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1. Introduction

Since the end of the 19th century, many biological models have been established to illustrate
the evolutionary of species, among them, predator-prey models attracted more and more
attention of biologists and mathematicians. There are many different kinds of predator-prey
models in the literature. And since 1990s, the so-called ratio-dependent predator-prey models
play an important role in the investigations on predator-prey models, which can be roughly
stated as that the per capita predator growth rate should be a function of the ratio of prey to
predator abundance. Under some simple assumptions, a general form of a ratio-dependent
model is

x′ = rx
(
1 − x

K

)
− ϕ

(
x

y

)
y,

y′ = y

(
μϕ

(
x

y

)
−D

)
.

(1.1)



2 Discrete Dynamics in Nature and Society

Here the predator-prey interactions are described by ϕ(x/y); this function replaces the
functional response function ϕ(x) in the traditional prey-dependent model. For the study of
ratio-dependent predator-prey models, most works have been done on theMichaelis-Menten
type model

x′ = rx
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1 − x

K

)
− αxy

my + x
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(1.2)

or its periodic type

x′ = xa(t) − b(t)x − α(t)xy
my(t) + x

,

y′ = y

(
−d(t) + f(t)x

my + x

)
,

(1.3)

see [1–7] and references therein. It is easy to see that here the functional response function is
ϕ(u) = cu/(m + u), u = x/y, as we know, this functional response function was first used by
Holling [8], and later biologists call it Holling type II functional response function, it usually
describes the uptake of substrate by the microorganisms in microbial dynamics or chemical
kinetics [9]. And in the present paper, we will concentrate on the general form of the ratio-
dependent predator-prey model.

For the sake of convenience, we introduce some notations and definitions. DenoteZ,R,
and R

+ as the sets of all integers, real numbers, and nonnegative real numbers, respectively.
Let C denote the set of all bounded sequences f : Z → R, C+ is the set of all f ∈ C such that
f > 0, and Cω = {f ∈ C+ | f(k +ω) = f(k), k ∈ Z}, Iω = {0, 1, . . . , ω − 1}. We define

fM = sup
k∈Z

f(k), fL = inf
k∈Z

f(k), (1.4)

for any f ∈ C. Obviously, if f is an ω-periodic sequence, then

fM = max
k∈Iω

f(k), fL = min
k∈Iω

f(k). (1.5)

We also define

f =
1
ω

ω−1∑
k=0

f(k), (1.6)

if f is an ω-periodic sequence. And denote

f =
1
ω

∫ω
0
f(t)dt, fL = min

t∈[0,ω]

∣∣f(t)∣∣, fM = max
t∈[0,ω]

∣∣f(t)∣∣, (1.7)

when f is a periodic continuous function with period ω.
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In view of the periodicity of the actual environment, we begin with the following
periodic continuous ratio-dependent predator-prey system:

x′(t) = x(t)[b(t) − a(t)x(t − τ1)] − c(t)g
(
x(t)
y(t)

)
y(t),

y′(t) = y(t)
[
e(t)g

(
x(t − τ2)
y(t − τ2)

)
− d(t)

]
,

(1.8)

where x(t) and y(t) represent the densities of the prey population and predator population
at time t respectively; τ1 ≥ 0, τ2 ≥ 0 are real constants; b, d : R → R and a, c, e : R → R

+

are continuous periodic functions with period ω > 0 and
∫ω
0 b(t)dt > 0,

∫ω
0 d(t)dt > 0, a, c, e

is not always zero; and g(u(t)) (here u(t) = x(t)/y(t)) denotes the ratio-dependent response
function, which reflects the capture ability of the predator. Here we assume that g(u) satisfies
the following monotonic condition, for short, we call it (M):

(i) g ∈ C1[0,+∞), g(0) ≥ 0;

(ii) g ′(u) ≥ 0 for u ∈ [0,+∞);

(iii) limu→∞g(u) = α/= 0.

In [10], we gave a sufficient condition for the permanence of the continuous model

x′(t) = x(t)[a(t) − b(t)x(t)] − c(t)g
(
x(t)
y(t)

)
y(t),

y′(t) = y(t)
[
e(t)g

(
x(t − τ)
y(t − τ)

)
− d(t)

]
.

