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We study an epidemic model with a nonlinear incidence rate which describes the psychological
effect of certain serious diseases on the community when the ratio of the number of infectives to
that of the susceptibles is getting larger. The model has set up a challenging issue regarding its
dynamics near the origin since it is not well defined there. By carrying out a global analysis of the
model and studying the stabilities of the disease-free equilibrium and the endemic equilibrium, it
is shown that either the number of infective individuals tends to zero as time evolves or the disease
persists. Computer simulations are presented to illustrate the results.
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1. Introduction

In recent years, attempts have been made to develop realistic mathematical models for the
transmission dynamics of infectious diseases. In modeling of communicable diseases, the
incidence function has been considered to play a key role in ensuring that the models indeed
give reasonable qualitative description of the transmission dynamics of the diseases [1, 2].
Some factors, such as media coverage, density of population, and life style, may affect the
incidence rate directly or indirectly [3].

Let S(t) be the number of susceptible individuals, let I(t) be the number of infective
individuals, and let R(t) be the number of removed individuals at time t. After a study of
the cholera epidemic spread in Bari in 1973, Capasso and Serio [4] introduced a saturated
incidence rate g(I)S into epidemic models. This is important because the number of
effective contacts between infective individuals and susceptible individuals may saturate
at high infective levels due to crowding of infective individuals or due to the protection
measures by the susceptible individuals. If the function g(I) is decreasing when I is large,
it can also be used to interpret the “psychological” effects: for a very large number of
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infectives the infection force may decrease as the number of infective individuals increases
because in the presence of large number of infectives the population may tend to reduce
the number of contacts per unit time. To incorporate the effect of the behavioral changes
of the susceptible individuals, Liu et al. [5, 6] used a nonlinear incidence rate given
by

g(I) =
kIl

1 + αIh
, (1.1)

where the parameters k, l, and h are positive constants and α is a nonnegative constant, kIl

measures the infection force of the disease, and 1/(1 + αIh) measures the inhibition effect
from the behavioral change of the susceptible individuals when their number increases
or from the crowding effect of the infective individuals. The special cases when l, h, and
α take different values have been used by many authors. See, for example, Derrick and
van den Driessche [7], Hethcote [8], Hethcote and Levin [9] and van den Driessche
[10], Alexander and Moghadas [11], Ruan and Wang [12], Xiao and Ruan [13], and so
forth.

Note that the infectious force g(I) in (1.1) is only a function of infective individuals.
However in the transmission of communicable diseases, it involves both infective individuals
and susceptible individuals. Thus we think the infectious force ought to depend on the
densities of both infective individuals and susceptible individuals and it should take the
form g(I, S). Assuming that the infectious force is a function of the ratio of the number of
the infectives to that of the susceptibles, in this paper, we consider the following infectious
force function:

g(I, S) = g
(
I

S

)
=

k(I/S)l

1 + α(I/S)h
. (1.2)

To describe the psychological or inhibitory effect from the behavioral change of the
susceptible individuals when the number of infective individuals is very large, Xiao and Ruan
[13] have considered the following SIRS model:

dS

dt
= b − dS − kIS

1 + αI2
+ γR,

dI

dt
=

kSI

1 + αI2
− (

d + μ
)
I,

dR

dt
= μI − (

d + γ
)
R,

(1.3)

where the infectious force g(I) takes the following form:

g(I) =
kI

1 + αI2
, (1.4)

which is the special case when l = 1, h = 2 in (1.1). All the parameters are positive numbers.
Also b is the recruitment rate of the population, d is the natural death rate of the population,
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k is the proportionality constant, γ is the natural recovery rate of the infective individuals, μ is
the rate at which recovered individuals lose immunity and return to the susceptible class, and
α is the parameter measures the psychological or inhibitory effect. Global analysis carried out
by them shows that either the number of infective individuals tends to zero as time evolves
or the disease persists.

Instead of the infectious force given by (1.4), in this paper, we incorporate the
infectious force form (1.2) (when l = 1, h = 2) into model (1.3). Our aim is to investigate
the psychological effect of certain serious diseases on the community when the ratio of the
number of infectives to that of the susceptibles is getting larger. As we can see from the
following section, the model is not well defined at the origin and thus it cannot be linearized
at it. We want to explore if it can produce some new dynamical behaviors different from the
classical epidemic models.

This paper is organized as follows: in Section 2, we present the model and its simplified
form. In Section 3, we carry out a qualitative analysis of the model. The existence of all
kinds of equilibria and their stability results are derived. Finally, a brief discussion and some
numerical simulations are given in Section 4.

