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1. Introduction

The study of impulsive functional differential equations is linked to their utility in simulating
processes and phenomena subject to short-time perturbations during their evolution. The
perturbations are performed discretely and their duration is negligible in comparison with
the total duration of the processes. That is why the perturbations are considered to take
place “instantaneously” in the form of impulses. The theory of impulsive differential and
functional differential equations has been extensively developed; see the monographs of
Bainov and Simeonov [1], Lakshmikantham et al. [2], and Samoilenko and Perestyuk [3],
where numerous properties of their solutions are studied, and detailed bibliographies are
given.

This paper is devoted to extending existing results to second-order differential
equations. To be precise, in [4], the authors used Sadovsii’s fixed point theorem for a
condensing map to establish existence results for first-order impulsive semilinear neutral
functional differential inclusions with nonlocal conditions. Here, we obtain existence results
for second-order semilinear impulsive differential equations with nonlocal conditions of the
form

d

dt

[
x′(t) − F(t, x(h1(t)))

]
= Ax(t) +G(t, x(h2(t))), t ∈ J = [0, b], t /= tk,

Δx|t=tk = Ik
(
x
(
t−k
))
, k = 1, . . . , m,



2 Discrete Dynamics in Nature and Society

Δx′∣∣
t=tk

= Ik
(
x
(
t−k
))
, k = 1, . . . , m,

x(0) + g(x) = x0, x′(0) = η,

(1.1)

where A is the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R,
of bounded linear operators in X. Also, 0 = t0 < t1 < · · · < tm < tm+1 = b, Δx|t=tk =
x(t+

k
) − x(t−

k
), Δx′|t=tk = x′(t+

k
) − x′(t−

k
). Finally, F, G, g, Ik, Ik (k = 1, . . . , m) and h1, h2 are

given functions to be specified later.
Other results on second order functional differential equations with and without

impulsive effect can be founded in the monographs [5–8].
This paper is organized as follows. In Section 2, we recall briefly some basic definitions

and lemmas. The existence theorem for (1.1) and its proof are arranged in Section 3.
Our approaches are based on Sadovskii’s fixed point theorem, and the theory of strongly
continuous cosine families.

2. Preliminaries

Definition 2.1 (see [9]). A one-parameter family C(t), t ∈ R, of bounded linear operators in
the Banach space X is called a strongly continuous cosine family if and only if

(i) C(s + t) + C(s − t) = 2C(s)C(t) for all s, t ∈ R;

(ii) C(0) = I;

(iii) C(t)x is strongly continuous in t on R for each fixed x ∈ X.

We define the associated sine family S(t), t ∈ R, by

S(t)x =
∫ t

0
C(s)xds, x ∈ X, t ∈ R. (2.1)

We make the following assumption on A:

(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R,
of bounded linear operators from X into itself.

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R is the
operator A : X → X defined by

Ax =
d2

dt2
C(t)x

∣∣∣∣∣
t=0

, x ∈ D(A), (2.2)
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where

D(A) =
{
x ∈ X : C(t)x is twice continuously differentiable in t

}
. (2.3)

We define

E =
{
x ∈ X : C(t)x is once continuously differentiable in t

}
. (2.4)

Lemma 2.2 (see [9]). If C(t), t ∈ R, be a strongly continuous cosine family in X, then

(i) there exist constants K ≥ 1 and ω ≥ 0 so that ‖C(t)‖ ≤ Keω|t|, for all t ∈ R, and

‖S(t1) − S(t2)‖ ≤ K

∣∣∣∣∣

∫ t2

t1

eω|s|ds

∣∣∣∣∣
, ∀t1, t2 ∈ R; (2.5)

(ii) if x ∈ E, then S(t)x ∈ D(A) and (d/dt)C(t)x = AS(t)x.

It is proved in [10] that for 0 ≤ α ≤ 1, the fractional powers (−A)α exist as close linear
operator in X, D((−A)α) ⊂ D((−A)β), for 0 ≤ β ≤ α ≤ 1, and (−A)α(−A)β = (−A)α+β for
0 ≤ α + β ≤ 1.

