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1. Introduction

Direct matrix eigenvalue problems are concerned with deriving and analyzing the spectral
information and, hence, predicting the dynamical behavior of a system from a priori known
physical parameters such as mass, length, elasticity, inductance, and capacitance. Inverse
eigenvalue problems (IEPs), in contrast, are concerned with the determination, identification,
or construction of the parameters of a system according to its observed or expected behavior.

The inverse eigenvalue problems arise in a remarkable variety of applications,
such as mathematics physics, control theory, vibration project, structure design, system
parameter identification, and the revise of mathematics models [1–8]. Recent years, inverse
eigenvalue problem of matrices has become an active topic of computational mathematics
for needs of project and technology, and it has resolved a great deal of concrete problem.
Especially, the inverse eigenvalue problems have many applications in engineering design,
for example, they arise in aviation, civil structure, nucleus engineering, bridge design,
shipping construction, and so on. Pole assignment problem have been of major interest in
system identification and control theory, we can use optimization techniques to get a solution
which is least sensitive to perturbation of problem data. Byrnes [9], Kautsky et al. [10], and
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Chu and Li [11] gave an excellent recount of activities in this area. Joseph [7] presented a
method for the design of a structure with specified low-order natural frequencies, and the
method can further be used to generate initial feasible designs for optimum design problems
with frequency constraints. By measuring the changes in the natural frequencies, the IEP idea
can be employed to detect the size and location of a blockage in a duct or a crack in a beam,
see [12–15] for additional references. Starek and Inman [16] discussed the applications of
IEPs to model updating problems and fault detection problems for machine and structure
diagnostics. Applications to other types engineering problems can be found in the books
[4, 17] and articles [18–23].

Throughout this paper we use Ij to denote the j × j identity matrix, ej to denote the
jth column of the identity matrix, Λ(H) to denote the spectrums of a square matrix H, x to
denote the complex conjugate of x, and Hn to denote the set of unitary upper Hessenberg
matrices of order n with positive subdiagonal elements.

It is known [24] that any H ∈ Hn can be written uniquely as the products

H = G1
(

γ1
)

· · ·Gn−1
(

γn−1
)

˜Gn

(

γn
)

, (1.1)

where

Gk

(

γk
)

=

⎛

⎜

⎜

⎜

⎜

⎝

Ik−1

−γk σk

σk γk
In−k−1

⎞

⎟

⎟

⎟

⎟

⎠

, k = 1, 2, . . . , n − 1, (1.2)

˜Gn

(

γn
)

= diag
(

In−1,−γn
)

. (1.3)

In (1.1) and (1.2), the parameters γk ∈ C (k = 1, 2, . . . , n) are called reflection coefficients or
Schur parameters in signal processing, σk ∈ R (k = 1, 2, . . . , n−1) are said to be complementary
parameters and satisfy |γk|2 + σ2

k
= 1, σk > 0, k = 1, . . . , n − 1, and |γn| = 1. We refer to

(1.1) as Schur parametric form of H [25], it plays a fundamental role in the development
of efficient algorithms for solving eigenproblems for unitary Hessenberg matrices. However,
(1.2) is called the complex Givens matrices. H in (1.1) is of the explicit form

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−γ1 −σ1γ2 −σ1σ2γ3 · · · −σ1 · · ·σn−1γn

σ1 −γ1γ2 −γ1σ2γ3 · · · −γ1σ2 · · ·σn−1γn

σ2 −γ2γ3 · · · −γ2σ3 · · ·σn−1γn

. . . . . .
...

σn−1 −γn−1γn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (1.4)

and is uniquely determined by γ1, γ2, . . . , γn. We denote this n × n unitary Hessenberg matrix
by H(γ1, γ2, . . . , γn), each H ∈ Hn is therefore determined by the 2n − 1 real parameters. Let
Hk be the kth leading principal submatrix of H. The matrix Hk is not unitary for k < n and
its eigenvalues are inside the unit circle. However, Hk will become unitary if γk is replaced
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by ρk which is any number on the unit circle [24]. We introduce the following sequence of
modified unitary submatrices:

˜Hk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−γ1 −σ1γ2 · · · −σ1 · · ·σk−1ρk

σ1 −γ1γ2 · · · −γ1σ2 · · ·σk−1ρk

. . . . . .
...

