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1. Introduction

The coexistence and global stability of population models are of the interesting subjects in
mathematical biology. Many authors have argued that the discrete time models are governed
by differential equations which are more appropriate than the continuous ones to describe
the dynamics of population when the population has nonoverlapping generations, a lot has
been done on discrete Lotka-Volterra systems.

May in [1] firstly considered the following autonomous discrete two-species Lotka-
Volterra competitive system:

x(n + 1) = x(n) exp
{
r1 − a11x(n) − a12y(n)

}
,

y(n + 1) = y(n) exp
{
r2 − a21x(n) − a22y(n)

} (1.1)

and studied the stable points, stable cycles, and the chaos behaivor. Further, Lu andWang [2]
studied the permanence and global attractivity of this system.
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Chen and Zhou in [3] considered the following periodic discrete two-species Lotka-
Volterra competitive system:

x(n + 1) = x(n) exp
{
r1

(
1 − x(n)

K1(n)
− μ2(n)y(n)

)}
,

y(n + 1) = y(n) exp
{
r2

(
1 − μ1x(n) −

y(n)
K2(n)

)} (1.2)

and studied the permanence and existence of a periodic solution, and further, sufficient
conditions are established on the global stability of the periodic solution.

Zhang and Zhou in [4] investigated the following nonautonomous discrete two-
species Lotka-Volterra competitive system:

x(n + 1) = x(n) exp
{
r1(n) − a11(n)x(n − k1) − a12(n)y(n − k2)

}
,

y(n + 1) = y(n) exp
{
r2(n) − a21(n)x(n − l1) − a22(n)y(n − l2)

}
.

(1.3)

Some sufficient conditions were obtained for the permanence of the system.
Wang et al. in [5] studied the following general nonautonomous discrete n-species

Lotka-Volterra systems:

xi(k + 1) = xi(k) exp

⎧
⎨

⎩
ri(k) −

n∑

j=1

m∑

l=0

alij(k)xj(k − l) − a12(n)y(n − k2)
⎫
⎬

⎭
, i = 1, 2, . . . , n.

(1.4)

By applying the linear method and constructing the appropriate Lyapunov functionals, the
author established the sufficient conditions which guarantee that any positive solution of this
system is stable and attracts others, and obtained some applications of main results.

Muroya in [6, 7] considered the following general nonautonomous discrete n-species
Lotka-Volterra systems:

Ni

(
p + 1

)
=Ni

(
p
)
exp

⎧
⎨

⎩
ci
(
p
) − ai

(
p
)
Ni

(
p
) −

n∑

j=1

m∑

l=0

alij
(
p
)
Nj

(
p − kl

)
⎫
⎬

⎭
, p = 0, 1, 2, . . . ,

Ni(s) =Nis ≥ 0 ∀s ≤ 0, Ni0 > 0, i = 1, 2, . . . , n,
(1.5)

and related pure delays models, that is, ai(p) = 0 for all p ≥ 0. The author obtained the
permanence and the global asymptotically stable by applying mean-value conditions and the
method of constructing discrete Lyapunov functionals.
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Liao et al. in [8] discussed the following general discrete nonautonomous n-species
competitive system with feedback controls:

xi(k+1)=xi(k) exp

⎧
⎨

⎩
bi(k)−

n∑

j=1

aij(k)xj(k)−
n∑

j=1,j/=i

cij(k)xi(k)xj(k)−di(k)ui(k)
⎫
⎬

⎭
, k=0, 1, 2, . . . ,

Δui(k) = ri(k) − ei(k)ui(k) + fi(k)xi(k), i = 1, 2, . . . , n.
(1.6)

Some sufficient conditions are established on the permanence and the global stability of the
system.

Recently, we see that in [9, 10] the authors studied the following nonautonomous
continuous Lotka-Volterra competitive system with pure delays and feedback controls:

ẋ(t) = xi(t)

⎡

⎣ri(t) −
n∑

j=1

aij(t)xj
(
t − τij(t)

) −
n∑

j=1

∫0

−σij
bij(t, s)xj(t + s)ds

− ci(t)ui(t) − di(t)ui(t − τi(t))
⎤

⎦,

u̇(t) = −ei(t)ui(t) + fi(t)xi(t) + gi(t)xi(t − δi(t)), i = 1, 2, . . . , n.

