∣∣ +

n∑

j=1

∫k+ω

k

∣∣aij(s)
∣∣∣∣fj
(
xj

(
s − γij(s)

))∣∣Δs

+
n∑

j=1

n∑

l=1

∫k+ω

k

∣∣bijl(s)
∣∣∣∣gj
(
xj

(
s − σijl(s)

))∣∣∣∣gl
(
xl

(
s − vijl(s)

))∣∣Δs

+
∫k+ω

k

|Ii(s)|Δs

≤
∣∣∣xi

(
k
)∣∣∣ +

n∑

j=1

aijNjω +
n∑

j=1

n∑

l=1

bijlNjNlω + Iiω

=: ui, i = 1, 2, . . . , n,

(3.9)

that is,

‖xi‖2 =
(∫k+ω

k

|xi(t)|2Δt

)1/2

≤ ui(ω)1/2, i = 1, 2, . . . , n. (3.10)

Substituting (3.10) into (3.7), we have

∫k+ω

k

∣∣∣xΔ
i (t)
∣∣∣Δt ≤ ωc+i ui +

n∑

j=1

ωa+
ijMj +

n∑

j=1

n∑

l=1

(ω)b+ijlNjNl + I+i ω, i = 1, 2, . . . , n. (3.11)

From Lemma 2.5, we have

xi(t) ≤ xi(ζi) +
∫k+ω

k

∣∣∣xΔ
i (t)
∣∣∣Δt, i = 1, 2, . . . , n,

xi(t) ≥ xi

(
ηi
) −
∫k+ω

k

∣∣∣xΔ
i (t)
∣∣∣Δt, i = 1, 2, . . . , n.

(3.12)

From (3.5), (3.6) and (3.11), there exist positive constants ξi (i = 1, 2, . . . , n) such that for
t ∈ [k, k + ω]

⋂
T, |xi(t)| ≤ ξi, i = 1, 2, . . . , n. Clearly, ξi (i = 1, 2, . . . , n) is independent of λ.

Denote H∗ =
∑n

i=1 ξi + C, where C > 0 is taken sufficiently large so that

min
1≤i≤n

ciH
∗> nmax

1≤i≤n

⎛

⎝
∣∣∣Ii
∣∣∣ +

n∑

j=1

∣∣aij

∣∣Mj +
n∑

j=1

n∑

l=1

∣∣∣bijl
∣∣∣NjNl

⎞

⎠. (3.13)
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Now we take Ω = {(x1(t), x2(t) , . . . , xn(t))
T : ‖(x1(t), x2(t), . . . , xn(t))

T‖ < H∗} .
Thus (1) of Theorem 2.8 is satisfied. When (x1(t), x2(t), . . . , xn(t))

T ∈ ∂Ω
⋂

R
n, (x1(t),

x2(t), . . . , xn(t))
T is a constant vector in R

n with |x1| + |x2| + · · · + |xn| = H∗, then

QN(x1(t), x2(t), . . . , xn(t))T =

⎛

⎝−cixi(t) +
n∑

j=1

aijfj
(
xj

(
t − γij(t)

))

+
n∑

j=1

n∑

l=1

bijlgj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))
+ Ii

⎞

⎠

n×1

.

(3.14)

Therefore

∥∥∥QN(x1(t), x2(t), . . . , xn(t))T
∥∥∥ =

n∑

i=1

∣∣∣∣∣∣
cixi(t) −

n∑

j=1

aijfj
(
xj

(
t − γij(t)

))

−
n∑

j=1

n∑

l=1

bijlgj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

)) − Ii

∣∣∣∣∣∣

≥
n∑

i=1

ci|xi(t)| −
n∑

i=1

n∑

j=1

∣∣aij

∣∣Mj

−
n∑

i=1

n∑

j=1

n∑

l=1

bijlNjNl −
n∑

i=1

∣∣∣Ii
∣∣∣

≥
n∑

i=1

(ci|xi(t)|)

−
n∑

i=1

⎛

⎝
∣∣∣Ii
∣∣∣ +

n∑

j=1

∣∣aij

∣∣Mj +
n∑

j=1

n∑

l=1

bijlNjNl

⎞

⎠

≥ min
1≤i≤n

(ci)
n∑

i=1

|xi(t)|

− nmax
1≤i≤n

⎛

⎝
∣∣∣Ii
∣∣∣ +

n∑

j=1

∣∣aij

∣∣Mj +
n∑

j=1

n∑

l=1

∣∣∣bijl
∣∣∣NjNl

⎞

⎠

> 0.
(3.15)

Consequently,

QN(x1(t), x2(t), . . . , xn(t))
T
/= (0, 0, . . . , 0)T , (3.16)
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for (x1(t), x2(t), . . . , xn(t))
T ∈ ∂Ω