σk−1 −γk−1ρk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, k = 1, 2, . . . , n. (1.5)

Because all ρk are of modulus one, the modified submatrices ˜Hk are unitary and its
eigenvalues lie on the unit circle, ˜Hk = H(γ1, . . . , γk−1, ρk). Assume that −1 is not an eigenvalue
of H, then λ(k)j ∈ Λ(˜Hk) can be described as

λ
(k)
j = exp

(

iθ
(k)
j

)

, j = 1, 2, . . . , k. (1.6)

If we number the roots of ˜Hk starting from −π moving counterclockwise along the unit circle,
that is,

−π < θ
(k)
1 ≤ θ(k)2 ≤ · · · ≤ θ(k)k ≤ π, (1.7)

then we also call λ(k)1 = exp(iθ(k)1 ), λ(k)k = exp(iθ(k)k ) are, respectively, the minimal and maximal
eigenvalues of ˜Hk.

Hessenberg matrices arise naturally in several signal processing applications including
the frequency estimation procedure and harmonic retrieval problem for radar or sonar
navigation [26, 27]. Two kinds of inverse eigenvalue problems for unitary Hessenberg
matrices have been considered up to now. Ammar et al. [28] discussedH = H(γ1, γ2, . . . , γn) ∈
Hn is uniquely determined by its eigenvalues and the eigenvalues of ̂H, where ̂H =
H(αγ1, αγ2, . . . , αγn) = (I − (1 − α)e1e

T
1 )H(γ1, γ2, . . . , γn), that is, ̂H a multiplicative rank-

one perturbation of H, and the methods are described in [28, 29]. Ammar and He in [24]
considered that H ∈ Hn can also be determined by its eigenvalues and the eigenvalues of a
modified (n − 1) × (n − 1) leading principal submatrix of H.

In this paper, we consider the following inverse eigenvalue problem.

Problem 1. For 2n − 1 given real numbers θ(k)1 , θ
(k)
k ∈ (−π,π] (k = 1, 2, . . . , n), find unitary

Hessenberg matrices H ∈ Hn, such that λ(k)1 = exp(iθ(k)1 ), λ(k)
k

= exp(iθ(k)
k

) are, respectively,
the minimal and the maximal eigenvalues of ˜Hk for all k = 1, 2, . . . , n.

This paper is organized as follows. In Section 2, we discussed the properties of unitary
Hessenberg matrix. Then the necessary and sufficient conditions for solvability of Problem
1 are derived in Section 3. Section 4 gives the algorithm and numerical example for the
problem.
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2. The Properties of Unitary Hessenberg Matrix

We denote the characteristic polynomials of ˜Hk by ϕk, that is, ϕk(λ) = det(λIk − ˜Hk). We can
appropriately choose ρk such that ϕk(λ) satisfy the three-term recurrence relations [30, 31],
the following lemma give a special method to define ρk.

Lemma 2.1 (see [32]). LetH = H(γ1, . . . , γn) ∈ Hn, assume −1 is not an eigenvalue ofH, define

ρn = γn,

ρk =
γk − ρk+1

1 − γkρk+1
, k = n − 1, n − 2, . . . , 1.

(2.1)

Let ˜Hk ∈ Hk (k = 1, . . . , n) be the modified unitary submatrices defined by (1.5). If one number the
eigenvalues of ˜Hk starting from −1 moving counterclockwise along the unit circle, then the eigenvalues
of ˜Hk interlace those of ˜Hk+1 in the following sense: the jth eigenvalue of ˜Hk lies on the arc between
the jth and the j + 1st eigenvalue of ˜Hk+1.

If ρk are defined by (2.1), we get the following lemma.

