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1. Introduction

The purpose of this paper is to consider the existence of positive solutions and establish the
corresponding iterative schemes for the following m-point boundary value problems (BVP)
on time scales:

uΔ∇(t) + f(t, u(t)) = 0, t ∈ [0, 1]T,

βu(0) − γuΔ(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi), m ≥ 3.
(1.1)

The study of dynamic equations on time scales goes back to its founder Hilger [1],
and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject
is the notion that dynamic equations on time scales can build bridges between continuous
and discrete mathematics. Some preliminary definitions and theorems on time scales can be
found in [2–5]which are good references for the calculus of time scales.
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In recent years, by applying fixed point theorems, the method of lower and upper
solutions and critical point theory, many authors have studied the existence of positive
solutions for two-point and multipoint boundary value problems on time scales, for details,
see [2, 3, 6–18] and references therein. However, to the best of our knowledge, there are few
papers which are concerned with the computational methods of the multipoint boundary
value problems on time scales. We would like to mention some results of Sun and Li [16],
Aykut Hamel and Yoruk [12], Anderson and Wong [10], Wang et al. [18], and Jankowski
[13], which motivated us to consider the BVP (1.1).

In [16], Sun and Li considered the existence of positive solutions of the following
dynamic equations on time scales:

uΔ∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T),

βu(0) − γuΔ(0) = 0, αu
(
η
)
= u(T),

(1.2)

where β, γ ≥ 0, β+γ > 0, η ∈ (0, ρ(T)), 0 < α < T/η. They obtained the existence of single and
multiple positive solutions of (1.2) by using a fixed point theorem and the Leggett-Williams
fixed point theorem, respectively.

Very recently, in [12], Aykut Hamel and Yoruk discussed the following dynamic
equation on time scales:

uΔ∇(t) + f(t, u(t)) = 0, t ∈ [0, 1] ⊂ T,

βu(0) − γuΔ(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi), m ≥ 3.
(1.3)

They obtained some results for the existence of at least two and three positive solutions
to the BVP (1.3) by using fixed point theorems in a cone and the associated Green’s
function.

In related paper, in [10], Anderson and Wong studied the second-order time
scale semipositone boundary value problem with Sturm-Liouville boundary conditions or
multipoint conditions as in

(
puΔ

)∇
(t) + λf(t, u(t)) = 0, t ∈ (a, b]T,

αu(a) − β
(
puΔ

)
(a) = 0, γuσ(b) + δ

(
puΔ

)
(b) = 0, or

αu(a) − β
(
puΔ

)
(a) =

n∑

i=1

φi
(
puΔ

)
(ti), γuσ(b) + δ

(
puΔ

)
(b) =

n∑

i=1

ψi
(
puΔ

)
(ti).

(1.4)
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On the other hand, the method of lower and upper solutions has been effectively
used for proving the existence results for dynamic equations on time scales. In [18], Wang
et al. considered a method of generalized quasilinearization, with even-order k (k ≥ 2)
convergence, for the BVP

−
(
p(t)xΔ

)∇
+ q(t)xσ = f(t, xσ) + g(t, xσ), t ∈ [a, b]T,

τ1x
(
ρ(a)

) − τ2xΔ(ρ(a)
)
= 0, x(σ(b)) − τ3x

(
η
)
= 0.

(1.5)

The main contribution in [18] relaxed the monotone conditions on f (i)(t, x), g(i)(t, x) (1 < i <
k) including a more general concept of upper and lower solution in mathematical biology, so
that the high-order convergence of the iterations was ensured for a larger class of nonlinear
functions on time scales.

In [13], Jankowski investigated second-order differential equations with deviating
arguments on time scales of the form

−xΔΔ(t) = f(t, x(t), x(α(t))) ≡ (Fx)(t), t ∈ J,

x(0) = k1 ∈ R, x(T) = k2 ∈ R.
(1.6)

They formulated sufficient conditions, under which such problems had a minimal and a
maximal solution in a corresponding region bounded by upper-lower solutions.