(1.9)

In which a(t), b(t), c(t), d(t), and e(t) are all positive periodic continuous functions with
period ω > 0; τ is a positive constant. In addition to condition (M), the functional response
function g also satisfies the following.

(iv) There exists a positive constant h such that u2g ′(u) ≤ h.

Without loss of generality, in this paper, we always assume that α = 1 (if α/= 1, let
c∗(t) = αc(t) and still denote c∗(t) as c(t)).

Some special cases of system (1.8) have been studied, see [11, 12] and so forth. In
those papers, the authors mainly concentrated on the existence of periodic solutions and
permanence for systems they considered.

Set

m = sup
u∈[0,+∞)

g(u)
u

, (1.10)

from (ii) and (iii), we can easily obtain 0 < m < +∞.
Through the above assumptions, we can see that, one of the main results in [10] can

be given as follows.
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Theorem 1.1. If

(H1) b > mc

and

(H2) e > d

hold, then system (1.9) is permanent.

Remark 1.2. By similar methods proposed in [10], we can show that under conditions (H1)
and (H2), system (1.8) is also permanent.

We also need to mention that conditions (H1) and (H2) are sufficient to assure the
existence of positive periodic solutions of (1.8); this problem has been solved in [13].

However, when the size of the population is rarely small or the population has
nonoverlapping generations [14, 15], a more realistic model should be considered, that is,
the discrete time model. Just as pointed out in [16], even if the coefficients are constants,
the asymptotic behavior of the discrete system is rather complex and “chaotic” than the
continuous one, see [16] for more details. Similar to the arguments of [17], we can obtain
a discrete time analogue of (1.8):

N1(k + 1) = N1(k) exp
{
b(k) − a(k)N1(k − [τ1]) − c(k)h

(
N1(k)
N2(k)

)}
,

N2(k + 1) = N2(k) exp
{
−d(k) + e(k)g

(
N1(k − [τ2])
N2(k − [τ2])

)}
,

(1.11)

where [t] denotes the integer part of t (t > 0) and h(N1(k)/N2(k)) = N2(k)g(N1(k)/
N2(k))/N1(k) = g(u(k))/u(k), u(k) = N1(k)/N2(k). Correspondingly, the basic assump-
tions of (1.11) is the same as that in (1.8), of cause, here b, d : Z → R and a, c, e : Z → R

+ are
periodic sequences with period ω > 0 and

∑ω−1
k=0 b(k) > 0,

∑ω−1
k=0 d(k) > 0, and g satisfies (M).

To the best of our knowledge, a few investigations have been carried out for the permanence
on delayed discrete ecological systems, since the dynamics of these systems are usually more
complicated than the continuous ones.

The exponential form of system (1.11) assures that, for any initial condition N(0) > 0,
N(k) remains positive. In the remainder of this paper, for biological reasons, we only consider
solutions N(k)with

Ni(−k) ≥ 0, k = 1, 2, . . . ,max{[τ1], [τ2]}, Ni(0) > 0, i = 1, 2. (1.12)

System (1.11) includes many biological models as its special cases, which have been
studied by many authors; see [17–20] and so forth. Among them, Fan and Wang (see [17])
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considered the existence of positive periodic solutions for delayed periodicMichaelis-Menten
type ratio-dependent predator-prey system

N1(k + 1) = N1(k) exp
{
b1(k) − a1(k)N1(k) − α1(k)N2(k)

N1(k) +m(k)N2(k)

}
,

N2(k + 1) = N2(k) exp
{
−b2(k) + α2(k)N1(k)

N1(k) +m(k)N2(k)

}
,

(1.13)

and obtained the following theorem.

Theorem 1.3. Assume that the following conditions hold:

(A1) b1 > (α1(k)/m(k)),

(A2) α2 > b2.

Then (1.13) has at least one positive ω-periodic solution.

Later in [20], we proved that under conditions (A1) and (A2), system (1.13) is also
permanent, so by themain result in [21], we can also obtain Theorem 1.3, which gives another
method to prove the existence of periodic solutions.