We assume in addition the following assumption:

(H2) for 0 ≤ α ≤ 1, (−A)α maps onto X and is 1 − 1, so that D((−A)α) is a Banach space
when endowed with the form ‖x‖α = ‖(−A)αx‖, x ∈ D((−A)α). We denote this
Banach space by Xα.

Denote J0 = [0, t1], Jk = (tk, tk+1], k = 1, 2, . . . , m. We define the following classes of
functions:

PC(J,Xα) = {x : J → Xα : xk ∈ C(Jk, Xα), k = 0, 1, . . . , m and there exist
x(t+k), x(t

−
k), k = 1, . . . , m with x(tk) = x(t−k)}:

PC1(J,Xα) = {x ∈ PC(J,Xα) : x′
k ∈ C(Jk, Xα), k = 0, 1, . . . , m and there exist

x′(t+k), x′(t−k), k = 1, . . . , m with x′(tk) = x′(t−k)}, where xk and x′
k represent the restriction

of x and x′ to Jk, respectively, (k = 0, . . . , m), and ‖xk‖Jk = sups∈Jk‖xk(s)‖α.
Obviously, PC(J,Xα) is a Banach space with the norm ‖x‖PC = max{‖xk‖Jk , k =

0, . . . , m}, and PC1(J,Xα) is also a Banach space with the norm ‖x‖PC1 = max{‖x‖PC, ‖x′‖PC}.

Definition 2.3. A function x(·) ∈ PC1(J,Xα) is said to be a mild solution of (1.1) if

(i) x(0) + g(x) = x0, x
′(0) = η;

(ii) Δx|t=tk = Ik(x(t−k)), k = 1, . . . , m;

(iii) Δx′|t=tk = Ik(x(t−k)), k = 1, . . . , m;
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(iv) the restriction of x(·) to the interval Jk (k = 0, . . . , m) is continuous and the
following integral equation is verified:

x(t) = C(t)
[
x0 − g(x)

]
+ S(t)

[
η − F(0, x(h1(0)))

]
+
∫ t

0
C(t − s)F(s, x(h1(s)))ds

+
∫ t

0
S(t − s)G(s, x(h2(s)))ds +

∑

0<tk<t

C(t − tk)Ik
(
x
(
t−k
))

+
∑

0<tk<t

S(t − tk)Ik
(
x
(
t−k
))
, t ∈ J.

(2.6)

For (1.1), we assume that the following hypotheses are satisfied: for some α ∈ (0, 1),

(H3) there exists a constant β ∈ (0, 1) such that F : J ×Xα → Xβ is a continuous function,
and (−A)βF : J × Xα → Xα satisfies the Lipschitz condition, that is, there exists a
constant L > 0 such that

∥∥∥(−A)βF(t1, x1) − (−A)βF(t2, x2)
∥∥∥
α
≤ L(|t1 − t2| + ‖x1 − x2‖α), (2.7)

for any 0 ≤ t1, t2 ≤ b, x1, x2 ∈ Xα. Moreover, there exists a constant L1 > 0 such that the
inequality

∥∥∥(−A)βF(t, x)
∥∥∥
α
≤ L1(‖x‖α + 1) (2.8)

holds for any x ∈ Xα;

(H4) the function G : J ×Xα → X satisfies the following conditions:

(i) for each t ∈ J, the functionG(t, ·) : Xα → X is continuous, and for each x ∈ Xα,
the function G(·, x) : J → X is strongly measurable,

(ii) for each positive number l ∈ N, there is a positive function wl ∈ L1(J) such
that

sup
‖x‖α≤l

‖G(t, x)‖ ≤ wl(t) a.e. on J, lim inf
l→∞

1
l

∫b

0
wl(s)ds = γ < ∞, (2.9)

where

‖x‖α = sup
0≤s≤b

‖x(s)‖α; (2.10)

(H5) hi ∈ C(J, J), i = 1, 2. g : PC1(J,Xα) → Xα is continuous and satisfies that
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(i) there exist positive constants L2 and L′
2 such that

∥∥g(u)
∥∥
α ≤ L2‖u‖PC1 + L′

2 ∀u ∈ PC1(J,Xα), (2.11)

(ii) g is a completely continuous map;

(H6) Ik, Ik ∈ C(Xα,Xα), k = 1, . . . , m are all bounded, that is, there exist constants
dk, dk, k = 1, . . . , m, such that ‖Ik(x)‖α ≤ dk, ‖Ik(x)‖α ≤ dk, for x ∈ Xα;

(H7) C(t), t ∈ J, is completely continuous.