We would also like to mention the result of Yao [19]. In [19], Yao considered
the positive solutions to the following two classes of nonlinear second-order three-point
boundary value problems:

u′′(t) + f
(
t, u(t), u′(t)

)
= 0, 0 ≤ t ≤ 1,

u′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = 0, αu
(
η
)
= u(1),

(1.7)

where both η and α are given constants satisfying 0 < η < 1, 0 < α < 1/η. By improving
the classical monotone iterative technique of Amann [20], two successive iterative schemes
were established for the BVP (1.7). It was worth stating that the first terms of the iterative
schemeswere constant functions or simple functions.We note thatMa et al. [21] and Sun et al.
[22, 23] have also applied the similar methods to p-laplacian boundary value problems with
T = R.

In this paper, we will investigate the iterative and existence of positive solutions
for the BVP (1.1), by considering the “heights” of the nonlinear term f on some bounded
sets and applying monotone iterative techniques on a Banach space, we do not only
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obtain the existence of positive solutions for the BVP (1.1), but also give the iterative
schemes for approximating the solutions. We should point out that the monotone condition
imposed on the nonlinear term f will play crucial role in obtaining the iterative schemes
for approximating the solutions. In essence, we combine the method of lower and upper
solutions with the cone expansion and compression fixed point theorem of norm type. The
idea of this paper comes from Yao [19, 24, 25].

Let T be a time scale which has the subspace topology inherited from the standard
topology on R. For each interval I of R, we define IT = I ∩ T.

For the remainder of this article, we denote the set of continuous functions from [0, 1]T
toR byC([0, 1]T,R). LetC([0, 1]T,R) be endowedwith the ordering x ≤ y if x(t) ≤ y(t) for all
t ∈ [0, 1]T, and ‖u‖ = maxt∈[0,1]T |u(t)| is defined as usual by maximum norm. The C([0, 1]T,R)
is a Banach space.

Throughout this paper, we will assume that the following assumptions are
satisfied:

(H1) β, γ ≥ 0, 0 < β + γ ≤ 1, ξi ∈ (0, ρ(1))T for i = 1, 2, . . . , m − 2 with 0 < ξ1 < ξ2 < · · · <
ξm−2 < ρ(1);

(H2)
∑m−2

i=1 αi ∈ (0, 1) with αi ∈ (0,+∞) for i = 1, 2, . . . , m − 2 and d = β(1 −∑m−2
i=1 αiξi) +

γ(1 −∑m−2
i=1 αi) > 0;

(H3) f : [0, 1]T × [0,+∞) → [0,+∞) is continuous.

2. Preliminaries and Several Lemmas

To prove the main results in this paper, we will employ several lemmas. These lemmas are
based on the linear boundary value problem

uΔ∇(t) + h(t) = 0, t ∈ [0, 1]T,

βu(0) − γuΔ(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi), m ≥ 3.
(2.1)

Lemma 2.1 (see [12]). It holds d = β(1−∑m−2
i=1 αiξi)+ γ(1−

∑m−2
i=1 αi)/= 0; then the Green’s function

for the BVP

−uΔ∇(t) = 0, t ∈ [0, 1]T,

βu(0) − γuΔ(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi), m ≥ 3,
(2.2)
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is given by

G(t, s) =
1
d

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
βs + γ

)
⎡

⎣(1 − t) −
m−2∑

j=1

aj
(
ξj − t

)
⎤

⎦,

if 0 ≤ t ≤ 1, 0 ≤ s ≤ ξ1, s ≤ t;

(
βs + γ

)
(1 − t) −

m−2∑

j=i

αj
(
ξj − t

)(
βs + γ

)
+

i−1∑

j=1

αj
(
βξj + γ

)
(t − s),

if ξr−1 ≤ t ≤ ξr , 2 ≤ r ≤ m − 1, ξi−1 ≤ s ≤ ξi, 2 ≤ i ≤ r, s ≤ t;

(
βt + γ

)
⎡

⎣(1 − s) −
m−2∑

j=i

αj
(
ξj − s

)
⎤

⎦,

if ξr−1 ≤ t ≤ ξr , 2 ≤ r ≤ m − 2, ξi−1 ≤ s ≤ ξi, r ≤ i ≤ m − 2, t ≤ s;

(
βt + γ

)
(1 − s),

if 0 ≤ t ≤ 1, ξm−2 ≤ s ≤ 1, t ≤ s.

(2.3)

Here for the sake of convenience, one writes
∑m2

i=m1
h(i) = 0 form2 < m1.