From the works above, it is not difficult to find: that for the continuous time model
(1.3) and the discrete time model (1.13), conditions that assure the existence of positive
periodic solutions are exactly the same. In addition, when we comparing the work in [11]
with that in [20], we found amazedly that conditions that assure the permanence of the
discrete models are also the same as those of the continuous models. This motivated us to
consider the permanence of system (1.11) only under conditions (H1) and (H2), since we
have already obtained the permanence of system (1.9).

Until very recently, Yang [22] studied the permanence of system (1.11) when τ1 = 0
and obtained the following conclusion.

Theorem 1.4. Assume that

(B1)

eM > dL, (1.14)

(B2)

bL > mcM, (1.15)

(B3)

eLg

(
m1

M2

)
= dM, (1.16)
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hold, where

m1 =
bL −mcM

aM
exp
{
bL −mcM − aMM1

}
,

M1 =
1
aL

exp
{
bM − 1

}
, M2 = exp

{
2
(
eM − dL

)}
.

(1.17)

Then (1.11) is permanent.

Remark 1.5. In Theorem 1.4, condition (B3) implies condition (B1); and (B3) is an equality, it
is too strong to satisfy.

As pointed out in [23], if we use the method of comparison theorem, then the
additional condition (like (B3)), to some extent, is necessary. But for system itself, this
condition may be not necessary. In this paper, our aim is to improve the above results. One
of the main results in this paper is given below, furthermore, we can conclude Corollary 3.5
similarly, from which we could show that condition (B3) can be deleted. Now we list the
main result in the following.

Theorem 1.6. Assume that (H1) and (H2) hold. Then system (1.11) is permanent.

Remark 1.7. Condition (H2) is a necessary condition.

Corollary 1.8. Assume that (H1) and (H2) hold, then system (1.11) has at least one positive ω-
periodic solution.

Clearly, Theorem 1.6 extends and improves [19, Theorem 3.1], [20, Theorem 1.4];
Theorem 1.6 also extends and improves Theorem 1.4 by weaker conditions (H1) and (H2)
instead of (B1–B3)when the coefficients are all periodic. In particular, our investigation gives
a more acceptant method to study the bounded discrete systems, which is better than the
comparison theorem.

For the permanence of biology systems, one can refer to [24–33] and the references
cited therein.

The tree of this paper is arranged as follows. In the next section, we give some useful
lemmas which are essential to prove our conclusions. And in the third section, we give a
proof to the main result.

2. Preliminary

In this section, we list the definition of permanence and establish some useful lemmas.

Definition 2.1. System (1.11) is said to be permanent if there exist two positive constants λ1, λ2
such that

λ1 ≤ lim inf
k→∞

Ni(k) ≤ lim sup
k→∞

Ni(k) ≤ λ2, i = 1, 2, (2.1)

for any solution (N1(k),N2(k)) of (1.11).



Discrete Dynamics in Nature and Society 7

Lemma 2.2 ([20]). The problem

x(k + 1) = x(k) exp{a(k) − b(k)x(k)},
x(0) = x0 > 0,

(2.2)

has at least one periodic solution U if b ∈ Cω, a ∈ C and a is an ω-periodic sequence with a > 0,
moreover, the following properties hold.

(a) U is positive ω-periodic.

(b) U has the following estimations for it’s boundary:

a

b
exp
{
−
(
|a| + a

)
ω
}
≤ U(k) ≤ a

b
exp
{(

|a| + a
)
ω
}
, (2.3)

especially,

a

b
exp{−aω} ≤ U(k) ≤ a

b
exp{aω}, (2.4)

if a ∈ Cω.

Lemma 2.3. For any positive constant K, the problem

x(k + 1) = x(k) exp
{
−d(k) + e(k)g

(
K

x(k)

)}
, (2.5)

has at least one periodic solution U if d ∈ C and d is an ω-periodic sequence provided that (H2)
holds. Moreover, the following properties hold.

(a) U is positive ω-periodic.