2. The Model

Assuming that the infectious force takes the form (1.2) and l = 1, h = 2, that is,

g(I, S) = g
(
I

S

)
=

k(I/S)

1 + α(I/S)2
=

kIS

S2 + I2
, (2.1)

consider the following SIRS model:

dS

dt
= b − dS − kIS2

S2 + αI2
+ γR,

dI

dt
=

kIS2

S2 + αI2
− (

d + μ
)
I,

dR

dt
= μI − (

d + γ
)
R.

(2.2)

All the parameters are positive and have the similar biological meaning as in (1.3). Noting
that system (2.2) is not well defined at the origin (0, 0, 0), we redefine that when (S, I, R) =
(0, 0, 0),

dS

dt
= b,

dI

dt
= 0,

dR

dt
= 0. (2.3)

With this assumption, it is easy to see that the first octant R3
+ = {(S, I, R) | S, I, R ≥ 0} is

positively invariant for system (2.2), and that system (2.2) is continuous and satisfies the
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Lipschitz condition in R3
+. The following result shows that the solutions of system (2.2) are

bounded, and hence, lie in a compact set and are continuable for all positive time.

Lemma 2.1. The plane S + I +R = b/d is an invariant manifold of system (2.2), which is attracting
in the first octant.

Proof. Summing up the three equations in (2.2) and denoting

N(t) = S(t) + I(t) + R(t), (2.4)

we have

dN

dt
= b − dN. (2.5)

It is clear that N(t) = b/d is a solution of (2.5) and for any N(t0) ≥ 0, the general solution of
(2.5) is

N(t) =
1
d

[
b − (b − dN(t0))e−d(t−t0)

]
. (2.6)

Thus,

lim
t→∞

N(t) =
b

d
, (2.7)

which implies the conclusion.

In the following, we consider the existence of equilibria of system (2.2). For any values
of parameters, model (2.2) always has a disease-free equilibrium E0

3 = (b/d, 0, 0). To find the
positive equilibria, set

b − dS − kIS2

S2 + αI2
+ γR = 0,

kS2

S2 + αI2
− (

d + μ
)
= 0,

μI − (
d + γ

)
R = 0.

(2.8)

Define the basic reproduction number as follows:

R0 =
k

d + μ
. (2.9)

From (2.8), we have

[
α − (R0 − 1)

(
1 +

μ

d + γ

)2
]
I2 +

2b
d
(R0 − 1)

(
1 +

μ

d + γ

)
I − b2

d2 (R0 − 1) = 0. (2.10)
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It is easy to see from (2.10) that

(i) if R0 ≤ 1, then there is no positive equilibrium;

(ii) if R0 > 1, then there is a unique positive equilibrium E∗
3 = (S∗, I∗, R∗), called the

endemic equilibrium and given by

S∗ =
√

α

R0 − 1
I∗,

I∗ =
1√

α/(R0 − 1) +
(
1 + μ/

(
d + γ

)) b
d
,

R∗ =
μ

d + γ
I∗.

(2.11)

In the following section, we will study the properties of these equilibria and perform
a global qualitative analysis of model (2.2).

3. Mathematical Analysis

It is clear that the limit set of system (2.2)-(2.3) is on the plane S+ I +R = b/d. Thus, we focus
on the reduced system:

dS

dt
=
(
b +

γb

d

)
− (

d + γ
)
S − γI − kIS2

S2 + αI2
,

dI

dt
=

kIS2

S2 + αI2
− (

d + μ
)
I,

dS

dt
= b

(
1 +

γ

d

)
,

dI

dt
= 0, when (S, I) = (0, 0),

(3.1)

confined to the set

DSI =
{
(S, I) | S, I ≥ 0, S + I ≤ b

d

}
. (3.2)

To be concise in notations, rescale (3.1) by

S =

(
b + γb/d

)
x

d + μ
, I =

(
b + γb/d

)
y

γ
, t =

τ

d + μ
, (3.3)
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and, for simplicity, we still use variable t instead of τ . Then, we obtain

dx

dt
= 1 − qx − y − ax2y

x2 + py2
,

dy

dt
=

[
R0x

2

x2 + py2
− 1

]
y,

dx

dt
= 1,

dy

dt
= 0, when

(
x, y

)
= (0, 0),

(3.4)

where

q =
d + r
d + μ

, p =
α
(
d + μ

)2

γ2
, a =

k

γ
. (3.5)

Denote

Dxy =
{(
x, y

) | x, y ≥ 0, x +
a

R0
y ≤ 1

q

}
. (3.6)

Obviously, Dxy is a positively invariant set for system (3.4) and every solution initiated from
the outside of Dxy will approach or enter into and stay in it forever as t is getting larger.