Lemma 2.2 (see [12]). Assume that conditions (H1)–(H3) are satisfied. Then

(i) G(t, s) ≥ 0 for t, s ∈ [0, 1]T;

(ii) there exist a number Ψ ∈ (0, 1) and a continuous function θ : [0, 1]T → R+ such that

G(t, s) ≤ θ(s) for t, s ∈ [0, 1]T,

G(t, s) ≥ Ψθ(s) for t ∈ [ξ1, 1]T, s ∈ [0, 1]T,
(2.4)

where

θ(s) = max

{
1,
∑m−2

i=1 αi
ξ1

}(
βs + γ

)
(1 − s)

d
,

Ψ =
1

max
{
1,
∑m−2

i=1 αi/ξ1
}

× min
2≤s≤m−2

⎧
⎨

⎩
(
βξ1 + γ

)
(1 − ξm−2),

m−2∑

j=1

αj
(
1 − ξj

)
,
s−1∑

j=1

αj
(
βξj + γ

)
+
m−2∑

j=s

αj
(
1 − ξj

)
⎫
⎬

⎭.

(2.5)
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Let B = C([0, 1]T,R). It is easy to see that the BVP (1.1) has a solution u = u(t) if and
only if u is a fixed point of the operator equation:

Tu(t) =
∫1

0
G(t, s)f(s, u(s))∇s. (2.6)

Denote

K =
{
u ∈ B : u is nonnegative, concave, and min

t∈[ξ1,1]T
u(t) ≥ Ψ‖u‖

}
, (2.7)

where Ψ is the same as in Lemma 2.2. By [12, Lemma 3.1], we can obtain that T(K) ⊂ K and
T : K → K is completely continuous.

3. Successive Iteration and One Positive Solution for (1.1)

For notational convenience, we denote

A =

[
max
t∈[0,1]T

∫1

0
G(t, s)∇s

]−1
, B =

[
max
t∈[0,1]T

∫1

ξ1

G(t, s)∇s
]−1

. (3.1)

Constants A,B are not easy to compute explicitly. For convenience, we can replace A by A′,
B by B′, where

A′ =

[∫1

0
θ(s)∇s

]−1
, B′ =

[
Ψ
∫1

ξ1

θ(s)∇s
]−1

. (3.2)

Obviously, 0 < A′ < A < B < B′.

Theorem 3.1. Assume (H1)–(H3) hold, and there exist two positive numbers a, b with b < a such
that

(C1) max{f(t, a) : t ∈ [0, 1]T} ≤ aA, min{f(t,Ψb) : t ∈ [ξ1, 1]T} ≥ bB;
(C2) f(t, u1) ≤ f(t, u2) for any t ∈ [0, 1]T, 0 ≤ u1 ≤ u2 ≤ a.

Then the BVP (1.1) has at least one positive solution u∗ such that b ≤ ‖u∗‖ ≤ a and limn→∞Tnũ = u∗,
that is, Tnũ converges uniformly to u∗ in [0, 1]T, where ũ(t) ≡ a, t ∈ [0, 1]T.

Remark 3.2. The iterative scheme in Theorem 3.1 is u1 = Tũ, un+1 = Tun, n = 1, 2, . . . . It starts
offwith constant function ũ(t) ≡ a, t ∈ [0, 1]T.

Proof of Theorem 3.1. Denote K[b, a] = {u ∈ K : b ≤ ‖u‖ ≤ a}. If u ∈ K[b, a], then

max
t∈[0,1]T

u(t) ≤ a, min
t∈[ξ1,1]T

u(t) ≥ Ψ‖u‖ ≥ bΨ. (3.3)
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By Assumptions (C1) and (C2), we have

f(t, u(t)) ≤ f(t, a) ≤ aA, t ∈ [0, 1]T;

f(t, u(t)) ≥ f(t, bΨ) ≥ bB, t ∈ [ξ1, 1]T.
(3.4)

It follows that

‖Tu‖ = max
t∈[0,1]T

∣∣∣∣∣

∫1

0
G(t, s)f(s, u(s))∇s

∣∣∣∣∣

≤ aA max
t∈[0,1]T

∫1

0
G(t, s)∇s = a;

‖Tu‖ ≥ max
t∈[0,1]T

∫1

ξi

G(t, s)f(s, u(s))∇s

≥ bB max
t∈[0,1]T

∫1

ξi

G(t, s)∇s = b.

