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1. Introduction

The coexistence and global stability of population models are of the interesting subjects in
mathematical biology. Many authors have argued that the discrete time models are governed
by differential equations which are more appropriate than the continuous ones to describe
the dynamics of population when the population has nonoverlapping generations, a lot has
been done on discrete Lotka-Volterra systems.

May in [1] firstly considered the following autonomous discrete two-species Lotka-
Volterra competitive system:

x(n+1) = x(n)exp{r — anx(n) — any(n)}, (11)
y(n+1) =y(n)exp{r, — anx(n) — any(n)} .

and studied the stable points, stable cycles, and the chaos behaivor. Further, Lu and Wang [2]
studied the permanence and global attractivity of this system.
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Chen and Zhou in [3] considered the following periodic discrete two-species Lotka-
Volterra competitive system:

x(n+1) = x(n) exp{ﬁ( - K(—()) - ﬂz(")y(n)>}

y(n+1) = y(n) exp{r2<1 () - Igz(?n)) ) } (1.2)

and studied the permanence and existence of a periodic solution, and further, sufficient
conditions are established on the global stability of the periodic solution.

Zhang and Zhou in [4] investigated the following nonautonomous discrete two-
species Lotka-Volterra competitive system:

x(n+1) = x(n) exp{ri(n) — an(n)x(n—ki) —an(n)y(n-ky)},

1.3
y(n+1) =y(n) exp{r:(n) —an(n)x(n-1L) — ann)y(n-1h)}. (1.3)

Some sufficient conditions were obtained for the permanence of the system.
Wang et al. in [5] studied the following general nonautonomous discrete n-species
Lotka-Volterra systems:

xi(k +1) = x;(k) exp{ri(k) - iia](k)x] (k=1)—apm)yn- k2)} i=1,2,...,n

j=11=0
(1.4)

By applying the linear method and constructing the appropriate Lyapunov functionals, the
author established the sufficient conditions which guarantee that any positive solution of this
system is stable and attracts others, and obtained some applications of main results.

Muroya in [6, 7] considered the following general nonautonomous discrete n-species
Lotka-Volterra systems:

Ni(P+1)=Ni(P)exp{ci(P)—ai(P)Ni(P)—ZZai-,-(P)Nj(P—kz)}, p=012,...,
j=11=0
Ni(S)=NisZO VSSO, Nijp>0, i=12,...,n,
(1.5)

and related pure delays models, that is, a;(p) = 0 for all p > 0. The author obtained the
permanence and the global asymptotically stable by applying mean-value conditions and the
method of constructing discrete Lyapunov functionals.
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Liao et al. in [8] discussed the following general discrete nonautonomous n-species
competitive system with feedback controls:

n

xi(k+1) =xi(k) exp {bi(k)—zn:aij(k)xj(k)— > Cij(k)xi(k)xj(k)_di(k)”i(k)}/ k=0,1,2,...,
A

FLj#

Aui(k) = ri(k) — ei(k)ui(k) + fi(k)xi(k), i=1,2,...,n
(1.6)

Some sufficient conditions are established on the permanence and the global stability of the
system.

Recently, we see that in [9, 10] the authors studied the following nonautonomous
continuous Lotka-Volterra competitive system with pure delays and feedback controls:

n n 0
x(t) = x;(t) | rit) = D aii(t)x; (t = 75(t)) — Zf_ Hb,-j(t, s)x;(t +s)ds

j=1 =1

(1.7)
= ci(bui(t) — di(H)ui(t - Ti(t))] ,

u(t) = —ei(Hui(t) + fi{t)xi(t) + g(H)xi(t = 6i(t)), i=12,...,n.

The sufficient conditions for which a part of the n-species is driven to extinction and the
surplus part of the n-species remains permanence are established.