Note that the equilibrium E 0
2 = (1/q, 0) corresponds to the disease-free equilibrium E0

3
and the unique positive equilibrium E∗

2 = (x∗, y∗) corresponding to the endemic equilibrium
E∗

3 exists if and only if the condition R0 > 1, where

x∗ =
1

(1 + a/R0)
√
(R0 − 1)/p + q

, y∗ =

√
R0 − 1
p

x∗. (3.7)

Note that we are interested in the dynamics of system (3.4) in the interior of the first
quadrant. Thus, we can make a time scale change:

dt =
(
x2 + py2

)
dτ (3.8)

such that system (3.4) is equivalent to the following system in the interior of the first
quadrant. For simplicity, we still use variable t instead of τ :

dx

dt
= x2 + py2 + Φ

(
x, y

) ≡ P(x, y),
dy

dt
= Ψ

(
x, y

) ≡ Q(
x, y

)
,

(3.9)

where

Φ
(
x, y

)
= −qx3 − (a + 1)x2y − pqxy2 − py3,

Ψ
(
x, y

)
= (R0 − 1)x2y − py3.

(3.10)
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We should point out that except for the equilibria E 0
2 and E∗

2, system (3.9) has another more

equilibrium E
0
2 = (0, 0) than (3.4) since the time scaling is (3.8).

In the following, we will study the properties of the equilibria and perform a global
qualitative analysis of model (3.9).

3.1. Asymptotic Behavior of the System (3.9) at E
0
2 = (0, 0)

The equilibrium E
0
2 of system (3.9) is an isolated critical point of higher order. Obviously,

system (3.9) is analytic in a neighborhood of the origin. By [14, Theorem 3.10 on page 79],
any orbit of (3.9) tending to the origin must tend to it spirally or along a fixed direction,
which depends on the characteristic equation of system (3.9). Here, we will show that if a
solution orbit of (3.9) tends to the origin, then it must tend to it along a fixed direction. We

will also determine the number of solution orbits of system (3.9) that tend to E
0
2 along a fixed

direction as t → +∞ or t → −∞ in the interior of the first quadrant by using the results in
[14]. Hereafter, we refer to [14] for results and explanations of several notations involved.

First of all, we introduce the polar coordinates x = r cos θ, y = r sin θ and define

G(θ) = − sin θX2(cos θ, sin θ), (3.11)

where X2(x, y) is homogeneous polynomial in x and y of degree 2 in the first equation of
(3.9). Then the characteristic equation of system (3.9) takes the form

G(θ) = − sin θ
(

cos2θ + p sin2θ
)
= 0. (3.12)

Clearly, G(θ) = 0 has two roots θ0 = 0 and θ1 = π . By the results in [14, section II.2], we know

that no orbit of system (3.9) can tend to the critical point E
0
2 spirally, and any orbit of system

(3.9) approaching the origin must be along the directions θ0 = 0 or θ1 = π . Since we are only
interested in the interior of the first octant, we just consider the direction θ0 = 0.

To determine if there exists an orbit of system (3.9) which tends to the origin along the
direction θ0 = 0 as t tends to +∞ or −∞, we have to compute the derivative of G(θ) and the
function H(θ):

G′(θ) = −cos3θ +
(
2 − 3p

)
sin2θ cos θ,

H(θ) = cos θ
(

cos2θ + p sin2θ
)
.

(3.13)

Theorem 3.1. There exist ε > 0 and r0 > 0 such that there exists a unique orbit of system (3.9) in the

sector {(θ, r) : 0 ≤ θ < ε, 0 < r < r0} that tends to E
0
2 along θ0 = 0 as t → −∞.

Proof. Since G′(θ0) = −1 and H(θ0) = 1, by [14, Theorem 3.7 on page 70], there exist ε > 0 and
r0 > 0 such that there exists a unique orbit of system (3.9) in the sector {(θ, r) : 0 ≤ θ < ε, 0 <

r < r0} that tends to E
0
2 along θ0 = 0 as t → −∞. The proof is thus completed.