⋂
KerL . This satisfies condition (2) of Theorem 2.8. Define

Ψ : KerL × [0, 1] → X by

Ψ
(
x1, x2, . . . , xn, μ

)
= −μ(x1, x2, . . . , xn)T +

(
1 − μ

)
QN(x1(t), x2(t), . . . , xn(t))

T (3.17)

When (x1(t), x2(t), . . . , xn(t))
T ∈ ∂Ω

⋂
KerL, (x1, x2, . . . , xn)

T is a constant vector in R
n with∑n

i=1 |xi| = H∗, we easily have Ψ(x1, x2, . . . , xn, μ)/= (0, 0, . . . , 0)T . Therefore

deg
(
QN(x1(t), x2(t), . . . , xn(t))T ,Ω

⋂
KerL, (0, 0, . . . , 0)T

)

= deg
(
(−x1(t),−x2(t), . . . ,−xn(t)

T ,Ω
⋂

KerL, (0, 0, . . . , 0)T
)
/= 0.

(3.18)

Condition (3) of Theorem 2.8 is also satisfied. Thus, by Theorem 2.8 we can obtain that Lx =
Nx has at least one solution in X. That is, system (1.2) has at least one ω-periodic solution.
The proof is complete.

4. Global Exponential Stability of Periodic Solution

In this section, we will construct suitable Lyapunov functions to study the global exponential
stability of the periodic solution of (1.2) on time scales. So first we will introduce some
definitions.

Definition 4.1 (see [12]). A function f from T to R is positively regressive if 1 + μ(t)f(t) > 0
for every t ∈ T.

Denote R+ is the set of positively regressive functions from T to R, and denote T
+ =

[0,+∞)
⋂

T.

Definition 4.2. The periodic solution x∗(t) of system (1.2) is said to be exponentially stable
if there exists a positive constant α with −α ∈ R+ such that for every δ ∈ T, there exists
N = N(δ) ≥ 1 such that the solution x(t) of (1.2) through (δ, ϕ(δ)) satisfies ‖x(t) − x∗(t)‖ ≤
N‖ϕ(δ) − x∗(δ)‖e−α(t, δ), t ∈ T

+ where ‖ϕ(δ) − x∗(δ)‖ =
∑n

i=1 maxδ∈[−θ,0]⋂T|ϕi(δ) − x∗
i (δ)|.

Theorem 4.3. Assume that (H1)–(H3) hold. Suppose further that there exists n positive constants
εi > 0, i = 1, 2, . . . , n such that

(H4)

−εic−i +
n∑

j=1

a+
ijMjεj +

n∑

j=1

n∑

l=1

b+ijl
(
HjNlεj +HlNjεl

)
< 0, i = 1, 2, . . . , n, (4.1)

then the ω-periodic solution of system (1.2) is globally exponentially stable.
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Proof. According to Theorem 3.1, we know that (1.2) has an ω-periodic solution x∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T . Suppose that x(t) = (x1(t), x2(t), . . . , xn(t))
T is an arbitrary solution

of (1.2). Then it follows from system (1.2) that

(
xi(t) − x∗

i (t)
)Δ = −ci(t)

(
xi(t) − x∗

i (t)
)
+

n∑

j=1

aij(t)
(
fj
(
xj

(
t − γij(t)

)) − f∗
j

(
xj

(
t − γij(t)

)))

+
n∑

j=1

n∑

l=1

bijl(t)
(
gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

)))

− gj
(
x∗
j

(
t − σijl(t)

))
gl
(
x∗
l

(
t − vijl(t)

))
, i = 1, 2, . . . , n,

(4.2)

with initial values given by

xi(s) = ϕi(s), s ∈ [−θ, 0]
⋂

T, i = 1, 2, . . . , n, (4.3)

where θ is defined as in(1.3) . If (H4) holds, it can always find a small enough constant α > 0
satisfying ∀t ∈ T, 1 − μ(t)α > 0, namely, −α ∈ R+ such that

(−c−i + α
)
εi +

n∑

j=1

a+
ijMjeα

(
t, t − γij(t)

)
εj

+
n∑

j=1

n∑

l=1

b+ijl
[
HjNlεjeα

(
t, t − σijl(t)

)
+HlNjεleα

(
t, t − vijl(t)

)]
< 0, i = 1, 2, . . . , n.