3. Main Result

Theorem 3.1. Let x0 ∈ Xα. If the hypotheses (H1)–(H7) are satisfied, then (1.1) has a mild solution
provided that

L0 := 2M0LMb < 1, (3.1)

M
(
L2 + 2M0bL1 + bγ

)
< 1, (3.2)

where

M = sup{‖C(t)‖ : t ∈ J}, M′ = sup
{∥∥C′(t)

∥∥ : t ∈ J
}
, M0 =

∥∥∥(−A)−β
∥∥∥. (3.3)

Proof. Consider the space B = PC1(J,Xα) with morm ‖x‖PC1 = max{‖x‖PC, ‖x′‖PC}. We
should now show that the operator P defined by

(Px)(t) = C(t)
[
x0 − g(x)

]
+ S(t)

[
η − F(0, x(h1(0)))

]
+
∫ t

0
C(t − s)F(s, x(h1(s)))ds

+
∫ t

0
S(t − s)G(s, x(h2(s)))ds +

∑

0<tk<t

C(t − tk)Ik
(
x
(
t−k
))

+
∑

0<tk<t

S(t − tk)Ik
(
x
(
t−k
))

(3.4)

has a fixed point. This fixed point is then a solution of (2.6).
For each positive number l, let Bl = {x ∈ B : ‖x(t)‖α ≤ l, t ∈ J}. Then for each l, Bl is

clearly a bounded close convex set in B. We claim that there exists a positive integer l such
that PBl ⊆ Bl. If it is not true, then for each positive integer l, there is a function xl(·) ∈ Bl, but
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(Pxl)(·)/∈Bl, that is, ‖(Pxl)(t)‖α > l for some t(l) ∈ J, where t(l) denotes t is dependent on l.
However, on the other hand, we have

l < ‖(Pxl)(t)‖α =

∥∥∥∥∥
C(t)

[
x0 − g(xl)

]
+ S(t)

[
η − F(0, xl(h1(0)))

]

+
∫ t

0
C(t − s)F(s, xl(h1(s)))ds +

∫ t

0
S(t − s)G(s, xl(h2(s)))ds

+
∑

0<tk<t

C(t − tk)Ik
(
xl

(
t−k
))

+
∑

0<tk<t

S(t − tk)Ik
(
xl

(
t−k
))
∥∥∥∥∥
α

≤ ∥∥C(t)
[
x0 − g(xl)

]∥∥
α +

∥∥∥S(t)
[
η − (−A)−β(−A)βF(0, xl(h1(0)))

]∥∥∥
α

+

∥∥∥∥∥

∫ t

0
C(t − s)(−A)−β(−A)βF(s, xl(h1(s)))ds

∥∥∥∥∥
α

+

∥∥∥∥∥

∫ t

0
S(t − s)G(s, xl(h2(s)))ds

∥∥∥∥∥
α

+
∑

0<tk<t

∥∥C(t − tk)Ik
(
xl

(
t−k
))∥∥

α
+

∑

0<tk<t

∥∥∥S(t − tk)Ik
(
xl

(
t−k
))∥∥∥

α

≤ M
[‖x0‖α + L2l + L′

2
]
+Mb

[∥∥η
∥∥
α +M0L1(l + 1)

]

+MM0bL1(l + 1) +Mb

∫b

0
wl(s)ds +M

m∑

k=1

dk +M
m∑

k=1

(b − tk)dk.