In fact, the only orbit tending to E
0
2 along θ0 = 0 as t → −∞ is y = 0.
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3.2. The Disease-Free Equilibrium E 0
2 = (1/q, 0) of System (3.9)

First,we give the following result regarding the nonexistence of periodic orbits in system
(3.9), which implies the nonexistence of periodic orbits of system (2.2) by Lemma 2.1.

Theorem 3.2. System (3.9) does not have nontrivial periodic orbits.

Proof. Consider system (3.9) for x > 0 and y > 0. Take a Dulac function

D
(
x, y

)
=

1
y
(
x2 + py2

) . (3.14)

We have

∂(DP)
∂x

+
∂(DQ)
∂y

=
−qx4y − 2pqx2y3 − 2apxy4 − p2qy5

y2
(
x2 + py2

)2
− 2R0px

2y(
x2 + py2

)2
< 0. (3.15)

The conclusion follows.

The following theorem shows the properties of the disease-free equilibrium E 0
2 =

(1/q, 0).

Theorem 3.3. The disease-free equilibrium E 0
2 of system (3.9) is

(i) a global asymptotically stable node if R0 < 1;

(ii) a saddle if R0 > 1;

(iii) global asymptotically stable if R0 = 1.

Proof. The Jacobian matrix of system (3.9) at E 0
2 is

A =

⎛
⎜⎜⎜⎝

−1
q

−a + 1
q2

0
R0 − 1
q2

⎞
⎟⎟⎟⎠, (3.16)

whose determinant and trace are, respectively,

detA =
1 − R0

q3
, trA =

R0 − 1 − q
q2

. (3.17)

However E 0
2 is locally stable (unstable) if the trace trA < 0 (trA > 0) and detA > 0.

If R0 < 1, we have detA > 0 and trA < 0. Hence, E 0
2 is locally asymptotically stable.

Note that the interior equilibrium does not exist and E
0
2 is unstable to the positive quadrant.

By Theorem 3.2, the disease-free equilibrium E 0
2 is global asymptotically stable.

If R0 > 1, we have detA < 0. So E 0
2 is a saddle.
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If R0 = 1, system (3.9) becomes

dx

dt
= x2 + py2 − qx3 − (a + 1)x2y − pqxy2 − py3,

dy

dt
= −py3.

(3.18)

Translating the boundary equilibrium E 0
2 of system (3.18) to the origin, system (3.18) can be

written as

dx

dt
= −x

q
− a + 1

q2
y + Φ

(
x, y

)
,

dy

dt
= −py3,

(3.19)

where

Φ
(
x, y

)
= −2

(
x2 +

(a + 1)
q2

xy

)
−
(
qx3 + (a + 1)x2y + pqxy2 + py3

)
. (3.20)

In order to study the stability of (0, 0) of system (3.19), we firstly carry out a coordinate
transformation u = y, v = (x/q) + ((a + 1)/q2)y, dt = qdτ , for system (3.19), we obtain

du

dτ
= −pu3,

dv

dτ
= −v + F(u, v),

(3.21)

where F(u, v) is a polynomial in u and v of a degree not less than 2. Obviously, (3.21) has a
center manifold v = h(u). Since the solution on the center manifold satisfies

du

dτ
= −pu3, (3.22)

we know that the origin of (3.22) is asymptotically stable. By the theorem of center manifold,
we know that the origin (0, 0) of (3.21) is also asymptotically stable. That is to say, the
boundary equilibrium (1/q, 0) of system (3.18) is asymptotically stable. Note that when

R0 = 1, system (3.18) has no positive equilibrium and E
0
2 is unstable to the positive quadrant.

By Theorem 3.2, we obtain that all the orbits of system (3.18) in the first quadrant tend to the
equilibrium E 0

2 . The proof of Theorem 3.3 is thus completed.

3.3. The Endemic Equilibrium E∗
2 = (x∗, y∗) of System (3.9)

Theorem 3.4. Suppose R0 > 1, then there is a unique endemic equilibrium (x∗, y∗) of (3.9), which is
a global asymptotically stable node.
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Proof. The Jacobian matrix of system (3.9) at the equilibrium (x∗, y∗) is

A =

⎛
⎝2x∗ − 3q(x∗)2 − 2(a + 1)x∗y∗ − pq(y∗)2 2py∗ − (a + 1)(x∗)2 − 2pqx∗y∗ − 3p

(
y∗)2

2(R0 − 1)x∗y∗ (R0 − 1)(x∗)2 − 3p
(
y∗)2

⎞
⎠,

(3.23)

whose determinant and trace are respectively,

detA = 6qR0(R0 − 1)(x∗)4 + 6p(a + R0)x∗(y∗)3 + 4R0(1 − R0)(x∗)3

=

{
6R0(R0 − 1)