However, we see that for general discrete n-species population systems the results for
which a part of the n-species is driven to extinction and the surplus part of the n-species
remains the permanence, up to now, are still not obtained. Therefore, motivated by the
above works, in this paper we study the following discrete nonautonomous Lotka-Volterra
competitive system with pure delays and feedback controls

xi(k +1) = x;(k) exp{ri(k) - iai]-(k)xj(k - Tjj)

j=1

n Oij (18)
- > D bi(k)xj(k = 1) - di(k)ui(k - 7) ¢,

j=11=0

ui(k + 1) = (1 - ei(k))ui(k) + gl(k)xl(k - 6i)1 i= 1/2/' . n.

The main purpose is to establish a criterion for which guarantee the part species
Xp41, Xr42, - - ., Xy in system (1.8) is driven to extinction. The method used in this paper is to
constructing the multiple discrete Lyapunov functions. On the permanence of the surplus
species x1,x2, ..., X, owing to the length of this paper, we will give the discussion in another

paper.
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This paper is organized as follows. In next section, as preliminaries, some assumptions
and useful lemmas are introduced. In Section 3, the main results of this paper on the
extinction of a part of the n-species of system (1.8) are established. In Section 4, an example
is presented to illustrate the feasibility of our results.

2. Preliminaries

Let Z denote the set of all nonnegative integers. For any bounded sequence y(k), we denote
Yy = sup,,1y(k)}, v = infrez{y(k)}. Throughout this paper, we introduce the following
assumptions. B

(Hy) ri(k) is a bounded sequence defined on Z; a;j(k), di(k), gi(k) and byji(k) (i,j =
1,2,...,n,1 =0,1,... ,oij) are nonnegative bounded sequences defined on Z; Tij,
7, 6i,and 0 (i,j = 1,2,...,n) are nonnegative integers.

(H;) Sequences e;i(k) (i=1,2,...,n) satisfy 0 < e;(k) < 1forall k € Z.

(H3) There exist positive integers w and A such that foreachi=1,2,...,n
n+w-1 n+i-1 Oii
liminf 3’ ri(s) >0,  liminf > I:a,-,-(s) + Zb,-ﬂ(s)] > 0. (2.1)
n— o e n— o e =0

(H4) There exists positive integer p such that foreachi=1,2,...,n

n+p-1

limsup [ | (1-ei(s)) < 1. (2.2)

n— oo n

Let Ry = [0,00) and R? = {x = (x1,x2,...,%,) : xi € R,, i =1,2,...,n}. We denote
by int R} the interior of R. For any nonnegative constants a and b with a < b, we denote
by [a,b], the set of all integers in the interval [a, b]. For some integer m > 0, we denote by
D, [-m, 0], the space of all nonnegative discrete time function ¢ : [-m,0], — R’ with norm
Ipll = sup{[$(s)] : s € [~m, 0] ).

Let 7 = max{7;, 7;,6;,0i : i,j = 1,2,...,n}. Motivated by the biological background
of system (1.8), in this paper we only consider all solutions of system (1.8) that satisfy the
following initial conditions:

xi(s) = ¢i(s) > 0/ ui(s) = ‘Pi(s) > 0/ s € [_m/O]Z/ i= 1/2/' .., N, (23)

where ¢ = (P1,¢2,...,¢,) € D.[-m, 0], and ¢ = (¢1,¢2,...,¢,) € D.[-m,0],. For any
¢, ¢ € D.[-m,0],, let z = (¢, ¢), by the fundamental theory of difference equations, system
(1.8) has a unique solution (x(s, z), (s, z)) satisfying the initial condition (2.3), where x(s, z) =
(x1(s,2),x2(8,2),...,xu(s,2)) and u(s, z) = (u1(s,z),uz(s, z),...,uy(s,z)). It is obvious that
solution (x(s, z), (s, z)) is positive, that is, x;(s,z) > 0 and u;(s,z) >0 (i = 1,2,...,n) for all
se”Z.

We first consider the following nonautonomous difference inequality system:

y(n+1) <y(n)expl{a(n) - p(n)y(n)}, neZz (2.4)
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where a(n) and p(n) are bounded sequences defined on Z and p(n) > 0 for all n € Z. We
have the following result.

