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1. Introduction and Results

The Bernoulli polynomials B(k)
n (x) of order k, for any integer k, may be defined by (see [1–4])

(
t

et − 1

)k

ext =
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n=0

B
(k)
n (x)

tn

n!
, |t| < 2π. (1.1)

The numbers B
(k)
n = B

(k)
n (0) are the Bernoulli numbers of order k, B(1)

n = Bn are the
ordinary Bernoulli numbers (see [2, 5]). By (1.1), we can get (see [4, page 145])
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where n ∈ N, with N being the set of positive integers.
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The numbers B(n)
n are called the Nörlund numbers (see [2, 4, 6]). A generating function

for the Nörlund numbers B(n)
n is (see [4, page 150])

t

(1 + t) log(1 + t)
=
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n=0

B
(n)
n

tn

n!
. (1.5)

The D numbers D(k)
2n may be defined by (see [4, 7, 8])

(t csc t)k =
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n=0

(−1)nD(k)
2n

t2n

(2n)!
, |t| < π. (1.6)

By (1.1), (1.6), and note that csc t = 2i/(eit − e−it) (where i2 = −1), we can get

D
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2n = 4nB(k)

2n

(
k

2

)
. (1.7)

Taking k = 1, 2 in (1.7), and note that B(1)
2n (1/2) = (21−2n − 1)B2n, B

(2)
2n (1) = (1 − 2n)B2n

(see [4, page 22, page 145]), we have

D
(1)
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)
B2n, D

(2)
2n = 4n(1 − 2n)B2n. (1.8)

The D numbers D(k)
2n satisfy the recurrence relation (see [7])

D
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D
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By (1.9), we may immediately deduce the following (see [4, page 147]):
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)
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The numbers D
(2n)
2n are called the D-Nörlund numbers that satisfy the recurrence

relation (see [7])
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so we find D
(0)
0 = 1, D(2)

2 = −2/3, D(4)
4 = 88/15, D(6)

6 = −3056/21, D(8)
8 = 319616/45, D(10)

10 =
−18940160/33, . . . .
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A generating function for the D-Nörlund numbers D(2n)
2n is (see [7])

t
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These numbersD(2n)
2n andD

(2n−1)
2n have many important applications. For example (see

[4, page 246])
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The main purpose of this paper is to prove a recurrence formula for D numbers
D

(2n−1)
2n and to obtain a generating function for D numbers D

(2n−1)
2n . That is, we will prove

the following main conclusion.

Theorem 1.1. Let n ∈ N. Then
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so one finds D
(1)
2 = −1/3, D

(3)
4 = 17/5, D

(5)
6 = −1835/21, D

(7)
8 = 195013/45, D
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Theorem 1.2. Let t be a complex number with |t| < 1. Then
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2. Proof of the Theorems

Proof of Theorem 1.1. Note the identity (see [4, page 203])
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Therefore,
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By (2.3) and (1.2), we have
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That is,
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By (2.5) and (1.7), we have
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Setting k = 2n−1 in (2.6), and note (1.10), we immediately obtain Theorem 1.1. This completes
the proof of Theorem 1.1.

Remark 2.1. Setting k = 2n in (2.6), and note (1.10), wemay immediately deduce the following
recurrence formula for D-Nörlund numbers D(2n)

2n :
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Proof of Theorem 1.2. Note the identity (see [9])
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where |t| < 1. We have
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That is,
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On the other hand,
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Thus, by (2.10), (2.11), and Theorem 1.1, we have
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That is,
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By (2.13), and note that

lim
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we immediately obtain Theorem 1.2. This completes the proof of Theorem 1.2.
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