(3.5)

Dividing on both sides by l and taking the lower limits as l → +∞, we get M(L2 +
2M0bL1 + bγ) ≥ 1. This is a contradiction with the formula (3.2). Hence for some positive
integer l, PBl ⊆ Bl.

Next we will show that the operator P has a fixed point on Bl,which implies that (1.1)
has a mild solution. For this purpose, we decompose P as P = P1 + P2, where the operators
P1, P2 are defined on Bl, respectively, by

(P1x)(t) =
∫ t

0
C(t − s)F(s, x(h1(s)))ds − S(t)F(0, x(h1(0))),

(P2x)(t) = C(t)
[
x0 − g(x)

]
+ S(t)η +

∫ t

0
S(t − s)G(s, x(h2(s)))ds

+
∑

0<tk<t

C(t − tk)Ik
(
x
(
t−k
))

+
∑

0<tk<t

S(t − tk)Ik
(
x
(
t−k
))
,

(3.6)
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for t ∈ J, and we will verify that P1 is a contraction while P2 is a completely continuous
operator.

To prove that P1 is a contraction, we take x1, x2 ∈ Bl arbitrarily. Then for each t ∈ J and
by condition (H3),we have that

‖(P1x1)(t) − (P1x2)(t)‖α ≤
∥∥∥∥∥

∫ t

0
C(t − s)[F(s, x1(h1(s))) − F(s, x2(h1(s)))]ds

∥∥∥∥∥
α

+ ‖S(t)[F(0, x1(h1(0))) − F(0, x2(h1(0)))]‖α

=

∥∥∥∥∥

∫ t

0
C(t − s)(−A)−β(−A)β[F(s, x1(h1(s))) − F(s, x2(h1(s)))]ds

∥∥∥∥∥
α

+
∥∥∥S(t)(−A)−β

{
(−A)β[F(0, x1(h1(0))) − F(0, x2(h1(0)))]

}∥∥∥
α

≤ 2M0LMb sup
0≤s≤b

‖x1(s) − x2(s)‖α

= L0 sup
0≤s≤b

‖x1(s) − x2(s)‖α.

(3.7)

Thus ‖P1x1 − P1x2‖α ≤ L0‖x1 − x2‖α. Therefore, by assumption 0 < L0 < 1 (see (3.1)),
we see that P1 is a contraction.

To prove that P2 is completely continuous, firstly we prove that P2 is continuous on Bl.
Let xn → x∗, xn ∈ Bl, then by (H4)(i), we have G(s, xn(h2(s))) → G(s, x∗(h2(s))), n → ∞.
Since ‖G(s, xn(h2(s))) − G(s, x∗(h2(s)))‖ ≤ 2wl(s), by the dominated convergence theorem,
we have

‖P2xn − P2x∗‖PC

= sup
t∈J

∥∥∥∥∥
C(t)

[
g(x∗) − g(xn)

]
+
∫ t

0
S(t − s)[G(s, xn(h2(s))) −G(s, x∗(h2(s)))]ds

+
∑

0<tk<t

C(t−tk)
[
Ik
(
xn

(
t−k
))−Ik

(
x∗
(
t−k
))]

+
∑

0<tk<t

S(t−tk)
[
Ik
(
xn

(
t−k
))−Ik

(
x∗
(
t−k
))]

∥∥∥∥∥
α

≤ M
∥∥g(x∗) − g(xn)

∥∥
α +

∫b

0
‖S(t − s)[G(s, xn(h2(s))) −G(s, x∗(h2(s)))]‖αds

+
m∑

k=1

M
∥∥Ik(xn(t−k)) − Ik

(
x∗
(
t−k
))∥∥

α
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+
m∑

k=1

M(b − tk)
∥∥∥Ik

(
xn

(
t−k
)) − Ik

(
x∗
(
t−k
))∥∥∥

α
−→ 0 as n −→ ∞,

∥∥(P2xn)′ − (P2x∗)′
∥∥
PC

= sup
t∈J

∥∥∥∥∥
C′(t)

[
g(x∗) − g(xn)