Lemma 2.1 (see [11]). Assume that there exists an integer A > 0 such that
n+i

hgianﬁ(k) >0, (2.5)
* k=n

then there exists a constant M > 0 such that for any nonnegative solution y(n) of system (2.4) with
initial value y(ny) = yo > 0, where ny € Z is some integer,

limsup y(n) < M. (2.6)

n—oo
Next, we consider the following nonautonomous linear difference equation:
v(n+1) =yn)v(n) +w(n), (2.7)

where y(n) and w(n) are nonnegative bounded sequences defined on Z. We have the
following results.

Lemma 2.2 (see [11]). Assume that there exists an integer A > 0 such that
n+A

limsup[ [y(k) <1, (2.8)

n—0 f=pn

then there exists a constant M > 0 such that for any nonnegative solution v(n) of system (2.7) with
initial value v(ng) = vy > 0, where ny € Z is some integer,

limsup v(n) < M. (2.9)

n— oo

Lemma 2.3 (see [11]). Assume that the conditions of Lemma 2.2 hold, then for any constants € > 0
and My > 0 there exist positive constants 6 = 6(¢) and n = #i(e, M1) such that for any np € Z and
0 < vy < My, when w(n) < 6 for all n > 1y, one has

v(n,ny,vg) <e Vmn>ng+n, (2.10)

where v(n, 1y, vy) is the solution of (2.7) with initial value v(fiy) = vy.

Lemma 2.4. Assume that assumptions (H1)—(Hy) hold, then there exists a constant My > 0 such
that

limsup x;(k) < My, limsupu;(k) <M, i=12,...,n (2.11)

k— oo k— oo

for any positive solution (x1(k), x2(k), ..., xn(k), ui(k), uz(k), ..., u,(k)) of system (1.8).
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Proof. Let (x1(k), x2(k), ..., x,(k), u1(k), uz(k), ..., u,(k)) be any positive solution of system
(1.8). For eachi € {1,2,...,n}, we have

xi(k +1) = x;(k) exp{r,(k) Zal](k)x](k ;) - Zzl]:bl]l(k)x](k—l)—d(k)u,(k T,)}

j=1 j=11=0

< xi(k) exp{ri(k)},
2.12)

then, for any integer k > 0 and 6 < 0 with k + 8 > 0, summing inequality (2.12) from k + 6 to
k — 1, we obtain

xi(k +0) > x;(k) exp{ Z rl(s)} (2.13)

s=k+60

Therefore, for any integer k > 7, from (2.13) and the first equation of system (1.8) we obtain

xi(k +1) < xi(k) eXp{ri(k) - aii(k)xi(k - 7ii) = ibul(k)xl’(k - 1)}

I=

0
k-
Sxi(k)eXp{ri(k) au(k)xz(k)exp{ ﬁr(s)} (2.14)

s=k+60

Oii k-1
Zbul(k)xl(k eXP{ ri(s } }
s=k-1

1=0

Since for any k > T and [ € [0, 7],

>~

-1
ri(s) < T, (2.15)
+0

1]
bl

s

where r}' = sup,_,7i(k), we have from (2.14),
xi(k +1) < x;i(k) eXp{ri(k) —hi (aii(k) + ibiil(k)>xi(k)} (2.16)
1=0

for any k > 7, where h; = exp{-7r}'}.
We consider the following auxiliary equation:

vi(k +1) <yi(k) exp{ri(k) - fi()yi(k)}, ke Z, (217)
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where f;(k) = hi(a;i (k) +Zf:""0 biii(k)), then by assumption (H3) and applying Lemma 2.1 there

exists a constant N; > 0 such that

limsup x;(k) < N; (2.18)

k— o0

for any positive solution y;(k) of (2.17). Therefore, from the comparison theorem of difference
equation, we finally obtain

limsup x;(k) < N;. (2.19)

k—oo
Further form inequality (2.19), there exists a positive constant k; > 7 such that
xi(k) < N;, xi(k-06;)<N; Vk>k. (2.20)

