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1. Introduction

In this paper we consider the more general semilinear elliptic system

−Δu = k1u
p1 + k2v

p2 + k3u
p3vp4 ,

−Δv = l1u
q1 + l2v

q2 + l3u
q3vq4 ,

in R
N(N ≥ 3), (1.1)

where ki and li (i = 1, 2, 3) are nonnegative constants. The question is to determine for which
values of the exponents pi and qi the only nonnegative solution (u, v) of (1.1) is (u, v) = (0, 0).
The solution here is taken in the classical sense, that is, u, v ∈ C2(RN). In the case of the
Emden-Fowler equation

Δu + uk = 0, u ≥ 0 in R
N. (1.2)

When 1 ≤ k < (N + 2)/(N − 2) (N ≥ 3), it has been proved in [1] that the only solution of
(1.2) is u = 0. In dimension N = 2, a similar conclusion holds for 0 ≤ k < ∞. It is also well
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known that in the critical case, k = (N+2)/(N−2), problem (1.2) has a two-parameter family
of solutions given by

u(x) =

(
c

d + |x − x|2
)(N−2)/2

, (1.3)

where c = [N(N − 2)d]1/2 with d > 0 and x ∈ R
N . If k1 = k2 = l1 = l2 = 0, k3, l3 > 0,

p3, q4 > 1, p4, q3 ≥ 0 and min{p3+2p4, q4+2q3} ≤ (N+2)/(N−2), using Pokhozhaev’s second
identity, Chen and Lu ([2, Theorem 2]) have proved that problem (1.1) has no positive radial
solutions with u(x) = u(|x|). Suppose that p3, p4, q3, and q4 satisfy 0 ≤ p3, q4 ≤ 1, p4, q3 > 1
and other related conditions, using the method of integral relations, Mitidieri ([3, Theorem
1]) has proved that problem (1.1) has no positive solutions of C2(RN) with k3 = l3 = 1. In
present paper, we study problem (1.1) by virtue of the method of moving spheres and obtain
the following theorems of nonexistence and radial symmetry of positive solutions.

Theorem 1.1. Suppose that ki, li ≥ 0 (i = 1, 2, 3), but ki and li are not equal to zero at the same
time. Moreover,max{p1, p2, p3 + p4}, max{q1, q2, q3 + q4} ≤ (N + 2)/(N − 2) with p1, p3, q2, q4 ≥
0, p2, p4, q1, q3 > 0, but p1, p2, p3 + p4 and q1, q2, q3 + q4 are not both equal to (N + 2)/(N − 2), then
Problem (1.1) has no positive solution of C2(RN).

Theorem 1.2. Suppose that ki, li > 0 (i = 1, 2, 3), pj = qj = (N + 2)/(N − 2) (j = 1, 2), and
p3 + p4 = q3 + q4 = (N − 2)/(N + 2), then the positive C2 solution of (1.1) is of the form (1.3), that
is, for some d > 0, x ∈ R

N ,

u(x) =

(
c1

d + |x − x|2
)(N−2)/2

, v(x) =

(
c2

d + |x − x|2
)(N−2)/2

, (1.4)

where c1, c2 > 0 and satisfy the following equalities:

N(N − 2)dc(N−2)/2
1 = k1c

(N+2)/2
1 + k2c

(N+2)/2
2 + k3c

((N−2)/2)p3
1 c

((N−2)/2)p4
2 ,

N(N − 2)dc(N−2)/2
1 = l1c

(N+2)/2
1 + l2c

(N+2)/2
2 + l3c

((N−2)/2)q3
1 c

((N−2)/2)q4
2 .

(1.5)

Remark 1.3. Obviously Theorem 1.1 contains new region of k, t, p, and q which can not be
covered by [2, Theorem 2] and [3, Theorem 1]. Moreover, Theorem 1.2 gives the exact forms
of positive solutions of C2(RN).