]
+
∫ t

0
C(t − s)[G(s, xn(h2(s))) −G(s, x∗(h2(s)))]ds

+
∑

0<tk<t

C′(t − tk)
[
Ik
(
xn

(
t−k
)) − Ik

(
x∗
(
t−k
))]

+
∑

0<tk<t

C(t − tk)
[
Ik
(
xn

(
t−k
)) − Ik

(
x∗
(
t−k
))]

∥∥∥∥∥
α

≤ M′∥∥g(x∗) − g(xn)
∥∥
α +

∫b

0
‖C(t − s)[G(s, xn(h2(s))) −G(s, x∗(h2(s)))]‖α ds

+
m∑

k=1

M′∥∥Ik
(
xn

(
t−k
)) − Ik

(
x∗
(
t−k
))∥∥

α

+
m∑

k=1

M
∥∥∥Ik

(
xn

(
t−k
)) − Ik

(
x∗
(
t−k
))∥∥∥

α
−→ 0 as n −→ ∞.

(3.8)

Thus, P2 is continuous.
Next, we prove that {P2x : x ∈ Bl} is a family of equicontinuous functions. Let τ1, τ2 ∈

J, τ1 < τ2. Then for each t ∈ J,we have

‖(P2x)(τ2) − (P2x)(τ1)‖α

≤ ∥∥[C(τ2) − C(τ1)]
(
x0 − g(x)

)∥∥
α +

∥∥S(τ2)η − S(τ1)η
∥∥
α

+
∥∥∥∥

∫ τ1

0
[S(τ2 − s) − S(τ1 − s)]G(s, x(h2(s)))ds

∥∥∥∥
α

+

∥∥∥∥∥

∫ τ2

τ1

S(τ2 − s)G(s, x(h2(s)))ds

∥∥∥∥∥
α

+

∥∥∥∥∥

∑

0<tk<τ1

[C(τ2 − tk) − C(τ1 − tk)]Ik
(
x
(
t−k
))
∥∥∥∥∥
α

+

∥∥∥∥∥

∑

τ1≤tk<τ2
C(τ2 − tk)Ik

(
x
(
t−k
))
∥∥∥∥∥
α

+

∥∥∥∥∥

∑

0<tk<τ1

[S(τ2 − tk) − S(τ1 − tk)]Ik
(
x
(
t−k
))
∥∥∥∥∥
α

+

∥∥∥∥∥

∑

τ1≤tk<τ2
S(τ2 − tk)Ik

(
x
(
t−k
))
∥∥∥∥∥
α
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≤ ∥∥[C(τ2) − C(τ1)]
(
x0 − g(x)

)∥∥
α +

∥∥S(τ2)η − S(τ1)η
∥∥
α

+
∫ τ1

0
‖[S(τ2 − s) − S(τ1 − s)]G(s, x(h2(s)))‖αds +

∥∥∥∥∥

∫ τ2

τ1

S(τ2 − s)G(s, x(h2(s)))ds

∥∥∥∥∥
α

+
∑

0<tk<τ1

‖C(τ2 − tk) − C(τ1 − tk)‖dk +
∑

τ1≤tk<τ2
‖C(τ2 − tk)‖dk

+
∑

0<tk<τ1

‖S(τ2 − tk) − S(τ1 − tk)‖dk +
∑

τ1≤tk<τ2
‖S(τ2 − tk)‖dk,

(3.9)

and similarly

∥∥(P2x)′(τ2) − (P2x)′(τ1)
∥∥
α

≤ ∥∥[C′(τ2) − C′(τ1)
](
x0 − g(x)

)∥∥
α +

∥∥[S′(τ2) − S′(τ1)
]
η
∥∥
α

+
∥∥∥∥

∫ τ1

0
[C(τ2 − s) − C(τ1 − s)]G(s, x(h2(s)))ds

∥∥∥∥
α

+

∥∥∥∥∥

∫ τ2

τ1

C(τ2 − s)G(s, x(h2(s)))ds

∥∥∥∥∥
α

+

∥∥∥∥∥

∑

0<tk<τ1

[
C′(τ2 − tk) − C′(τ1 − tk)