Thus, from the second equation of system (1.8), we obtain

ui(k+1) < (1-ei(k))ui(k) + (fi(k) + gi(k))N; (2.21)
for all k > k;. We consider the following auxiliary equation:

vi(k +1) = (1 -ei(k))vi(k) + (fi(k) + gi(k))N;, (2.22)
then by assumption (Hy) and applying Lemma 2.2, there exists a constant N such that

limsup v;(k) < N} (2.23)

k— o0

for any positive solution v;(k) of (2.22). Let v} (k) be the solution of (2.22) with initial value
v} (ki) = u;(k;), then from the comparison theorem of difference equation, we have u;(k) <
v’ (k;) for all k > k;. Thus, we finally obtain

limsup u;(k) < N7}. (2.24)

k— o0

Let N = maxy<i<s { N;, N/}, then from (2.19) and (2.24) we finally see that the conclusions of
Lemma 2.4 hold. O
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3. Main Results

In this section, we discuss the extinction of the part of species x,.1,...,x, of system (1.8).
Define functions as follows:

O',']'
Ajj(k) = aij(k +7j) + D bij(k +1),
1=0 (3.1)

Di(k) = di(k + 7;), Ri(k) = gi(k +6;),

wherei,j=1,2,...,n.

Theorem 3.1. Assume that assumptions (H1)—(Hy) hold and there exists an integer 1 < r < n such
that for any h > r there exists an integer i, < h such that

k+w-1 A (k
lim supM < liminf 1 () Vj<h,
koo S ir(s) koo Au(k)
. Du(k) Apn(®) ST () A (k)
liminf > limsu limsu - ,
ke en(k) mp< Ri(K) gl SR T (6) ~ Ru(k) (3.2)

D; Api el Ajyi
D, (k) < liminf hi, (F) liminfzs‘k 7 (S) _ Aii (k) ,
i k— oo Rih (k) k—oo ZIS(:;:)_l T'h(S) Rih (k)

thenforeach i=r+1,...,nonehas
]" i 4 ]" i 7 i .
klIIl X (k) 0 klIIl u (k) 0 § X (k) <o (3 3)

for any positive solution (x1(k), x2(k), ..., x,(k), u1(k), uz(k), ..., u,(k)) of system (1.8).

Proof. From assumption (H>), there exist constant 770 > 0 and integer Ky > 0 such that

k+w-1

Z ri(s) > 1o Vk > K. (3.4)
s=k
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We first prove that limy _, . x, (k) = 0. Let h = n and i, = p. From conditions (3.2) we can find

positive constants a1, po, 3, dna, €, and integer K, > Ko such that

forallk > K,and j=1,2,..

forallk >K,and j=1,2,.
Let (x(k),u(k)) =

solution of system (1.8). Constructing the following discrete Lyapunov functional

S r(s) _am am _ An(k)

£ 7
Zl;:z’_l rp(s) X2 ! [L7%) Apj(k)

D, (k) S Ang anlApn(k) — anpAn(k)

en(k) ) > ap R, (k) ’
D, (k) _ a2 Anp (k) — am App (k)
ep(k)  am am Ry (k)

., n. Consequently,

kw1
SZ_;{ (—amrp(s) + anatn(s)) < —€nttuato,
an1 Apj(k) — anpAnj(k) <0,
ansen(k) — appDy(k) <0,
et Ay () = 2 Ay () + Ry (K) <10,
—ampep(k) + anDy(k) <0

an Apn(k) — anp Apn(k) — anaRy (k) <0

.., N

(3.5)

(3.6)

(3.7)
(3.8)
(3.9)

(3.10)

(3.11)

(x1(k), x2(k), ..., xn(k), u1(k), uz(k), ..., u,(k)) be any positive

Vi (k) = 2, (k)2 (k)

X exp{an3up(k) — sty (k)