(b) U has the following estimations for its boundary:

K

g−1
(
d/e
) exp

{
−
(
|d| + d

)
ω
}
≤ U(k) ≤ K

g−1
(
d/e
) exp

{(
|d| + d

)
ω
}
, (2.6)

especially,

K

g−1
(
d/e
) exp

{
−dω
}
≤ U(k) ≤ K

g−1
(
d/e
) exp

{
dω
}
, (2.7)

if d ∈ Cω, where g−1 represents the inverse of g.
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Proof. We only prove that (2.6) holds, for the rest of the proof, one can refer to [17]. Let x(n)
be any possible ω-periodic positive solution of (2.5), then

lnx(n + 1) − lnx(n) = −d(n) + e(n)g
(

K

x(n)

)
, (2.8)

therefore

ω−1∑
n=0

[lnx(n + 1) − lnx(n)] =
ω−1∑
n=0

[
−d(n) + e(n)g

(
K

x(n)

)]
= 0, (2.9)

this leads to

ω−1∑
n=0

e(n)g
(

K

x(n)

)
= dω. (2.10)

We claim that there exist some n1 and n2 such that

n1, n2 ∈ Iω, x(n1) ≤ K

g−1
(
d/e
) , x(n2) ≥ K

g−1
(
d/e
) . (2.11)

If this is not true, then either

x(n) <
K

g−1
(
d/e
) , (2.12)

or

x(n2) >
K

g−1
(
d/e
) , (2.13)

for any n ∈ Iω, in any case, we can obtain
∑ω−1

n=0 e(n)g(K/x(n))/=dω, this contradiction shows
that our claim is true.

Note that for any n ∈ Iω,

lnx(n) − lnx(n1) ≤
ω−1∑
n=0

∣∣∣∣−d(n) + e(n)g
(

K

x(n)

)∣∣∣∣,

lnx(n) − lnx(n2) ≥ −
ω−1∑
n=0

∣∣∣∣−d(n) + e(n)g
(

K

x(n)

)∣∣∣∣,
(2.14)

then by virtue of equality (2.10), we complete the proof.
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Lemma 2.4. Consider the inequality problem

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)}. (2.15)

If b ∈ Cω, a ∈ C, and a is an ω-periodic sequence with a > 0, then any positive solutions x(k) of
(2.15) satisfy

lim sup
k→∞

x(k) ≤ H1 exp
{
bMH1

}
, (2.16)

where

H1 =
a

b
exp
{(

a + |a|
)
ω
}
. (2.17)

Moreover, if a ∈ Cω, then

lim sup
k→∞

x(k) ≤ H2 exp
{
bMH2

}
, (2.18)

where

H2 =
a

b
exp{aω}. (2.19)

Proof. Consider the following auxiliary equation:

z(k + 1) = z(k) exp{a(k) − b(k)z(k)}, (2.20)

by Lemma 2.2, (2.20) has at least one positive ω-periodic solution, denote it as z∗(k), then

z∗(k) ≤ H1. (2.21)

Let

x(k) = exp{u1(k)}, z∗(k) = exp{u2(k)}, (2.22)

then

u1(k + 1) − u1(k) ≤ a(k) − b(k) exp{u1(k)},
u2(k + 1) − u2(k) = a(k) − b(k) exp{u2(k)}.

(2.23)

Make the transformation u(k) = u1(k) − u2(k),we can obtain

u(k + 1) − u(k) ≤ −b(k)z∗(k)[exp{u(k)} − 1
]
. (2.24)
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Nowwe divide the proof into two cases according to the oscillating property of u(k). First we
assume that u(k) does not oscillate about zero, then u(k)will be either eventually positive or
eventually negative. If the latter holds, that is, u1(k) < u2(k),we have

x(k) < z∗(k) ≤ H1 (if a ∈ Cω, then x(k) ≤ H2). (2.25)

Either if the former holds, then by (2.24), we know u(k + 1) < u(k),which means that u(k) is
eventually decreasing, also in terms of its positivity, we know that limk→∞u(k) exists. Then
(2.24) implies limk→∞u(k) = 0, which leads to

lim sup
k→∞

x(k) ≤ H1

(
if a ∈ Cω, then lim sup

k→∞
x(k) ≤ H2

)
. (2.26)

Now we assume that u(k) oscillates about zero, by (2.24), we know that u(k) >
0 implies u(k+1) ≤ u(k). Thus, if we let {u(kl)} be a subsequence of {u(k)},where u(kl) is the
first element of the lth positive semicycle of {u(k)}, then lim supk→∞u(k) = lim supl→∞u(kl).
For the definition of semicycle and other related concepts, we refer to [34]. Notice that

u(kl) ≤ u(kl − 1) − b(kl − 1)z∗(kl − 1)
[
exp{u(kl − 1)} − 1

]
(2.27)

and u(kl − 1) < 0, then we know

u(kl) ≤ b(kl − 1)z∗(kl − 1)
[
1 − exp{u(kl − 1)}]