(4.4)

We define a Lyapunov function H = (h1, h2, . . . , hn)
T by hi = eα(t, δ)|xi(t) − x∗

i (t)|, δ ∈
[−θ, 0]⋂T, i = 1, 2, . . . , n. In view of (4.2), we obtain

[
hΔ
i (t)
]+

= αeα(t, δ)
∣∣xi(t) − x∗

i (t)
∣∣ + eα(σ(t), δ) sign

(
xi(t) − x∗

i (t)
)

×
⎧
⎨

⎩ − ci(t)
(
xi(t) − x∗

i (t)
)

+
n∑

j=1

aij(t)
(
fj
(
xj

(
t − γij(t)

)) − fj
(
x∗
j

(
t − γij(t)

)))

+
n∑

j=1

n∑

l=1

bijl(t)
(
gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

)))

−gj
(
x∗
j

(
t − σijl(t)

))
gl
(
x∗
l

(
t − vijl(t)

))
⎫
⎬

⎭
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≤ αeα(t, δ)
∣∣xi(t) − x∗

i (t)
∣∣ + eα(σ(t), δ)

×
⎧
⎨

⎩ − ci(t)
∣∣xi(t) − x∗

i (t)
∣∣ +

n∑

j=1

∣∣aij(t)
∣∣
∣∣∣xj

(
t − γij(t)

) − x∗
j

(
t − γij(t)

)∣∣∣Mj

+
n∑

j=1

n∑

l=1

∣∣bijl(t)
∣∣
[
HjNl

∣∣∣xj

(
t − σijl(t)

) − x∗
j

(
t − σijl(t)

)∣∣∣

+HlNj

∣∣xl

(
t − vijl(t)

) − x∗
l

(
t − vijl(t)

)∣∣
]
⎫
⎬

⎭

≤ eα(σ(t), δ)

×
⎧
⎨

⎩(−ci(t) + α)
∣∣xi(t) − x∗

i (t)
∣∣ +

n∑

j=1

∣∣aij(t)
∣∣
∣∣∣xj

(
t − γij(t)

) − x∗
j

(
t − γij(t)

)∣∣∣Mj

+
n∑

j=1

n∑

l=1

∣∣bijl(t)
∣∣
[
HjNl

∣∣∣xj

(
t − σijl(t)

) − x∗
j

(
t − σijl(t)

)∣∣∣

+HlNj

∣∣xl

(
t − vijl(t)

) − x∗
l

(
t − vijl(t)

)∣∣
]
⎫
⎬

⎭

≤ [1 + μ(t)α
]
⎧
⎨

⎩
(−c−i + α

)
hi(t) +

n∑

j=1

a+
ijMjeα

(
t, t − γij(t)

)
hj

(
t − γij(t)

)

+
n∑

j=1

n∑

l=1

b+ijl ×
[
HjNleα

(
t, t − σijl(t)

)
hj

(
t − σijl(t)

)

+HlNjeα
(
t, t − vijl(t)

)
hl

(
t − vijl(t)

)]
⎫
⎬

⎭,

i = 1, 2 . . . , n.

(4.5)

Defining the curve ρ = {ω(l) : ωi = εil, l > 0, i = 1, 2, . . . , n} and the set Ω(ω) = {u :
0 ≤ u ≤ ω}, Si(ω) = {u ∈ Ω(ω) : ui = ω}, i = 1, 2 . . . , n. It is obvious that if l < l, then
Ω(ω(l)) ⊂ Ω(ω(l)). We will prove that the zero solution of (4.2) is exponential stable, namely,
there exists a constant β > 0 such that

‖x(t) − x∗(t)‖ ≤ N(δ)e−β(t, δ)
∥∥ϕ(t) − x∗(t)

∥∥, t ≥ 0. (4.6)

Let εM = max1≤i≤n{εi}, εm = min1≤i≤n{εi}, l0 = (1 − δ)|ϕi − x∗
i |0/εm, where −δ ≥ 0 is a

constant, |ϕi − x∗
i |0 = max1≤i≤n{maxδ∈[−θ,0]⋂T|ϕi(δ) − x∗

i (δ)|}. Then, {|H| : |H| = eα(t, δ)|ϕ(δ) −
x∗(δ)|,−θ ≤ t ≤ δ ≤ 0} ⊂ Ω(ω(l0)), namely,

|hi(δ)| = eα(t, δ)
∣∣ϕi(δ) − x∗

i (δ)
∣∣ < εil0, −θ ≤ δ ≤ 0, i = 1, 2, . . . , n. (4.7)
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We can claim that |hi(t)| < εil0 for t > 0, i = 1, 2, . . . , n. If it is not true, then there exist some
i and t1(ti > 0) such that |hi(t1)| = εil0, [hΔ

i (t1)]
+ ≥ 0 and |hi(t)| ≤ εil0 for −θ ≤ t ≤ t1, i =

1, 2, . . . , n. However, from (4.4) and (4.5), we get

[
hΔ
i (t1)
]+ ≤ [1 + μ(t)α

]
⎡

⎣(−c−i + α
)
εi +

n∑

j=1

a+
ijMjeα

(
t, t − γij(t)