There are some related works about problem (1.1). For k2 = l1 = 1 and k1 = k3 = l2 =
l3 = 0, Figueiredo and Felmer (see [4]) proved Theorem 1.1 using the moving plane method
and a special form of the maximum principle for elliptic systems. Busca and Manásevich
obtained a new result (see [5, Theorem 2.1]) using the same method as in [4]. It allows
p2 and q1 to reach regions where one of the two exponents is supercritical. In [6], Zhang
et al. first introduced the Kelvin transforms and gave a different proof of Theorem 1.1 in
[4] using the method of moving spheres. This approach was suggested in [7], while Li and
Zhang who had made significant simplifications prove some Liouville theorems for a single
equation in [8]. In this paper, we consider the general case of nonlinearities and do not need
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the maximum principle for elliptic systems. Moreover, the exact form of positive solution is
proved in Theorem 1.2. If we can find a proper transforms instead of the Kelvin transforms,
we suspect that [5, Theorem 2.1] can also be proved via the method of moving spheres. We
leave this to the interested readers.

Let us emphasize that considerable attention has been drawn to Liouville-type results
and existence of positive solutions for general nonlinear elliptic equations and systems, and
that numerous related works are devoted to some of its variants, such as more general
quasilinear operators and domains. We refer the interested reader to [9–15], and some of
the references therein. We refer the interested reader to [16, 17].

2. Preliminaries and Moving Spheres

To prove Theorems 1.1 and 1.2, we will use the method of moving spheres. We first prove a
number of lemmas as follows. For x ∈ R

N and λ > 0, let us introduce the Kelvin transforms

ux,λ

(
y
)
=

λN−2∣∣y − x
∣∣N−2u

(
x +

λ2
(
y − x

)
∣∣y − x

∣∣2
)
, vx,λ

(
y
)
=

λN−2∣∣y − x
∣∣N−2v

(
x +

λ2
(
y − x

)
∣∣y − x

∣∣2
)
,

(2.1)

which are defined for y ∈ R
N \{x}. For any y ∈ R

N \{x}, one verifies that ux,λ and vx,λ satisfy
the system

−Δux,λ = k1

(
λ∣∣y − x
∣∣
)N+2−p1(N−2)

u
p1
x,λ

+ k2

(
λ∣∣y − x
∣∣
)N+2−p2(N−2)

v
p2
x,λ

+ k3

(
λ∣∣y − x
∣∣
)N+2−(p3+p4)(N−2)

u
p3
x,λ

v
p4
x,λ

,

−Δvx,λ = l1

(
λ∣∣y − x
∣∣
)N+2−q1(N−2)

u
q1
x,λ + l2

(
λ∣∣y − x
∣∣
)N+2−q2(N−2)

v
q2
x,λ

+ l3

(
λ∣∣y − x
∣∣
)N+2−(q3+q4)(N−2)

u
q3
x,λv

q4
x,λ.

(2.2)

Our first lemma says that the method of moving spheres can get started.

Lemma 2.1. For every x ∈ R
N , there exists λ0(x) > 0 such that ux,λ(y) ≤ u(y) and vx,λ(y) ≤ v(y),

for all 0 < λ < λ0(x) and |y − x| ≥ λ.

Proof. Without loss of generality we may take x = 0. We use uλ and vλ to denote u0,λ, and v0,λ,
respectively. Clearly, there exists r0 > 0 such that

d

dr

(
r(N−2)/2u(r, θ)

)
> 0, ∀0 < r < r0, θ ∈ S

N−1. (2.3)
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Consequently,

uλ

(
y
) ≤ u

(
y
)
, ∀0 < λ ≤ ∣∣y∣∣ < r0. (2.4)

By the superharmonicity of u and the maximum principle (see [4, Corollary 1.1]),

u
(
y
) ≥
(
min
∂Br0

u

)
rN−2
0

∣∣y∣∣2−N, ∀ ∣∣y∣∣ ≥ r0. (2.5)

Let

λ̂0 = r0

(
min∂Br0

u

minBr0
u

)1/(N−2)
≤ r0. (2.6)

Then for every 0 < λ < λ̂0, and |y| ≥ r0, we have

uλ

(
y
) ≤ λ̂N−2

0∣∣y∣∣N−2max
Br0

u ≤
rN−2
0 min∂Br0

u∣∣y∣∣N−2 . (2.7)

It follows from (2.4), (2.5), and (2.7) that for every 0 < λ < λ̂0,

uλ

(
y
) ≤ u

(
y
)
,
∣∣y∣∣ ≥ λ. (2.8)

Similarly, there exists λ̃0 > 0 such that for every 0 < λ < λ̃0, we obtain

vλ

(
y
) ≤ v

(
y
)
,
∣∣y∣∣ ≥ λ. (2.9)

We can choose λ0 = min{λ̂0, λ̃0}.

