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1. Introduction

The Genocchi numbers Gn and the Bernoulli numbers Bn (n ∈ N0 = {0, 1, 2, . . .}) are defined
by the following generating functions (see [1]):
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(|t| < π), (1.1)
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respectively. By (1.1) and (1.2), we have

G2n+1 = B2n+1 = 0, (n ∈ N) Gn = 2(1 − 2n)Bn, (1.3)

with N being the set of positive integers.
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The Genocchi numbers Gn satisfy the recurrence relation

G0 = 0, G1 = 1, Gn = −1
2

n−1∑

k=1

(
n

k

)
Gk (n ≥ 2), (1.4)

so we find G2 = −1, G4 = 1, G6 = −3, G8 = 17, G10 = −155, G12 = 2073, G14 = −38227, . . . .
The Stirling numbers of the first kind s(n, k) can be defined by means of (see [2])

(x)n = x(x − 1) . . . (x − n + 1) =
n∑

k=0

s(n, k)xk, (1.5)

or by the generating function

(
log(1 + x)

)k = k!
∞∑

n=k

s(n, k)
xn

n!
. (1.6)

It follows from (1.5) or (1.6) that

s(n, k) = s(n − 1, k − 1) − (n − 1)s(n − 1, k), (1.7)

with s(n, 0) = 0 (n > 0), s(n, n) = 1 (n ≥ 0), s(n, 1) = (−1)n−1(n − 1)! (n > 0), s(n, k) = 0 (k > n
or k < 0).

Stirling numbers of the second kind S(n, k) can be defined by (see [2])

xn =
n∑

k=0

S(n, k)(x)k (1.8)

or by the generating function

(ex − 1)k = k!
∞∑

n=k

S(n, k)
xn

n!
. (1.9)

It follows from (1.8) or (1.9) that

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k), (1.10)

with S(n, 0) = 0 (n > 0), S(n, n) = 1 (n ≥ 0), S(n, 1) = 1 (n > 0), S(n, k) = 0 (k > n or k < 0).
The study of Genocchi numbers and polynomials has received much attention;

numerous interesting (and useful) properties for Genocchi numbers can be found in many
books (see [1, 3–16]). The main purpose of this paper is to prove an explicit formula for the
generalized Genocchi numbers (cf. Section 2). We also obtain some identities congruences
involving the Genocchi numbers, the Bernoulli numbers, and the Stirling numbers. That is,
we will prove the following main conclusion.
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Theorem 1.1. Let n ≥ k (n, k ∈ N), then
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Remark 1.2. Setting k = 1 in (1.11), and noting that s(j, 1) = (−1)j−1(j − 1)!, we obtain
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Remark 1.3. By (1.11) and (1.3), we have
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Theorem 1.4. Let n, k ∈ N, then
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Remark 1.5. Setting k = 1, 2, 3, 4 in (1.14), we get
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Theorem 1.6. Let n ∈ N, m ∈ N0, then

2n

n + 1
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jn(mod m + 1). (1.16)
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Remark 1.7. Settingm = p − 1 in (1.16), we have

1
n + 1

Gn+1 ≡
p−1∑

j=0
(−1)j jn(mod p

)
, (1.17)

where p is any odd prime.

2. Definition and Lemma

Definition 2.1. For a real or complex parameter x, we have the generalized Genocchi numbers
G

(x)
n , which are defined by

(
2

e2t + 1

)x

=
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(x)
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. (2.1)

By (1.1) and (2.1), we have

nG
(1)
n−1 = 2n−1Gn. (2.2)

Remark 2.2. For an integer x, the higher-order Euler numbersE(x)
2n are defined by the following

generating functions (see [17]):
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Then we have

G
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n
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E
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2k x

n−2k, (2.4)

where [n/2] denotes the greatest integer not exceeding n/2.

Lemma 2.3. Let n ≥ k (n, k ∈ N), then

G
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Proof. By (2.1), (1.5), and (1.9) we have
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which readily yields
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(2.8)

This completes the proof of Lemma 2.3 .

Remark 2.4. From (1.7), (1.10), and Lemma 2.3 we know that G(x)
n is a polynomial of x with

integral coefficients. For example, setting n = 1, 2, 3, 4 in Lemma 2.3, we get

G
(x)
1 = −x, G

(x)
2 = −x + x2, G

(x)
3 = 3x2 − x3,

G
(x)
4 = 2x + 3x2 − 6x3 + x4.

(2.9)

Remark 2.5. Let n,m ∈ N, then by (2.5), we have

n∑

k=1

ω(n, k) =
2n

n + 1
Gn+1. (2.10)
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Therefore, if q ∈ N is odd, then by (2.10) we get

G2kq ≡ 0
(
mod q

)
, (2.11)

where k ∈ N.

3. Proof of the Theorems

Proof of Theorem 1.1. By applying Lemma 2.3, we have

k!ω(n, k) =
dk

dxk
G

(x)
n |x=0. (3.1)

On the other hand, it follows from (2.1) that
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)k

, (3.2)

where log(2/(e2t + 1)) is the principal branch of logarithm of 2/(e2t + 1).
Thus, by (3.1) and (3.2), we have
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whence by integrating from 0 to t, we deduce that
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Since G2n+1 = 0 (n ∈ N). Substituting (3.5) in (3.3)we get

ω(n, k) = (−1)n n!2
n−k

k!

∑

v1,...,vk∈N

v1+···+vk=n

Gv1 · · ·Gvk

(v1 · · ·vk)v1! · · ·vk!
. (3.6)

By (3.6) and (2.6), we may immediately obtain Theorem 1.1. This completes the proof
of Theorem 1.1.
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Proof of Theorem 1.4. By (2.1) and note the identity

2
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x
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By (3.8), (1.7), and note that G(1)
n = 2n/(n + 1)Gn+1, we obtain

G
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1
(k − 1)!

k−1∑

j=0
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G
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(3.9)

Comparing (3.9) and (2.8), we immediately obtain Theorem 1.4. This completes the proof of
Theorem 1.4.

Proof of Theorem 1.6. By Lemma 2.3, we have

G
(m+x)
n =

n∑

j=1

ω
(
n, j

)
(m + x)j ≡

n∑

j=1

ω
(
n, j

)
xj = G

(x)
n (mod m). (3.10)

Therefore

G
(k)
n = G

(m+k−m)
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(−m)
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(
m

j

)
jn(mod m + k). (3.11)

Taking k = 1 in (3.11) and note thatG(1)
n = 2n/(n+1)Gn+1,we immediately obtain Theorem 1.6.

This completes the proof of Theorem 1.6.
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