(3.5)

Thus, we assert that T : K[b, a] → K[b, a].
Let ũ(t) ≡ a, t ∈ [0, 1]T, then ũ ∈ K[b, a]. Let u1 = Tũ, then u1 ∈ K[b, a]. Denote un+1 =

Tun, n = 1, 2, . . . . Since T(K[b, a]) ⊂ K[b, a], we have un ∈ T(K[b, a]) ⊂ K[b, a], n = 1, 2, . . . .
Since T is completely continuous, we assert that {un}∞n=1 has a convergent subsequence
{unk}∞k=1 and there exists u∗ ∈ K[b, a], such that unk → u∗.

Now, since u1 ∈ K[b, a], we have

u1(t) ≤ ‖u1‖ ≤ a = ũ(t), t ∈ [0, 1]T. (3.6)

By Assumption (C2),

u2(t) = Tu1(t)

=
∫1

0
G(t, s)f(s, u1(s))∇s

≤
∫1

0
G(t, s)f(s, ũ(s))∇s

= Tũ(t) = u1(t).

(3.7)

By the induction, then

un+1(t) ≤ un(t), t ∈ [0, 1]T, n = 1, 2, . . . . (3.8)

Hence, Tnũ = un → u∗. Applying the continuity of T and un+1 = Tun, we get Tu∗ = u∗. Since
‖u∗‖ ≥ b > 0 and u∗ is a nonnegative concave function, we conclude that u∗ is a positive
solution of the BVP (1.1).
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Corollary 3.3. Assume that (H1)–(H3) hold, and the following conditions are satisfied:

(C′
1) liml→ 0mint∈[ξ1,1]Tf(t, l)/l > Ψ−1B, liml→+∞maxt∈[0,1]Tf(t, l)/l < A (particularly,

liml→ 0mint∈[ξ1,1]Tf(t, l)/l = +∞, liml→+∞maxt∈[0,1]Tf(t, l)/l = 0);

(C′
2) f(t, u1) ≤ f(t, u2) for any t ∈ [0, 1]T, u1 ≤ u2, u1, u2 ∈ [0,+∞).

Then the BVP (1.1) has at least one positive solution u∗ ∈ K and there exists a positive number a such
that limn→∞Tnũ = u∗, that is,

lim
n→∞

sup
t∈[0,1]T

|Tnũ(t) − u∗(t)| = 0, (3.9)

where ũ(t) ≡ a, t ∈ [0, 1]T.

Theorem 3.4. Assume (H1)–(H3) hold, and the following conditions are satisfied:

(D1) there exists a > 0 such that f(t, ·) : [0, a] → (0,+∞) is nondecreasing for any t ∈ [0, 1]T
and max{f(t, a) : t ∈ [0, 1]T} ≤ aA;

(D2) f(t, 0) > 0, for any t ∈ [0, 1]T.

Then the BVP (1.1) has one positive solution u∗ such that 0 < ‖u∗‖ ≤ a and limn→∞Tn0 = u∗, that
is, Tn0 converges uniformly to u∗ in [0, 1]T. Furthermore, if there exists 0 < ω < 1 such that

∣∣f(t, l2) − f(t, l1)
∣∣ ≤ ωA|l2 − l1|, t ∈ [0, 1]T, 0 ≤ l1, l2 ≤ a. (3.10)

Then ‖Tn+10 − u∗‖ ≤ ωn/(1 −ω)‖T0‖.

Proof. DenoteK[0, a] = {u ∈ K : ‖u‖ ≤ a}. Similarly to the proof of Theorem 3.1, we can know
that T : K[0, a] → K[0, a]. Let ũ1 = T0, then ũ1 ∈ K[0, a]. Denote ũn+1(t) = Tũn, n = 1, 2, . . . .
Copying the corresponding proof of Theorem 3.1, we can prove that

ũn+1(t) ≥ ũn(t), t ∈ [0, 1]T, n = 1, 2, . . . . (3.11)

Since T is completely continuous, we can get that there exists u∗ ∈ K[0, a] such that
ũn → u∗. Applying the continuity of T and ũn+1(t) = Tũn, we can obtain that Tu∗ = u∗. We
note that f(t, 0) > 0, for all t ∈ [0, 1]T, it implies that the zero function is not the solution of
the problem (1.1). Therefore, u∗ is a positive solution of (1.1).