Set, for x ∈ R
N ,

λu(x) = sup
{
μ > 0 | ux,λ

(
y
) ≤ u

(
y
)
, ∀ ∣∣y − x

∣∣ ≥ λ, 0 < λ ≤ μ
}
,

λv(x) = sup
{
μ > 0 | vx,λ

(
y
) ≤ v

(
y
)
, ∀ ∣∣y − x

∣∣ ≥ λ, 0 < λ ≤ μ
}
.

(2.10)

By Lemma 2.1, λu(x) and λv(x) are well defined and 0 < λu(x), λv(x) ≤ ∞ for x ∈ R
N . Let

λ = min{λu, λv}, then we have the following

Lemma 2.2. If λ(x) < ∞ for some x ∈ R
N , then ux,λ(x) ≡ u and vx,λ(x) ≡ v on R

N \ {x}.

Lemma 2.3. If λ(x) = ∞ for some x ∈ R
N , then λ(x) = ∞ for all x ∈ R

N .
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Proof of Lemma 2.2. Without loss of generality, we assume that λ = λu and take x = 0 and let
λ = λ(0), uλ = u0,λ and vλ = v0,λ, and Σλ = {y; |y| > λ}. We wish to show uλ ≡ u and vλ ≡ v in
R

N \ {0}. Clearly, it suffices to show

uλ ≡ u, vλ ≡ v on Σλ. (2.11)

We first prove uλ ≡ u. We know from the definition of λ that

uλ ≤ u, vλ ≤ v on Σλ. (2.12)

In view of (1.1), a simple calculation yields

−Δuλ = k1

(
λ∣∣y∣∣
)N+2−p1(N−2)

u
p1
λ + k2

(
λ∣∣y∣∣
)N+2−p2(N−2)

v
p2
λ

+ k3

(
λ∣∣y∣∣
)N+2−(p3+p4)(N−2)

u
p3
λ v

p4
λ , λ > 0.

(2.13)

Therefore,

−Δ(u − uλ

)
= k1u

p1 + k2v
p2 + k3u

p3vp4 − k1

(
λ∣∣y∣∣
)N+2−p1(N−2)

u
p1

λ

− k2

(
λ∣∣y∣∣
)N+2−p2(N−2)

v
p2

λ
− k3

(
λ∣∣y∣∣
)N+2−(p3+p4)(N−2)

u
p3

λ
v
p4

λ

≥ k1

(
λ∣∣y∣∣
)N+2−p1(N−2)(

up1 − u
p1

λ

)
+ k2

(
λ∣∣y∣∣
)N+2−p2(N−2)(

vp2 − v
p2

λ

)

+ k3

(
λ∣∣y∣∣
)N+2−(p3+p4)(N−2)(

up3vp4 − u
p3

λ
v
p4

λ

)

≥ 0 on Σλ.

(2.14)

If u − uλ ≡ 0 on Σλ, we stop. Otherwise, by the Hopf lemma and the compactness of ∂Bλ, we
have

d

dr

(
u − uλ

) |∂Bλ
≥ C > 0. (2.15)

By the continuity of ∇u, there exists R > λ such that

d

dr
(u − uλ) ≥ C

2
> 0, for λ ≤ λ ≤ R, λ ≤ r ≤ R. (2.16)



6 Discrete Dynamics in Nature and Society

Consequently, since u − uλ = 0 on ∂Bλ, we have

u
(
y
) − uλ

(
y
)
> 0, for λ ≤ λ < R, λ <

∣∣y∣∣ ≤ R. (2.17)

Set c = min∂BR(u − uλ) > 0. It follows from the superharmonicity of u − uλ that

u − uλ ≥ cRN−2∣∣y∣∣N−2 , ∀ ∣∣y∣∣ ≥ R. (2.18)

Therefore,

u
(
y
) − uλ

(
y
) ≥ cRN−2∣∣y∣∣N−2 − (uλ

(
y
) − uλ

(
y
))
, ∀ ∣∣y∣∣ ≥ R. (2.19)

By the uniform continuity of u on BR, there exists 0 < ε < R − λ such that for all
λ ≤ λ ≤ λ + ε,

∣∣∣∣∣∣λN−2u

(
λ2y∣∣y∣∣2
)

− λ
N−2

u

⎛
⎝ λ

2
y∣∣y∣∣2
⎞
⎠
∣∣∣∣∣∣ <

cRN−2

2
, ∀ ∣∣y∣∣ ≥ R. (2.20)

It follows from (2.19) and the above inequality that

u
(
y
) − uλ

(
y
)
> 0, for λ ≤ λ ≤ λ + ε,

∣∣y∣∣ ≥ R. (2.21)

Estimates (2.17) and (2.21) violate the definition of λ.
From uλ ≡ u and (2.14), we easily know that vλ ≡ v in Σλ. Lemma 2.2 is proved.