≤ b(kl − 1)z∗(kl − 1) ≤ (b(kl − 1)z∗(kl − 1))M.
(2.28)

Therefore

lim sup
l→∞

u(kl) ≤ (b(kl − 1)z∗(kl − 1))M. (2.29)

By the medium of (2.22), (2.25), and (2.26), we have

lim sup
k→∞

x(k) ≤ H1 exp
{
bMH1

} (
if a ∈ Cω, then lim sup

k→∞
x(k) ≤ H2 exp

{
bMH2

})
.

(2.30)

Corollary 2.5. Any positive solution of the inequality problem (2.15) satisfies

lim sup
k→∞

x(k) ≤ min

{
1
bL

exp
{
aM − 1

}
,
aM

bL
exp
{
aM
}}

, (2.31)

where a ∈ C, aM > 0 and b ∈ C+.
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Proof. Define the function

f(x) = x exp{a − bx}, x > 0, a ∈ R, b > 0, (2.32)

it is easy to see

f(x) ≤ 1
b
exp{a − 1}, (2.33)

which immediately leads to

lim sup
k→∞

x(k) ≤ lim sup
k→∞

1
b(k)

exp{a(k) − 1} ≤ 1
bL

exp
{
aM − 1

}
. (2.34)

From (2.15), we have

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)} ≤ x(k) exp
{
aM − bLx(k)

}
. (2.35)

By Lemma 2.4, for any ω > 0,

lim sup
k→∞

x(k) ≤ aM

bL
exp
{
aMω

}
exp
{
aM exp

{
aMω

}}
, (2.36)

let ω → 0, we can obtain

lim sup
k→∞

x(k) ≤ aM

bL
exp
{
aM
}
, (2.37)

by (2.34) and (2.37), we complete the proof.

Remark 2.6. Note that when aM ≤ 1/e, (aM/bL) exp{aM} ≤ (1/bL) exp{aM − 1}.
Similarly, we can obtain the following result.

Lemma 2.7. If any positive solution x(k) of the inequality problem

x(k + 1) ≥ x(k) exp{a(k) − b(k)x(k)} (2.38)

satisfies

lim sup
k→∞

x(k) ≤ H, (2.39)
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hereH is a positive constant. Then if b ∈ Cω, a ∈ C, and a is an ω-periodic sequence with a > 0, one
has

lim inf
k→∞

x(k) ≥ H3 exp
{−HbM

}
,

H3 =
a

b
exp
{
−
(
|a| + a

)
ω
}
.

(2.40)

Moreover, if a ∈ Cω, then

lim inf
k→∞

x(k) ≥ H4 exp
{
−HbM

}
, (2.41)

where

H4 =
a

b
exp{−aω}. (2.42)

The proof is similar to that of Lemma 2.4.

Corollary 2.8. If any positive solution x(k) of the inequality problem

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)} (2.43)

satisfies

lim sup
k→∞

x(k) ≤ H, (2.44)

hereH is a positive constant, then

lim inf
k→∞

x(k) ≥ aL

bM
exp
{
aL − bMH

}
, (2.45)

where a ∈ C and b ∈ C+.

3. Proof of the Main Result

For the rest of this paper, we only consider the solution of (1.11)with initial conditions (1.12).
To prove Theorem 1.6, we need the following several propositions.

Proposition 3.1. There exists a positive constant K1 such that lim supk→+∞N1(k) ≤ K1.

Proof. Given any positive solution (N1(k),N2(k)) of (1.11), from the first equation of (1.11),
we have

N1(k + 1) ≤ N1(k) exp{b(k) − a(k)N1(k − [τ1])}. (3.1)
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Set

N1(k) = exp{u1(k)}, (3.2)

then

u1(k + 1) − u1(k) ≤ b(k) − a(k) exp{u1(k − [τ1])}, (3.3)

thus

k−1∑
i=k−[τ1]

(u1(i + 1) − u1(i)) ≤
k−1∑

i=k−[τ1]
b(i), (3.4)

which is equivalent to

u1(k) −
k−1∑

i=k−[τ1]
b(i) ≤ u1(k − [τ1]), (3.5)

hence

N1(k − [τ1]) = exp{u1(k − [τ1])} ≥ exp

⎧
⎨
⎩u1(k) −

k−1∑
i=k−[τ1]

b(i)

⎫
⎬
⎭

= N1(k) exp

⎧
⎨
⎩−

k−1∑
i=k−[τ1]

b(i)

⎫
⎬
⎭.