(1.7)

The sufficient conditions for which a part of the n-species is driven to extinction and the
surplus part of the n-species remains permanence are established.

However, we see that for general discrete n-species population systems the results for
which a part of the n-species is driven to extinction and the surplus part of the n-species
remains the permanence, up to now, are still not obtained. Therefore, motivated by the
above works, in this paper we study the following discrete nonautonomous Lotka-Volterra
competitive system with pure delays and feedback controls

xi(k + 1) = xi(k) exp

⎧
⎨

⎩
ri(k) −

n∑

j=1

aij(k)xj
(
k − τij

)

−
n∑

j=1

σij∑

l=0

bijl(k)xj(k − l) − di(k)ui(k − τi)
⎫
⎬

⎭
,

ui(k + 1) = (1 − ei(k))ui(k) + gi(k)xi(k − δi), i = 1, 2, . . . , n.

(1.8)

The main purpose is to establish a criterion for which guarantee the part species
xr+1, xr+2, . . . , xn in system (1.8) is driven to extinction. The method used in this paper is to
constructing the multiple discrete Lyapunov functions. On the permanence of the surplus
species x1, x2, . . . , xr , owing to the length of this paper, we will give the discussion in another
paper.
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This paper is organized as follows. In next section, as preliminaries, some assumptions
and useful lemmas are introduced. In Section 3, the main results of this paper on the
extinction of a part of the n-species of system (1.8) are established. In Section 4, an example
is presented to illustrate the feasibility of our results.

2. Preliminaries

Let Z denote the set of all nonnegative integers. For any bounded sequence y(k), we denote
y = supk∈Z{y(k)}, y = infk∈Z{y(k)}. Throughout this paper, we introduce the following
assumptions.

(H1) ri(k) is a bounded sequence defined on Z; aij(k), di(k), gi(k) and bijl(k) (i, j =
1, 2, . . . , n, l = 0, 1, . . . , σij) are nonnegative bounded sequences defined on Z; τij ,
τi, δi, and σij (i, j = 1, 2, . . . , n) are nonnegative integers.

(H2) Sequences ei(k) (i = 1, 2, . . . , n) satisfy 0 < ei(k) ≤ 1 for all k ∈ Z.
(H3) There exist positive integers ω and λ such that for each i = 1, 2, . . . , n

lim inf
n→∞

n+ω−1∑

s=n
ri(s) > 0, lim inf

n→∞

n+λ−1∑

s=n

[

aii(s) +
σii∑

l=0

biil(s)

]

> 0. (2.1)

(H4) There exists positive integer β such that for each i = 1, 2, . . . , n

lim sup
n→∞

n+β−1∏

n

(1 − ei(s)) < 1. (2.2)

Let R+ = [0,∞) and Rn
+ = {x = (x1, x2, . . . , xn) : xi ∈ R+, i = 1, 2, . . . , n}. We denote

by intRn
+ the interior of Rn

+. For any nonnegative constants a and b with a < b, we denote
by [a, b]Z the set of all integers in the interval [a, b]. For some integer m ≥ 0, we denote by
D+[−m, 0]Z the space of all nonnegative discrete time function φ : [−m, 0]Z → Rn

+ with norm
‖φ‖ = sup{|φ(s)| : s ∈ [−m, 0]Z}.