[
q +

(
1 +

a

R0

)√
R0 − 1
p

]
x∗ + 4R0(1 − R0)

}
(x∗)3

= 2R0(R0 − 1)(x∗)3,

trA = 2x∗ − 3q(x∗)2 − 2(a + 1)x∗y∗ − pq(y∗)2 + (R0 − 1)(x∗)2 − 3p
(
y∗)2

=

{[
2 − 2R0 − 2q − qR0 − 2(a + 1)

√
R0 − 1
p

]
x∗ + 2

}
x∗

=

[
2(1 − R0) − qR0 − 2a

√
R0 − 1
p

(
1 − 1

R0

)]
(x∗)2.

(3.24)

Since R0 > 1, we have detA > 0 and trA < 0. Hence, (x∗, y∗) is locally asymptotically stable.

Note that E
0
2 is unstable to the interior of the positive quadrant, and that the two stable

manifolds of E 0
2 are on the x-axis and one of its unstable manifolds points to the the positive

quadrant. By Theorem 3.2, we know that the interior equilibrium (x∗, y∗) of system (3.9) is a
global asymptotically stable node. This proves the theorem.

Summarizing Theorems 3.1–3.4, we have the following results on the dynamics of
model (3.1).

Theorem 3.5. Let R0 = k/(d + μ) , then the following hold.

(i) If R0 < 1, then model (3.1) has a unique disease-free equilibrium (b/d, 0), which is a global
attractor in the first quadrant (see Figure 1).

(ii) If R0 = 1, then mode (3.1) has a unique disease-free equilibrium (b/d, 0), which attracts all
orbits in the interior of the first quadrant (see Figure 2).

(iii) If R0 > 1, then model (3.1) has two equilibria, a disease-free equilibrium (b/d, 0) and an
endemic equilibrium (x∗, y∗). The endemic equilibrium is a global attractor in the interior
of the first quadrant (see Figure 3).
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Figure 1: Topological structure of system (3.1) at (b/d, 0) when R0 < 1, where b = 1, d = 1, k = 1, γ =
1, α = 1, μ = 1.
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Figure 2: Topological structure of system (3.1) at (b/d, 0) when R0 = 1, where b = 1, d = 1, k = 1.5, γ =
0.5, α = 1, μ = 0.5.

4. Discussion

Several nonlinear incidence rates have been proposed by researchers, see, for example,
Capasso and Serio [4], Liu et al. [6], Derrick and van den Driessche [7], Hethcote and van
den Driessche [10], and so forth Complex dynamics have been observed in epidemiological
models with nonlinear incidence rate, such as the existence of multiple equilibria and
limit cycles, various types of bifurcations including Hopf, saddle-node, homoclinic, and
Bagdanov-Takens bifurcations, see also Ruan and Wang [12] and references cited therein.

In this paper, different from the classical nonlinear incident rate, we assume that
the infectious force is a function of the ratio of the number of the infectives to that of the
susceptibles which takes the form kIS/(S2 + αI2). Our aim is to investigate the psychological
effect of certain serious diseases on the community when the ratio of the number of infectives
to that of the susceptibles is getting larger. Note that the model with such infectious force
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Figure 3: Topological structure of system (3.1) at (b/d, 0) and (x∗, y∗) when R0 > 1, where b = 1, d = 1, k =
2, γ = 0.5, α = 1, μ = 0.5.

is not well defined at the origin. By redefining system (2.2) at the origin (0, 0, 0), reducing
it on the invariant manifold S + I + R = b/d, we get system (3.1). For system (3.1), after
simplification and transformation in the time variable, we get its equivalent polynomial

system (3.9). Notice that (3.9) has another more equilibrium E
0
2 = (0, 0) than (3.4) since the

time scaling is (3.8). Qualitative study on the the model shows that the model does not exhibit
complicated dynamics as other epidemic models with other types of incidence rates reported
by Liu et al. [6], Derrick and van den Driessche [7], Hethcote and Levin [9], Hethcote and
van den Driessche [10], and Ruan and Wang [12], We observe that if the positive equilibrium
of the system is locally asymptotically stable, then the system does not have any nontrivial
positive periodic solutions. Numerical simulations illustrate our results.
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