(3.6)

Therefore

N1(k + 1) ≤ N1(k) exp

⎧
⎨
⎩b(k) − a(k) exp

⎧
⎨
⎩−

k−1∑
i=k−[τ1]

b(i)

⎫
⎬
⎭N1(k)

⎫
⎬
⎭. (3.7)

By Lemma 2.4, we have

lim sup
k→+∞

N1(k) ≤ K1, (3.8)
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where

K1 = G1 exp

⎧
⎨
⎩

(
a(k) exp

{
−

k−1∑
i=k−[τ1]

b(i)

})M

G1

⎫
⎬
⎭,

G1 =
b

a(k) exp
{
−∑k−1

i=k−[τ1] b(i)
} exp

{(
b + |b|

)
ω
}
.

(3.9)

Proposition 3.2. Under condition (H1), there exists a positive constant k1 such that
lim infk→∞N1(k) ≥ k1.

Proof. Given any positive solution (N1(k),N2(k)) of (1.11), from the first equation of (1.11),
we have

N1(k + 1) ≥ N1(k) exp{b(k) −mc(k) − a(k)N1(k − [τ1])}. (3.10)

Set N1(k) = exp{u1(k)}, then

u1(k + 1) − u1(k) ≥ b(k) −mc(k) − a(k) exp{u1(k − [τ1])}, (3.11)

which yields

k−1∑
i=k−[τ1]

(u1(i + 1) − u1(i)) ≥
k−1∑

i=k−[τ1]
(b(i) −mc(i) − a(i)K1), (3.12)

that is,

u1(k − [τ1]) ≤ u1(k) −
k−1∑

i=k−[τ1]
(b(i) −mc(i) − a(i)K1), (3.13)

thus

N1(k − [τ1]) = exp{u1(k − [τ1])}

≤ exp

⎧
⎨
⎩u1(k) −

k−1∑
i=k−[τ1]

(b(i) −mc(i) − a(i)K1)

⎫
⎬
⎭

= N1(k) exp

⎧
⎨
⎩−

k−1∑
i=k−[τ1]

(b(i) −mc(i) − a(i)K1)

⎫
⎬
⎭.

(3.14)
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Therefore

N1(k + 1) ≥ N1(k)

× exp

⎧
⎨
⎩b(k) −mc(k) − a(k) exp

⎧
⎨
⎩−

k−1∑
i=k−[τ1]

(b(i) −mc(i) − a(i)K1)

⎫
⎬
⎭N1(k)

⎫
⎬
⎭.

(3.15)

Since (H1) holds, then by Lemma 2.7 and Proposition 3.1, we have

lim inf
k→∞

x(k) ≥ G2 exp

⎧
⎨
⎩−K1

(
a(k) exp

{
−

k−1∑
i=k−[τ1]

(b(i) −mc(i) − a(i)K1)

})M
⎫
⎬
⎭,

G2 =
b −mc

a(k) exp
{
−∑k−1

i=k−[τ1](b(i) −m(i) − a(i)K1)
} exp

{
−
(
|b −mc| + b −mc

)
ω
}
.