Lemma 2.2 (see [32]). The characteristic polynomials ϕk(λ) = det(λIk−˜Hk) of ˜Hk defined by (1.5)
satisfy the following three-term recurrence relations:

ϕ0(λ) = 1,

ϕ1(λ) = λ + ρ1,

ϕk(λ) =
(

λ + ρkρk−1

)

ϕk−1(λ) − αk−1λϕk−2(λ), k = 2, 3, . . . , n,

(2.2)

where

αk = γk−1

(

ρk − γk
)

+ ρk+1
(

ρk − γk
)

, γ0 = 1. (2.3)

Lemma 2.3. If ρk defined by (2.1), αk defined by (2.3), then

γ0 = 1,

γk =
αk − γk−1ρk + 1

ρk − γk−1
, for k = 1, 2, . . . , n − 1,

γn = ρn.

(2.4)

Proof. By (2.1), we get

ρk
(

1 − γkρk+1
)

= γk − ρk+1, (2.5)

then

ρk+1
(

ρk − γk
)

= γkρk − 1. (2.6)
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Substituting the above formula into (2.3), we obtain

αk = γk−1

(

ρk − γk
)

+ γkρk − 1. (2.7)

Because ρk /= γk−1, we have

γk =
αk − γk−1ρk + 1

ρk − γk−1
, k = 1, 2, . . . , n − 1. (2.8)

Lemma 2.4. Let x ∈ C with |x| = 1 and ϕk(λ) be the characteristic polynomials of ˜Hk, then

ϕk(x)x
k = ρkϕk(x), k = 1, 2, . . . , n. (2.9)

Proof. It is easy to verify that

ϕk(x)x
k =

(

x − λ(k)1

)(

x − λ(k)2

)

· · ·
(

x − λ(k)
k

)

xk

=
(

1 − xλ(k)1

)(

1 − xλ(k)1

)

· · ·
(

1 − xλ(k)
k

)

= λ(k)1 λ
(k)
2 · · ·λ

(k)
k

(

λ
(k)
1 − x

)(

λ
(k)
2 − x

)

· · ·
(

λ
(k)
k − x

)

= (−1)k det
(

˜Hk

)

ϕk(x)

= (−1)k(−1)kρkϕk(x)

= ρkϕk(x).

(2.10)

3. The Solution of Problem 1

We now consider the solvability conditions of Problem 1 and give the following theorem.

Theorem 3.1. For 2n − 1 given real number θ(k)1 , θ
(k)
k ∈ (−π,π] (k = 1, 2, . . . , n), there is a unique

H(γ1, γ2, . . . , γn) ∈ Hn such that λ(k)1 = exp(θ(k)1 ), λ(k)
k

= exp(λ(k)
k

) are, respectively, the minimal
and the maximal eigenvalues of ˜Hk (k = 1, 2, . . . , n), if and only if

−π < θ
(n)
1 < θ

(n−1)
1 < · · · < θ(2)1 < θ

(1)
1 < θ

(2)
2 < · · · < θ(n−1)

n−1 < θ
(n)
n ≤ π. (3.1)

Proof. Sufficiency. Notice that

−π < θ
(n)
1 < θ

(n−1)
1 < · · · < θ(2)1 < θ

(1)
1 < θ

(2)
2 < · · · < θ(n−1)

n−1 < θ
(n)
n ≤ π. (3.2)
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By Lemma 2.1 we have that, if λ(k)1 , λ(k)k are the eigenvalues of ˜Hk, they must be the minimal
and the maximal eigenvalues of ˜Hk, respectively. So Problem 1 having a solution is equivalent
to that the following equations:

ϕk
(

λ
(k)
1

)

= 0,

ϕk
(

λ
(k)
k

)

= 0,
(3.3)

having solutions αk−1, ρk satisfying |ρk| = 1 for all k = 1, 2, . . . , n.
For j = 1, we get ρ1 = λ(1)1 = exp(iθ(1)1 ), so |ρ1| = 1.
For 2 ≤ j ≤ n, by Lemma 2.1, from (2.2) and (3.3), we have

(

λ
(k)
1 + ρkρk−1

)

ϕk−1

(

λ
(k)
1

)

− αk−1λ
(k)
1 ϕk−2

(

λ
(k)
1

)

= 0,

(

λ
(k)
k

+ ρkρk−1

)

ϕk−1

(

λ
(k)
k

)

− αk−1λ
(k)
k
ϕk−2

(

λ
(k)
k

)

= 0.
(3.4)

Then

αk−1λ
(k)
1 ϕk−2

(

λ
(k)
1

)

− ρkρk−1ϕk−1

(

λ
(k)
1

)

= λ(k)1 ϕk−1

(

λ
(k)
1

)

,

αk−1λ
(k)
k ϕk−2

(

λ
(k)
k

)

− ρkρk−1ϕk−1

(

λ
(k)
k

)

= λ(k)k ϕk−1

(

λ
(k)
k

)

.