]
Ik
(
x
(
t−k
))
∥∥∥∥∥
α

+

∥∥∥∥∥

∑

τ1≤tk<τ2
C′(τ2 − tk)Ik

(
x
(
t−k
))
∥∥∥∥∥
α

+

∥∥∥∥∥

∑

0<tk<τ1

[
S′(τ2 − tk) − S′(τ1 − tk)

]
Ik
(
x
(
t−k
))
∥∥∥∥∥
α

+

∥∥∥∥∥

∑

τ1≤tk<τ2
S′(τ2 − tk)Ik

(
x
(
t−k
))
∥∥∥∥∥
α

≤ ∥∥[C′(τ2) − C′(τ1)
](
x0 − g(x)

)∥∥
α +

∥∥[S′(τ2) − S′(τ1)
]
η
∥∥
α

+
∫ τ1

0
‖[C(τ2 − s) − C(τ1 − s)]G(s, x(h2(s)))‖αds +

∥∥∥∥∥

∫ τ2

τ1

C(τ2 − s)G(s, x(h2(s)))ds

∥∥∥∥∥
α

+
∑

0<tk<τ1

∥∥C′(τ2 − tk) − C′(τ1 − tk)
∥∥dk +

∑

τ1≤tk<τ2

∥∥C′(τ2 − tk)
∥∥dk

+
∑

0<tk<τ1

∥∥S′(τ2 − tk) − S′(τ1 − tk)
∥∥dk +

∑

τ1≤tk<τ2

∥∥S′(τ2 − tk)
∥∥dk.

(3.10)

The right-hand sides are independent of x ∈ Bl and tend to zero as τ2 − τ1 → 0, since
C(t), S(t), C′(t), S′(t) are uniformly continuous for t ∈ J and the compactness of C(t), S(t)
for t > 0 implies the continuity in the uniform operator topology.

The compactness of S(t) follows from that of C(t) and Lemma 2.2.
This shows that P2 maps Bl into a family of equicontinuous functions.
It remains to prove that V (t) = {(P2x)(t) : x ∈ Bl} is relatively compact in X.
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Obviously, by condition (H5)(ii), V (0) is relatively compact in B. Let 0 < t ≤ b be fixed
and 0 < ε < t. For x ∈ Bl,we define

cc(P2,εx)(t) = C(t)
[
x0 − g(x)

]
+ S(t)η +

∫ t−ε

0
S(t − s)G(s, x(h2(s)))ds

+
∑

0<tk<t

C(t − tk)Ik
(
x
(
t−k
))

+
∑

0<tk<t

S(t − tk)Ik
(
x
(
t−k
))
.

(3.11)

Since C(t), S(t) are compact operators, the set Vε(t) = {(P2,εx)(t) : x ∈ Bl} is relatively
compact in B for every ε, 0 < ε < t.Moreover, for every x ∈ Bl,we have

‖(P2x)(t) − (P2,εx)(t)‖α =

∥∥∥∥∥

∫ t

t−ε
S(t − s)G(s, x(h2(s)))ds

∥∥∥∥∥
α

≤
∫ t

t−ε
‖S(t − s)‖wl(s)ds,

∥∥(P2x)′(t) − (P2,εx)′(t)
∥∥
α =

∥∥∥∥∥

∫ t

t−ε
C(t − s)G(s, x(h2(s)))ds

∥∥∥∥∥
α

≤
∫ t

t−ε
‖C(t − s)‖wl(s)ds.

(3.12)

Therefore, there are relatively compact sets arbitrarily close to the set V (t).Hence, the set V (t)
is relatively compact in B.

Thus, by Arzela-Ascoli theorem, P2 is a completely continuous operator. Those
arguments enable us to conclude that P = P1 +P2 is a condensing map on Bl, and by the fixed
point theorem of Sadovskii, there exists a fixed point x(·) for P on Bl. Therefore, the nonlocal
Cauchy problem with impulsive effect (1.1) has a mild solution. The proof is completed.
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