(3.16)

Proposition 3.3. If (H2) holds, then there exists a positive constant K2 such that

lim sup
k→∞

N2(k) ≤ K2. (3.17)

Proof. Given any positive solution (N1(k),N2(k)) of (1.11). SetN2(k) = exp{u1(k)}, from the
second equation of (1.11) and notice that conditions (ii) and (iii) on g imply that g(k, u(k)) ≤
1, then

u1(k + 1) − u1(k) ≤ e(k) − d(k), (3.18)

thus

k−1∑
i=k−[τ2]

(u1(i + 1) − u1(i)) ≤
k−1∑

i=k−[τ2]
(e(i) − d(i)), (3.19)

which is equivalent to

u1(k) −
k−1∑

i=k−[τ2]
(e(i) − d(i)) ≤ u1(k − [τ2]), (3.20)
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hence

N2(k − [τ2]) = exp{u1(k − [τ2])} ≥ exp

⎧
⎨
⎩u1(k) −

k−1∑
i=k−[τ2]

(e(i) − d(i))

⎫
⎬
⎭

= N2(k)

⎛
⎝exp

⎧
⎨
⎩−

k−1∑
i=k−[τ2]

(e(i) − d(i))

⎫
⎬
⎭

⎞
⎠

L

.

(3.21)

Therefore for any given ε > 0, we have

N2(k + 1) = N2(k) exp
{
−d(k) + e(k)g

(
N1(k − [τ2])
N2(k − [τ2])

)}

≤ N2(k) exp

⎧
⎪⎨
⎪⎩
−d(k) + e(k)g

⎛
⎜⎝ K1 + ε

N2(k)
(
exp
{
−∑k−1

i=k−[τ2](e(i) − d(i))
})L

⎞
⎟⎠

⎫
⎪⎬
⎪⎭
,

(3.22)

for sufficiently large k. Here we use the monotonicity of the function g(u).
Consider the following auxiliary equation:

z(k + 1) = z(k) exp

⎧
⎪⎨
⎪⎩
−d(k) + e(k)g

⎛
⎜⎝ K1 + ε

z(k)
(
exp
{
−∑k−1

i=k−[τ2](e(i) − d(i))
})L

⎞
⎟⎠

⎫
⎪⎬
⎪⎭
. (3.23)

By Lemma 2.3 and condition (H2), we can obtain that (3.23) has at least one positive ω-
periodic solution, denote it as z∗1(k) and

z∗1(k) ≤
K

g−1
(
d/e
) exp

{(
|d| + d

)
ω
}
:= G3, (3.24)

where

K =
K1(

exp
{
−∑k−1

i=k−[τ2](e(i) − d(i))
})L . (3.25)

Let

z∗1(k) = exp{u2(k)}, (3.26)
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then

u1(k + 1) − u1(k) ≤ −d(k) + e(k)g
(

K

exp{u1(k)}
)
,

u2(k + 1) − u2(k) = −d(k) + e(k)g
(

K

exp{u2(k)}
)
.

(3.27)

Denote u(k) = u1(k) − u2(k),we have

u(k + 1) − u(k) ≤ e(k)
[
g

(
K

exp{u1(k)}
)
− g

(
K

exp{u2(k)}
)]

.
(3.28)

First we assume that u(k) does not oscillate about zero, then u(k) will be either eventually
positive or eventually negative. If the latter holds, that is, u1(k) < u2(k),we have

N2(k) < z∗1(k) ≤ G3. (3.29)

Either if the former holds, then by (3.28), we have u(k + 1) < u(k), which means that u(k) is
eventually decreasing, also in terms of its positivity, we obtain that limk→∞u(k) exists. Then
(3.28) leads to limk→∞u(k) = 0, this implies

lim sup
k→∞

N2(k) ≤ G3. (3.30)

Nowwe assume that u(k) oscillates about zero, in view of (3.28), we know that u(k) >
0 implies u(k+1) ≤ u(k). Thus, if we let {u(kl)} be a subsequence of {u(k)}where u(kl) is the
first element of the lth positive semicycle of {u(k)}, then lim supk→∞u(k) = lim supl→∞u(kl).
Also, from

u(kl) ≤ u(kl − 1) + e(kl − 1)
[
g

(
K

exp{u1(kl − 1)}
)
− g

(
K

exp{u2(kl − 1)}
)]

(3.31)

and u(kl − 1) < 0, we know

u(kl) ≤ e(kl − 1). (3.32)

Therefore

lim sup
l→∞

u(kl) ≤ (e(kl − 1))M. (3.33)

Thus we have

lim sup
k→∞

N2(k) ≤ K2, (3.34)
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where

K2 = G3 exp
{
eM
}
. (3.35)

Proposition 3.4. Under conditions (H1) and (H2), there exists a positive constant k2 such that
lim infk→+∞N2(k) ≥ k2.