)
εj

+
n∑

j=1

n∑

l=1

b+ijl
[
HjNleα

(
t, t − σijl(t)

)
εj +HlNjeα

(
t, t − vijl(t)

)
εl
]
⎤

⎦l0 < 0

(4.8)

for t > 0, i = 1, 2, . . . , n, this is a contradiction. So |hi(t)| < εil0, for t ≥ 0. Also

∣∣xi(t) − x∗
i (t)
∣∣ < eΘα(t, δ)εil0 ≤ 1

εm
eΘα(t, δ)εi(1 − δ)

∣∣ϕi − x∗
i

∣∣
0, i = 1, 2, . . . , n, t ≥ 0, (4.9)

which means that

‖x(t) − x∗(t)‖ ≤ 1
εm

eΘα(t, δ)εM(1 − δ)
∥∥ϕ(δ) − x∗(δ)

∥∥. (4.10)

Denote −β = Θα = −α/(1 + μα) ∈ R+,N = N(δ) = (εM/εm)(1 − δ) > 1, in view of (4.10), we
have

‖x(t) − x∗(t)‖ ≤ Ne−β(t, δ)
∥∥ϕ(s) − x∗(s)

∥∥. (4.11)

From Definition 4.2, the periodic solution of system (1.2) is globally exponentially stable. The
proof is complete.

5. An Example

Let T = R, in this case, xΔ(t) = dx(t)/dt. Consider the following equation

dxi(t)
dt

= −ci(t)xi(t) +
2∑

j=1

aij(t)fj
(
xj

(
t − γij(t)

))

+
2∑

j=1

2∑

l=1

bijl(t)gj
(
xj

(
t − σijl(t)

))
gl
(
xl

(
t − vijl(t)

))
+ Ii(t), i = 1, 2,

(5.1)
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where

f1(x1) = sin
(

1
21/2

x1

)
, f2(x2) = sin

(
1

23/2
x2

)
,

g1(x1) = arctan
(

1
21/2

x1

)
, g2(x2) = arctan

(
1

23/2
x2

)
.

(5.2)

Obviously, fi(xi), gi(xi)(i = 1, 2) satisfy (H1) and (H2), and

H1 = H2 = M1 = M2 = 1, N1 = N2 =
π

2
. (5.3)

Take

a11(t)=1 + cos(2πt), a12(t)=2 + cos(2πt), a21(t)=2 + cos(2πt), a22(t)=3 + cos(2πt),

c1(t)=20 + 5 sin(2πt), c2(t)=33 + 16 sin(2πt), I1(t)=1 + sin(2πt), I2(t)=1 + cos(2πt),

b111(t)=b222(t) =
1
4
+
1
4
sin(2πt), b112(t)=b212(t)=

1
3
+
1
3
cos(2πt),

b121(t)=b221(t)=
1
5
+
1
5
cos(2πt), b122(t)=b211(t)=

1
6
+
1
6
sin(2πt).

(5.4)

One can verifies that (H1) is satisfied, and ω = 1, c−1 = 15, c−2 = 17, a+
11 = 2, a+

12 = 3, a+
21 =

3, a+
22 = 4, b+111 = b+222 = 1/2, b+112 = b+212 = 2/3, b+121 = b+221 = 2/5, b+122 = b+211 = 1/3, so, if we

take ε1 = ε2 = 1, we can obtain

−ε1c−1 +
2∑

j=1

a+
1jMjεj +

2∑

j=1

2∑

l=1

b+1jl
(
HjNlεj +HlNjεl

)
= −15 + 5 +

19
10

π < 0,

−ε2c−2 +
2∑

j=1

a+
2jMjεj +

2∑

j=1

2∑

l=1

b+2jl
(
HjNlεj +HlNjεl

)
= −17 + 7 +

19
10

π < 0.

(5.5)

Condition (4.2) is satisfied. From Theorem 3.1 and 4.3, we know that (5.1) has at least one
1-periodic solution and this solution is exponential stability.

6. Conclusion

Sufficient conditions are derived to guarantee the stability and existence of periodic solutions
for a class of delayed high-order Hopfield neural networks on time scales. To the best of our
knowledge, the results presented here have been not appeared in the related literature. In fact,
both continuous and discrete systems, are very important in implementing and applications.
But it is troublesome to study the existence and stability of periodic solutions for continuous
and discrete systems respectively. Therefore, it is meaningful to study that on time scales
which can unify the continuous and discrete situations. Also, our methods used in this paper
may be applied to some other systems.
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