Now, since

∣∣f(t, l2) − f(t, l1)
∣∣ ≤ ωA|l2 − l1|, t ∈ [0, 1]T, 0 ≤ l1, l2 ≤ a. (3.12)
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If u1, u2 ∈ K[0, a] and u2(t) ≥ u1(t), t ∈ [0, 1]T, then

‖Tu2 − Tu1‖ = max
t∈[0,1]T

∣∣∣∣∣

∫1

0
G(t, s)

[
f(s, u2(s)) − f(s, u1(s))

]∇s
∣∣∣∣∣

≤ ωA max
t∈[0,1]T

∫1

0
G(t, s)|u2(s) − u1(s)|∇s

≤ ωA‖u2 − u1‖A−1

= ω‖u2 − u1‖.

(3.13)

Hence, we can deduce that

‖ũn+2 − ũn+1‖ = ‖Tũn+1 − Tũn‖ ≤ ωn‖T0 − 0‖ = ωn‖T0‖,

‖ũn+k+2 − ũn+1‖ ≤
(
ωn+k +ωn+k−1 + · · · +ωn

)
‖T0‖ < ωn

1 −ω‖T0‖.
(3.14)

It implies that

∥∥∥Tn+10 − u∗
∥∥∥ ≤ ωn

1 −ω‖T0‖. (3.15)

The proof is complete.

4. Existence of n positive solutions

Theorem 4.1. Assume (H1)–(H3) hold, and there exist 2n positive numbers a1, . . . , an, b1, . . . , bn
with b1 < a1 < b2 < a2 < · · · < bn < an such that

(E1) max{f(t, ai) : t ∈ [0, 1]T} ≤ aiA,min{f(t,Ψbi) : t ∈ [ξ1, 1]T} ≥ biB, i = 1, 2, . . . , n;

(E2) f(t, u1) ≤ f(t, u2) for any t ∈ [0, 1]T, 0 ≤ u1 ≤ u2 ≤ an.
Then the BVP (1.1) has n positive solutions u∗i , i = 1, 2, . . . , n such that bi ≤ ‖u∗i ‖ ≤ ai and
limn→∞Tnũi = u∗i , that is,

lim
n→∞

sup
t∈[0,1]T

∣∣Tnũi(t) − u∗i (t)
∣∣ = 0, (4.1)

where ũi(t) ≡ ai, t ∈ [0, 1]T, i = 1, 2, . . . , n.

Corollary 4.2. Assume that (H1)–(H3) and (C′
1)–(C

′
2) hold, and the following condition is satisfied

(E′) there exist 2(n − 1) positive numbers a1 < b2 < a2 < · · · < bn−1 < an−1 < bn such that

max
{
f(t, ai) : t ∈ [0, 1]T

}
< aiA, i = 1, . . . , n − 1,

min
{
f(t,Ψbi) : t ∈ [ξi, 1]T

}
> biB, i = 2, . . . , n.

(4.2)



10 Discrete Dynamics in Nature and Society

Then the BVP (1.1) has n positive solutions u∗i , i = 1, 2, . . . , n, and there exists a positive number
an with an > bn such that limn→∞Tnũi = u∗i , where ũi(t) ≡ ai, t ∈ [0, 1]T, i = 1, 2, . . . , n.

5. Examples

Example 5.1. Let T = [0, 1/3]
⋃
[1/2, 1]. Considering the following BVP:

uΔ∇(t) + f(t, u) = 0, t ∈ [0, 1]T,

u(0) = 0, u(1) =
1
8
u

(
1
3

)
+
1
6
u

(
1
2

)
,

(5.1)

where f(t, u) = (200/109)u2 + 1, it is easy to check that f(t, 0) = 1 > 0, for any t ∈ [0, 1]T.
Further calculations give us

d =
7
8
,

A′ =

[∫1

0
θ(s)∇s

]−1

=

[
8
7

∫1

0
s(1 − s)∇s

]−1

=

{
8
7

[∫1/3

0
s(1 − s)ds +

∫1/2

ρ(1/2)
s(1 − s)∇s +

∫1

1/2
s(1 − s)ds

]}−1

=
567
109

.