Y, Dy api(s+Tp)xi(8) +am D, D, D bpji(s +Dx;(s)
J=1s=k-1p; =1 1=0 s=k-1

k-1
+ & Z dp(s +7p)up(s) = et

— anzzz Z bnjl(s + l)x/(s) —an2

+ ap Z Sp(5+6p)xp(S) — aps Z (S + 6n)xn(s)

n k-1 n_ %j k-1

n k-1

s=k-T, j=15=k—7n;

n Onj k-1
j=11=0s=k-1 s=k-1,
k-1 k-1

s=k-6, s=k—6,

Z anj (s + Tnj) x; (s)

k-1
Z dn(s + Tn)un(s)

(3.12)
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By calculating, we obtain

Vo(k +1)
Va(k)

j=1 j=11=0

= exp{ — [r,,(k) = Dapj(k)xj(k - 7) - Zﬁbpﬂ(k)x,-(k +1) = dp (k)uy (k - Tp)]

+ An2 [Tn(k) N ia”f(k)xf (k - Tn;’) - iibnﬂ(k)xj(k +1) — dp(k)un(k - Tn)]

j=1 j=11=0

+ s [—ep (k)uy (k) + gy (k)xp (k= 6p) ] — ana [—en (k)1 (k) + gn(k)x, (k — 64)]
+ Y [apj (k + 7)) xj (k) = apj (k)x; (k = 75)]
=1

+ a1 D, D [bpji(k + 1)xj(k) = by (k)xj(k = 1)]

j=11=0

+ at [dp (K + 7)) (k) = dpy (k) (k = 7,)]

— a2 ) [anj (k + Tj) xj (k) = anj (k) xj (k = 7)) ]
j=1

22> [buji(k + Dx;(K) — by (k)x; (k - D]
j=11=0

— app[dn(k + Tty (k) = dn(K)tin (k = 73)]
+ s [gp (K + 6p) % (k) = g (K)xp (K = 6)]

— 04 [gn(k + 6n)xn(k) - gn(k)xn(k - 6n)] }

= eXP{ - anlrp(k) +anry(k) - (“n3ep(k) - anle(k))up(k)

n-1
— (@2 Dy (k) = ansen (k) 1un (k) + " (a1 Apj(k) — i Anj (k) ) x; (k)
j#p

+ (anlApp(k) - anZAnp(k) - an3Rp(k)>xp(k)

+ (anlApn(k) - anZAnn (k) - an4Rn(k))xn (k) } .

(3.13)
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From inequalities (3.7)—(3.11), we can obtain

Va(k +1) <V, (k) exp{—amrp(k) + aporn(k)} Vk > K,. (3.14)

For any k > K,, we choose an integer m > 0, such that k € [K, + mw, K, + (m + 1)w), then
from (3.6) and (3.14) we further have

k-1
V. (k) < V,(K,) exp{ Z (—amrp(s) + cxnzrn(s))}

s=K, s=K,+mw

< Vu(Ky) exp{-enatpanom + M, }

n+mw 1 k-1
< Viu(Ky) eXP{ < Z > (_“nlrp(s) + “nzrn(s))} (3.15)
{
{-

< Vu(Ky) exp{-Ank + M}, },
where
Ay, = EnlxanJZTZO/ M:‘l =M, + €20 (1 + %)/
(3.16)
M, = sup(—anty(k) + apr,(k))w.
kez
On the other hand, from assumptions (H;), we have
V. (k) > x;“"‘ (k)xam (k)
n k-1
X exp < —natty (k) — Zanz anj (s + Tyj) X (5)
j=1 s=k—Ty;
Onj k-1
- Z“nzz Z bn]l(s +1) x](s) an2 Z dn(s + Tn)un(s)
j=1 1=0 s=k-1 s=k-1,
k-1
— 04 Z gn(s+ 6n)xn(s)} (3.17)
s=k-6,

5 (k) ()

n
X exp { ~a Mo — a7 Y @M
=

n Onj _
— @ >, D bujl Mo — aypTdy Mo — ﬂn4T§Mo}
=110
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for all k > 7, where constant M, is given in Lemma 2.4. Hence, there exist a positive constant
Q,, > 0 such that