Proof of Lemma 2.3. Since λ(x) = ∞, we have

ux,λ

(
y
) ≤ u

(
y
)
, vx,λ

(
y
) ≤ v

(
y
)
, ∀λ > 0,

∣∣y − x
∣∣ ≥ λ. (2.22)

It follows that

lim
|y|→∞

∣∣y∣∣N−2
u
(
y
)
= ∞. (2.23)

On the other hand, if λ(x) < ∞ for some x ∈ R
N , then, by Lemma 2.2,

lim
|y|→∞

∣∣y∣∣N−2
u
(
y
)
= lim
|y|→∞

∣∣y∣∣N−2
ux,λ(x)

(
y
)
= λ

N−2
(x)u(x) < ∞, (2.24)

which is a contradiction. Similarly, we also obtain a contradiction for v.
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3. Proofs of Theorems 1.1 and 1.2

In this section we first present two calculus lemmas taken from [8] (see also [7]).

Lemma 3.1 (See [8, Lemma 11.1]). Let f ∈ C1(RN), N ≥ 1, ν > 0. Suppose that for every
x ∈ R

N , there exists λ(x) > 0 such that

(
λ(x)∣∣y − x

∣∣
)ν

f

(
x +

λ2(x)
(
y − x

)
∣∣y − x

∣∣2
)

= f
(
y
)
, y ∈ R

N \ {x}, (3.1)

Then for some c ≥ 0, d > 0, x ∈ R
N,

f(x) = ±
(

c

d + |x − x|2
)ν/2

. (3.2)

Lemma 3.2 (See [8, Lemma 11.2]). Let f ∈ C1(RN), N ≥ 1, ν > 0. Assume that

(
λ∣∣y − x
∣∣
)ν

f

(
x +

λ2
(
y − x

)
∣∣y − x

∣∣2
)

≤ f
(
y
)
, ∀λ > 0, x ∈ R

N,
∣∣y − x

∣∣ ≥ λ, (3.3)

Then f ≡ constant.

Proof of Theorem 1.1. We first claim that λ(x) = ∞ for all x ∈ R
N . We prove it by contradiction

argument. If λ(x) < ∞ for some x, then by Lemma 2.2, ux,λ(x) ≡ u and vx,λ(x) ≡ v on R
N \ {x}.

But looking at equations in system (2.2) we realize that this is impossible. Therefore,

ux,λ

(
y
) ≤ u

(
y
)
, vx,λ

(
y
) ≤ v

(
y
)
, ∀λ > 0, x ∈ R

N,
∣∣y − x

∣∣ ≥ λ. (3.4)

This, by Lemma 3.2, implies that u, v ≡ constant. From system (1.1) we know that it is also
impossible.

Proof of Theorem 1.2. We first claim that λ(x) < ∞ for all x ∈ R
N . We prove it by contradiction

argument. If λ(x) = ∞ for some x, then by Lemma 2.3, λ(x) = ∞ for all x, that is,

ux,λ

(
y
) ≤ u

(
y
)
, vx,λ

(
y
) ≤ v

(
y
)
, ∀λ > 0, x ∈ R

N,
∣∣y − x

∣∣ ≥ λ. (3.5)

This, by Lemma 3.2, implies that u, v ≡ constant, a contradiction to (1.1). Therefore, it follows
from Lemma 2.2 that for every x ∈ R

N , there exists λ(x) > 0 such that ux,λ(x) ≡ u and vx,λ(x) ≡
v. Then by Lemma 3.1, for some ci, d > 0 (i = 1, 2) and some x ∈ R

N ,

u(x) ≡
(

c1

d + |x − x|2
)(N−2)/2

, v(x) ≡
(

c2

d + |x − x|2
)(N−2)/2

. (3.6)

Theorem 1.2 follows from the above and the fact that (u, v) is a solution of (1.1).
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