(3.5)

Let mk ≡ λ
(k)
1 ϕk−2(λ

(k)
1 )ϕk−1(λ

(k)
k

) − λ(k)
k
ϕk−2(λ

(k)
k

)ϕk−1(λ
(k)
1 ), we now show that mk /= 0 by

contradiction.
Assume that mk = 0. Multiplying the first and second equation of (3.5) by ϕk−1(λ

(k)
k ),

ϕk−1(λ
(k)
1 ), respectively, we get

(

λ
(k)
1 − λ(k)

k

)

ϕk−1

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

= 0, (3.6)

so we obtain λ
(k)
1 = λ

(k)
k by ϕk−1(λ

(k)
1 )/= 0 and ϕk−1(λ

(k)
k )/= 0. This is a contradiction with

λ
(k)
1 /=λ

(k)
k

, therefore, mk /= 0. By |ρk−1| = 1, we get −ρk−1mj /= 0. Then (3.5) have the unique
solution

αk−1 =
ρk−1

(

λ
(k)
k
− λ(k)1

)

ϕk−1

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

−ρk−1mk
, (3.7)

ρk =
λ
(k)
1 λ

(k)
k

(

ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

))

−ρk−1mk
. (3.8)

We show |ρk| = 1 by induction. By ρ1 = exp(iθ(1)1 ), so |ρ1| = 1. Assume that |ρj | = 1, for
j = 1, 2, . . . , k − 1.
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By (3.8), λ(k)1 /= 0, and λ
(k)
k /= 0, we have

ρk =
λ
(k)
1 λ

(k)
k

(

ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

))

(

λ
(k)
1

)k−1(

λ
(k)
k

)k−1

−ρk−1

(

λ
(k)
1 ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− λ(k)
k
ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

))

(

λ
(k)
1

)k−1(

λ
(k)
k

)k−1

=

(

λ
(k)
1

)k−2(

λ
(k)
k

)k−2(
ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

))

−ρk−1ρk−2ρk−1

(

ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

))

=

(

λ
(k)
1

)k−2(

λ
(k)
k

)k−2(
ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

))

∣

∣ρk−1
∣

∣

2
ρk−2

(

ϕk−2

(

λ
(k)
1

)

ϕk−1

(

λ
(k)
k

)

− ϕk−2

(

λ
(k)
k

)

ϕk−1

(

λ
(k)
1

)) ,

(3.9)

so |ρk| = 1.
Now we have αk (k = 1, 2, . . . , n− 1) and ρk (k = 1, 2, . . . , n), by Lemma 2.3, we can get

γk, for k = 1, 2, . . . , n. Then we obtain the n×n unitary Hessenberg matrixH = H(γ1, γ2, . . . , γn).
Necessity. Suppose that Problem 1 has a unique solution, that is, λ(k)1 = exp(θ(k)1 ), λ(k)

k
=

exp(λ(k)
k

) are, respectively, the minimal and the maximal eigenvalues of ˜Hk (k = 1, 2, . . . , n),
using Lemma 2.3, we get

−π < θ
(n)
1 < θ

(n−1)
1 < · · · < θ(2)1 < θ

(1)
1 < θ

(2)
2 < · · · < θ(n−1)

n−1 < θ
(n)
n ≤ π. (3.10)

Remark 3.2. Assume that η0 is not the eigenvalue of H, we define

ρn = γn,

ρk =
γk + η0ρk+1

1 + η0γkρk+1
, k = n − 1, n − 2, . . . , 1.

(3.11)

Then Lemmas 2.1 and 2.2 still hold true.