Va(k) > 2, (k)xy (k)Qp Yk > (3.18)

From (3.15) and (3.18), we obtain

1/ay
xa(k) < [ Qi (K V(Ko expl Lok + M| 519
< Q exp(-A;k)
for all k > K,, + T, where
* Ayl -1 * 1/ an * )L”
Q= sup[x" () VK@il exp M;| ™, 4= =2 (3.20)
kez X2
From (3.19), we finally obtain
Jim x,,(k) = 0, > xu(k) < 0. (3.21)
- k=0

Next, we consider the second equation of system (1.8), applying Lemma 2.3 we can
easily obtain u, (k) — Oas k — co.
Now, we suppose that for any f > r, we have obtained

klg}:oxi(k) =0, klg}gcui(k) =0, géxn(k) <o (3.22)
for all i > t. We further will prove
klim x((k)=0,  Dxi(k) < oo. (3.23)
- k=0

From conditions (3.2), we can choose positive constants ay, as, a3, au, € and integer Ky > K,
such that

lec:;cu—l r(s) < apn an Af]'(k)

sk MY dn o da ,

Skl (s)  an ap  Agj(k)

Dik) | as | anAgn(k) — andAu(k) (3.24)
ei(k) " ap apR; (k)

Dy(k) ap  anAy(k) —anAg(k)

< >
eq(k) an an R, (k)
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forallk > Kyand j =1,2,...,t, where i, = g. Consequently,

k+w-1
Z (—atﬂ‘q(s) + atz"t(s)) < —€tapMo,

s=k
anAgj(k) —apAij(k) <0,
auei(k) —apD;(k) <0,
lXﬂAqq(k) — lthAtq(k) + lXt3Rq(k) <0,

—apey(k) +anDy(k) <0

anAgr(k) — an Ay (k) — auRi(k) <0

13

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

forall k > Kyand j =1,2,...,t. Constructing the following discrete Lyapunov functional

Vi(k) = 2™ (k)™ (k)

X exp{at3uq(k) — gy (k)

n k-1 n 9 k-1
+ (Xﬂz Z aq]-(k + qu)x]'(s) + aﬂzz Z bqﬂ(k + l)x](s)
j=1s=k-y; j=11=0s=k-1
k-1 n k-1
+apn Z dg(k +75)ug(s) - atzz Z asj (k + 7j) xj(s)
s=k-1, j=ls=k-i;
n 04 k-1 k-1
- dtzzz Z biji(k +1)x;j(s) - an Z di(k + 7)u(s)
j=11=0 s=k-I s=k-1;

k-1 k-1
+ap D, go(k+65)xq4(s) —aum Y. gi(k+6)xi(s) }

s=k-6,4 s=k-6;

(3.31)
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Calculating V;(k + 1) / Vi(k), similarly to V,,(k), we can obtain

% - exp{ — anry (k) + apri(k)
- (“t3eq(k) - “tqu(k))uq(k)
+ (—apDi(k) + auei(k))u; (k)
et (332)
+ D (anAgj(k) - apAy(k))x;(k)
j#at

+ (anAgg(k) — ap Ay (k) — apRy(k))x,(k)

+ (anAg(k) — anAsu(k) — auRi(k))x: (k) }

for all k > K;. From inequalities (3.26)—(3.30), we further obtain

Vi(k +1) < Vi(k) exp{—zxﬂrq(k) + apri(k) + P(k)} (3.33)
for all k > K;, where
P(k) = > (anAgj(k) + apAsy(k))xj(k). (3.34)
j=t+1