(5.2)

Choose a = 1, it is easy to check that f(t, ·) : [0, 1]T → [0,+∞) is nondecreasing for any
t ∈ [0, 1]T and

max
t∈[0,1]T

f(t, 1) =
200
109

+ 1 ≤ 1 · 567
109

. (5.3)

Let ũ0(t) ≡ 0, for n = 0, 1, 2, . . . ,we have

ũn+1(t) = −
∫ t

0
(t − s)

(
200
109

ũn(s) + 1
)
∇s + 8

7
t

∫1

0
(1 − s)

(
200
109

ũn(s) + 1
)
∇s

− 8
7
t

[
1
8

∫1/3

0

(
1
3
− s

)(
200
109

ũn(s) + 1
)
∇s + 1

6

∫1/2

0

(
1
2
− s

)(
200
109

ũn(s) + 1
)
∇s

]
.

(5.4)
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By Theorem 3.4, the BVP (5.1) has one positive solution u∗ such that 0 < ‖u∗‖ ≤ 1 and Tn0 →
u∗. On the other hand, for any 0 ≤ u1, u2 ≤ 1, we have

∣∣f(u1) − f(u2)
∣∣ =

200
109

∣∣∣u21 − u22
∣∣∣

≤ 400
109

|u1 − u2| = 567
109

· 400
567

|u1 − u2|

=
400
567

A′|u1 − u2|.

(5.5)

Then,

∥∥∥Tn+10 − u∗
∥∥∥ ≤ (400/567)n

1 − 400/567
‖T0‖ =

567
167

(
400
567

)n

‖T0‖. (5.6)

The first and second terms of this scheme are as follows:

ũ0(t) = 0,

ũ1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− t
2

2
+
199t
378

, t ∈
[
0,

1
3

]
,

− t
2

2
+
199t
378

+
1
72
, t ∈

[
1
2
, 1
]
.

(5.7)

Now, we compute the third term of this scheme.
For t ∈ [0, 1/3],

ũ2(t) =
175
327

t4 − 9950
61803

t3 − t2

2
+
(

6720175
70084602

+
199
378

)
t. (5.8)

For t ∈ [1/2, 1],

ũ2(t) =
175
327

t4 − 9950
61803

t3 − 503t2

981
+
(

6720175
70084602

+
100097
185409

)
t. (5.9)

Example 5.2. Let T = {0}⋃{1/3n : n ∈ N0}. Considering the BVP on T,

uΔ∇ +
√
u(t) = 0, t ∈ [0, 1]T,

uΔ(0) = 0, u(1) =
1
3
u

(
1
9

)
+
1
9
u

(
1
3

)
.

(5.10)

By direct computation, we can get

d =
5
9
, A′ =

9
16
, B′ =

81
8
, Ψ =

5
54
. (5.11)
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Choose a = 100, b = 1/1875, it is easy to see that the nonlinear term f(t, u) = f(u) =
√
u(t)

possesses the following properties

(a) f : [0, 1]T × [0,+∞) → [0,+∞) is continuous;

(b) f(t, u1) ≤ f(t, u2) for any t ∈ [0, 1]T and 0 ≤ u1 ≤ u2 ≤ 100;

(c) max{f(t, 100) : t ∈ [0, 1]T} =
√
100 ≤ aA′ = 100 × 9/16, min{f(t,Ψb) : t ∈ [ξ1, 1]T} =√

5/54 × 1/1875 > bB′ = 1/1875 × 81/8.

By Theorem 3.1, the BVP (5.10) has one positive solution u∗ such that 1/1875 ≤ ‖u∗‖ ≤ 100
and limn→∞Tnũ = u∗, where ũ(t) ≡ 100, t ∈ [0, 1]T. Let u0(t) ≡ 100, t ∈ [0, 1]T. For n =
0, 1, 2, . . . ,we have

un+1 =
∫1

0
G(t, s)f(s, un(s))∇s

= −
∫ t

0
(t − s)

√
un(s)∇s + 9

5

∫1

0
(1 − s)

√
un(s)∇s

− 3
5

∫1/9

0

(
1
9
− s

)√
un(s)∇s − 1

5

∫1/3

0

(
1
3
− s

)√
un(s)∇s.

(5.12)

Remark 5.3. By Theorems 3.1, 3.2, and 3.3 in [12, 16, 17], the existence of positive solutions
for the BVP (5.1) can be obtained, however, we cannot give a way to find the solutions which
will be useful from an application viewpoint. Therefore, Theorem 3.1 improves and extends
the main results of [12, 16, 17]. On the other hand, in Example 5.2, since f(0) = 0, we cannot
obtain the above mentioned results by use of Theorem 3.4, thus, Theorems 3.1 and 3.4 do not
contain each other.
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