4. Algorithm and Example

Based on the above analysis, it is natural that we should propose the following algorithm for
solving Problem 1.

Algorithm 4.1. Input −π < θ
(n)
1 < θ

(n−1)
1 < · · · < θ(2)1 < θ

(1)
1 < θ

(2)
2 < · · · < θ(n)n ≤ π ;

Output Hn;

(1) Set ρ1 = exp(iθ(1)1 );

(2) Compute αk−1 and ρk by (3.7) and (3.8) for k = 2, 3, . . . , n;
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(3) Set γ0 = 1;

(4) Compute γk by (2.4) for k = 1, 2, . . . , n − 1;

(5) Set γn = ρn.

We present an example to illustrate this algorithm.

Example 4.2. Let n = 5, given θ
(1)
1 = π/6; θ(2)1 = −π/8, θ(2)2 = π/4; θ(3)1 = −π/4, θ(3)3 = π/3;

θ
(4)
1 = −π/3, θ(4)4 = π/2; θ(5)1 = −π/2, θ(5)5 = 2π/3. By λ(k)j = exp(iθ(k)j ), we get

λ
(1)
1 = 0.8660 + 0.5000i;

λ
(2)
1 = 0.9239 − 0.3827i, λ

(2)
2 = 0.7071 + 0.7071i;

λ
(3)
1 = 0.7071 − 0.7071i, λ

(3)
3 = 0.5000 + 0.8660i;

λ
(4)
1 = 0.5000 − 0.8660i, λ

(4)
4 = 0.0000 + 1.0000i;

λ
(5)
1 = 0.0000 − 1.0000i, λ

(5)
5 = −0.5000 + 0.8660i.

(4.1)

Using Algorithm 4.1, we obtain {ρi}5
i=1, {αi}4

i=1, {γi}5
i=1 listed in Table 1. The unitary

Hessenberg matrix is given as follows:

H =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.7588+0.4471i −0.3354−0.1185i 0.1490+0.0810i 0.0045−0.0151i 0.1169+0.2346i

0.4736 0.6493−0.1269i −0.3152+0.0109i 0.0071+0.0283i −0.4088−0.2656i

0 0.6601 0.4024+0.0643i −0.0020−0.0377i 0.4526+0.4382i

0 0 0.8401 0.0068+0.0317i −0.4436−0.3106i

0 0 0 0.9982 0.0438−0.0407i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.2)

We recompute the spectrum of ˜Hk (k = 1, 2, . . . , n), and get

Λ
(

˜H1

)

=
(

0.8660 + 0.5000i
)

,

Λ
(

˜H2

)

=
(

0.9239 − 0.3827i, 0.7071 + 0.7071i
)

,

Λ
(

˜H3

)

=
(

0.7071 − 0.7071i, 0.9013 + 0.4332i, 0.5000 + 0.8660i
)

,

Λ
(

˜H4

)

=
(

0.5000 − 0.8660i, 0.9964 − 0.0850i, 0.7329 + 0.6803i, 0.0000 + 1.0000i
)

,

Λ
(

˜H5

)

=
(

0.0000−1.0000i, 0.7937−0.6083i, 0.9411+0.3381i, 0.6262+0.7796i,−0.5000+0.8660i
)

.

(4.3)
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Table 1: {ρi}5
i=1, {αi}

4
i=1, {γi}

5
i=1.

i ρi αi γi

1 −0.8660 − 0.5000i −0.2265 − 0.0451i −0.7588 − 0.4471i
2 0.9239 + 0.3827i −0.4727 − 0.0442i 0.7083 + 0.2501i
3 −0.7584 − 0.6517i −0.7675 − 0.3218i −0.4766 − 0.2591i
4 0.3747 + 0.9271i −1.3652 − 0.2759i −0.0169 + 0.0574i
5 −0.4458 − 0.8951i — −0.4458 − 0.8951i

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: The eigenvalues of ˜Hk .

These obtained data show that Algorithm 4.1 is quite efficient, Figure 1 illustrates the
eigenvalues of ˜Hk (k = 1, 2, . . . , 5).
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