Proof. Given any positive solution (N1(k),N2(k)) of (1.11), from the second equation of
(1.11), we have

N2(k + 1) ≥ N2(k) exp{−d(k)}, (3.36)

then

k−1∑
i=k−[τ2]

[lnN2(i + 1) − lnN2(i)] ≥ −
k−1∑

i=k−[τ2]
d(i), (3.37)

hence

N2(k − [τ2]) ≤ N2(k) exp

⎧
⎨
⎩

k−1∑
i=k−[τ2]

d(i)

⎫
⎬
⎭. (3.38)

Therefore from the second equation of (1.11), we have

N2(k + 1) ≥ N2(k) exp

⎧
⎪⎨
⎪⎩
−d(k) + e(k)g

⎛
⎜⎝ k1

N2(k)
(
exp
{∑k−1

i=k−[τ2] d(i)
})M

⎞
⎟⎠

⎫
⎪⎬
⎪⎭
. (3.39)

Consider the auxiliary equation

z(k + 1) = z(k) exp

⎧
⎪⎨
⎪⎩
−d(k) + e(k)g

⎛
⎜⎝ k1

z(k)
(
exp
{∑k−1

i=k−[τ2] d(i)
})M

⎞
⎟⎠

⎫
⎪⎬
⎪⎭
, (3.40)

by Lemma 2.3 and (H2), (3.40) has at least one positive ω-periodic solution, denoted it as
z∗2(k), then

z∗2(k) ≥
G

g−1
(
d/e
) exp

{
−
(
|d| + d

)
ω
}
:= G4. (3.41)
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Where

G =
k1(

exp
{∑k−1

i=k−[τ2] d(i)
})M . (3.42)

If we set

N2(k) = exp{u1(k)}, z∗2(k) = exp{u2(k)}, (3.43)

then

u1(k + 1) − u1(k) ≥ −d(k) + e(k)g
(

G

exp{u1(k)}
)
,

u2(k + 1) − u2(k) = −d(k) + e(k)g
(

G

exp{u2(k)}
)
.

(3.44)

And let u(k) = u1(k) − u2(k),we have

u(k + 1) − u(k) ≥ e(k)
[
g

(
G

exp{u1(k)}
)
− g

(
G

exp{u2(k)}
)]

. (3.45)

If u(k) does not oscillate about zero, then by a similar analysis as that in Proposition 3.1, we
have

lim inf
k→∞

N2(k) ≥
(
z∗2(k)

)L ≥ G4. (3.46)

Otherwise, if u(k) oscillates about zero, by (3.45), we know that u(k) < 0 implies u(k + 1) ≥
u(k). Thus, if we denote {u(kl)} as a subsequence of {u(k)} where u(kl) is the first element
of the lth negative semicycle of {u(k)}, then lim infk→∞u(k) = lim infl→∞u(kl). On the other
hand, from

u(kl) ≥ u(kl − 1) + e(kl − 1)
[
g

(
G

exp{u1(kl − 1)}
)
− g

(
G

exp{u2(kl − 1)}
)]

(3.47)

and u(kl − 1) > 0 we can obtain

u(kl) ≥ −e(kl − 1)g
(

G

exp{u2(kl − 1)}
)

≥ −e(kl − 1).

(3.48)

Therefore

lim inf
l→∞

u(kl) ≥ (−e(kl − 1))L. (3.49)
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By the medium of (3.43), we have

lim inf
k→∞

N1(k) ≥
(
z∗2(k)

)L exp
{
(−e(kl − 1))L

}
. (3.50)

Hence lim infk→∞N1(k) ≥ k2,where

k2 = G4 exp
{
−eM
}
. (3.51)

Proof of Theorem 1.6. From the Propositions 3.1–3.4, we can easily know that system (1.11) is
permanent. The proof is complete.

By a similar process as above, we can obtain the following result.

Corollary 3.5. Assume that b, d ∈ C and a, c, e ∈ C+. If

(C1)

(b −mc)L > 0, (3.52)

(C2)

(e − d)L > 0, (3.53)

then system (1.11) is permanent.

Obviously, (B2) includes (C2), (B1), and (B3) include (C1). Thus, Corollary 3.5
generalizes and improves Theorem 1.4.
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