From (3.19) we have P(k) — Oask — oo. Hence,

k+w-1

klijr;o > P(s) =0. (3.35)

s=k
Thus, from (3.22) we can obtain that there exists an integer K} > K; such that

k+w-1

> (~aury(s) + apri(s) + P(s)) < —%stanzqo (3.36)
s=k

for all k > K. By calculating, from (3.33) we obtain

k-1
Vi(k) < Vi(K}) eXp{ 3" (~anry(s) + anri(s) + P(s)) } (3.37)

s=K}
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From this, a similar argument as in the proof of (3.15)—(3.19), we further can obtain
xi(k) < Qj exp{-Afk} Vk>Kj, (3.38)

where Q; and A} are two positive constants. From (3.38), we finally obtain
0
Jim x,(k) = 0, > xi(k) < oo. (3.39)
e k=0

Next, we consider the second equation of system (1.8), applying Lemma 2.3 we can
easily obtain u;(k) — Oas k — oo.
Finally, according to the induction principle, we have

i i =Y, li i =Y i Vi : :
Jim x (k) =0 Jim u (k) =0 kz:(])x (ky<oo Vi>r (3.40)
This completes the proof of Theorem 3.1. O

As consequences of Theorem 3.1, we consider the following two special cases of
system (1.8).

Case 1. Nondelayed nonautonomous discrete n-species Lotka-Volterra competitive systems
with feedback controls

xi(k +1) = xi(k) eXp{ri(k) - iai;(k)xj(k) = di(k)ui(k) }

= (3.41)

ui(k+1) = (1 - ej(k))u;i(k) + gi(k)xi(k), i=1,2,...,n

For system (3.41), assumptions (H;) and (H3) become into the following form

(H}) ri(k) is a bounded sequence defined on Z; a;;(k), di(k) and g;(k) (i,j = 1,2,...,n)
are nonnegative bounded sequences defined on Z.

(H3) There exist positive integers w and A such that foreachi=1,2,...,n

n+w-1 n+i-1

liminf > 7i(s) >0,  liminf > a;(s) > 0. (3.42)

Directly from Theorem 3.1, we have the following corollary.
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Corollary 3.2. Assume that assumptions (H;), (Hz), (Hy) and (Hy) hold and there exists a integer
1 < r < n such that for any h > r there exists an integer iy, < h such that

k+w-1 .
hmsup# <liminf——/— () Vj<h,
k— o0 Z o lh(s) k— o al;,](k)
dn(k) _ . ain(k),. ST () aw(k)
liminf > limsu lim sup - , 3.43
k—oo Eh(k) k—>oop< gh(k) k— oo Zk+w 1Tlh(S) gh(k) ( )

k+w-1 o
hmsupd 1 (F) < liminf ahlh(k)lmmfzi k 1rlh(S) _ i) ,
koo Cin(K) koo \ &iy(k) k—oo SRty () g, (k)

then for eachi=r+1,...,n one has
klgr;cx,-(k) =0, klgl;ui(k) =0, kz:(:)x,-(k) <o (3.44)

for any positive solution (x1(k), x2(k), ..., xn(k), ui(k), uz(k), ..., u,(k)) of system (3.41).

Case 2. Pure delayed nonautonomous discrete n-species Lotka-Volterra competitive systems
without feedback controls

xi(k +1) = x;(k) exp{ri(k)-iaij(k)xj(k-nj)-i %biﬂ(k)xj(k-z)}, i=1,2,...,n.
=1 j=11=0
(3.45)

For system (3.41), assumption (H;) becomes into the following form.

(HY) ri(k) is a bounded sequence defined on Z; a;;(k) and b;j;(k) (i,j = 1,2,...,n,] =
0,1,...,0ij) are nonnegative bounded sequences defined on Z; 7;; and oj; (i, ]
1,2,...,n) are nonnegative integers.

Directly from Theorem 3.1, we have the following corollary.

Corollary 3.3. Assume that assumptions (H{') and (Hz) hold and there exists an integer 1 <r <n
such that for any h > r there exists an integer iy, < h such that

k+w-1 A k
hmsupM <liminf——— i) Vi<h, (3.46)
k— oo Z - lh (S) k—oo Alh](k)

then for eachi=r+1,...,n one has
Jim x;(k) = 0, > xi(k) < o0 (3.47)
- k=0

for any positive solution (x1(k), x2(k), ..., x,(k)) of system (3.45).
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Remark 3.4. By comparison, we easily see that the results obtained in this paper are a very
good extension of the corresponding results obtained in [9] on the extinction of species
for nonautonomous continuous Lotka-Volterra competitive system with pure-delays and

feedback controls to discrete ones.

4. An Example

We consider the following periodic discrete three-species Lotka-Volterra competitive system

with pure-delays and feedback controls:

xi(k +1) = xi(k) exp{ri(k) - iaij(k)xj(k - 1;) = di(k)ui(k - ;) },
j=

ui(k+1) = (1 -ei(k))ui(k) + gi(k)xi(k - &6;), i=1,2,3.

where

1 o
(k) = —+sm<3+5k>,

r3(k) = 3(31 + sin(% + %k)),

1
ap(k) == + sin <3 + %k),

ay (k) =1 +c052<% + %k),
az (k) =4 + sin2<% + %k)
az(k) =8 + sin2<% + %k)

%+ %k),

(4.1)
1
(k) == + sm<4 + %k),
1 1
a (k) = <1 + cos <3 + %k)),
1
aiz(k) = - +COS <3 %k),
an(k) = = 5+ cosz<1 + zk)
3 2
apn(k) == + sin <; + %k),
(4.2)

k= (et (1 T8,
2o (14 70,

o -J(orar (3 59).
- ove (14 39)

1 o
- 2 2
(k) =1+ cos <3+ 2k>.



18 Discrete Dynamics in Nature and Society

Clearly, in system (4.2), r = 2,h = 3,and i) = 1. By calculating, we obtain

. S ra(s) SK33(1/4 +sin(1/5+ (/2)s)) 3
1msupT:hmsup 3 =,
koo Seeri(S) k- Sap[1/2+sin(1/3+ (x/2)s)] 2

SEin(s) . SE[1/2+sin(1/3+ (x/2)s)] 2

hmme lim inf T =,
k—o KO pa(s) koo SFU3(1/4+sin(1/5 + (/2)s)) 3

As(k) . 8+sin®(1/3 + (r/2)(k +733)) _ 32
i 0~ o2 (1/3+ (r/2) (kv ) = 5

liming A (k) hmmf9/2+sin2(1/3+(7r/2)(k+7'32))>%
k—oo An(k) k—w 1/6+sin*(1/3+ (r/2)(k +73)) 14

An(k) .. . 4+sin’(1/3+ (x/2)(k +731))
it = i o (1/3 + (/D) (k+ 1)) =

lim su A (k)hm SEirs(s)  As(k)
PAR®) kampz"”n(s) Rs(k)

k— o0

_ 3/2(1/4 + cos*(1/3 + (/2) (k +T13))) — <8 +sin2(1/3 + (/2) (k + 733))>
= lim sup 1+ cos2(1/3 + (/2)(k + 63))
. 3/2(1/4+1)-8
= 2

As(k) . . Sni(s)  Au(k)
lim in f< R (k) hz?lli.?fzm () Ri(k) >

<0,

2/3(4 +sin?(1/3 + (or/2) (k + 731))> — (1/3(1 + cos*(1/3 + (r/2) (k + 11))))

= liminf 1/3(1+ cos2(1/3 + (x/2)(k + 61)))
L @/3-32 o
B 2/3

lirninfDg,(k) _ 1iminf2 +cos?(1/3 + (o /2) (k + 13)) 53,

koo eak) kew 1/3(14sin%(1/3 + (r/2)K))

_ 1/10(1+sin*(1/3+ (x/2)(k+71))) 3
—=1“,flsip 1/3(1 + cos2(1/3 + (r/2)k)) <5

(4.3)

From these inequalities we see that all conditions (3.2) in Theorem 3.1 hold. In addition, we
also see that assumptions (H;j)—-(Hy) obviously hold. Therefore, by Theorem 3.1 we obtain
that species x3 in system (4.3) is extinct.
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