Let τ = max{τij , τi, δi, σij : i, j = 1, 2, . . . , n}. Motivated by the biological background
of system (1.8), in this paper we only consider all solutions of system (1.8) that satisfy the
following initial conditions:

xi(s) = φi(s) ≥ 0, ui(s) = ψi(s) ≥ 0, s ∈ [−m, 0]Z, i = 1, 2, . . . , n, (2.3)

where φ = (φ1, φ2, . . . , φn) ∈ D+[−m, 0]Z and ψ = (ψ1, ψ2, . . . , ψn) ∈ D+[−m, 0]Z. For any
φ, ψ ∈ D+[−m, 0]Z, let z = (φ, ψ), by the fundamental theory of difference equations, system
(1.8) has a unique solution (x(s, z), (s, z)) satisfying the initial condition (2.3), where x(s, z) =
(x1(s, z), x2(s, z), . . . , xn(s, z)) and u(s, z) = (u1(s, z), u2(s, z), . . . , un(s, z)). It is obvious that
solution (x(s, z), (s, z)) is positive, that is, xi(s, z) > 0 and ui(s, z) > 0 (i = 1, 2, . . . , n) for all
s ∈ Z.

We first consider the following nonautonomous difference inequality system:

y(n + 1) ≤ y(n) exp{α(n) − β(n)y(n)}, n ∈ Z, (2.4)
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where α(n) and β(n) are bounded sequences defined on Z and β(n) ≥ 0 for all n ∈ Z. We
have the following result.

Lemma 2.1 (see [11]). Assume that there exists an integer λ > 0 such that

lim inf
n→∞

n+λ∑

k=n

β(k) > 0, (2.5)

then there exists a constantM > 0 such that for any nonnegative solution y(n) of system (2.4) with
initial value y(n0) = y0 ≥ 0, where n0 ∈ Z is some integer,

lim sup
n→∞

y(n) < M. (2.6)

Next, we consider the following nonautonomous linear difference equation:

v(n + 1) = γ(n)v(n) +ω(n), (2.7)

where γ(n) and ω(n) are nonnegative bounded sequences defined on Z. We have the
following results.

Lemma 2.2 (see [11]). Assume that there exists an integer λ > 0 such that

lim sup
n→∞

n+λ∏

k=n

γ(k) < 1, (2.8)

then there exists a constantM > 0 such that for any nonnegative solution v(n) of system (2.7) with
initial value v(n0) = v0 ≥ 0, where n0 ∈ Z is some integer,

lim sup
n→∞

v(n) < M. (2.9)

Lemma 2.3 (see [11]). Assume that the conditions of Lemma 2.2 hold, then for any constants ε > 0
andM1 > 0 there exist positive constants δ̂ = δ̂(ε) and n̂ = n̂(ε,M1) such that for any n̂0 ∈ Z and
0 ≤ v0 ≤M1, when ω(n) < δ̂ for all n ≥ n̂0, one has

v(n, n̂0, v0) < ε ∀n ≥ n̂0 + n̂, (2.10)

where v(n, n̂0, v0) is the solution of (2.7) with initial value v(n̂0) = v0.

Lemma 2.4. Assume that assumptions (H1)–(H4) hold, then there exists a constant M0 > 0 such
that

lim sup
k→∞

xi(k) < M0, lim sup
k→∞

ui(k) < M0, i = 1, 2, . . . , n (2.11)

for any positive solution (x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , un(k)) of system (1.8).
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Proof. Let (x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , un(k)) be any positive solution of system
(1.8). For each i ∈ {1, 2, . . . , n}, we have

xi(k + 1) = xi(k) exp

⎧
⎨

⎩
ri(k) −

n∑

j=1

aij(k)xj
(
k − τij

) −
n∑

j=1

σij∑

l=0

bijl(k)xj(k − l) − di(k)ui(k − τi)
⎫
⎬

⎭

≤ xi(k) exp{ri(k)},
(2.12)

then, for any integer k ≥ 0 and θ ≤ 0 with k + θ ≥ 0, summing inequality (2.12) from k + θ to
k − 1, we obtain

xi(k + θ) ≥ xi(k) exp
{

−
k−1∑

s=k+θ

ri(s)

}

. (2.13)

Therefore, for any integer k ≥ τ , from (2.13) and the first equation of system (1.8)we obtain

xi(k + 1) ≤ xi(k) exp
{

ri(k) − aii(k)xi(k − τii) −
σii∑

l=0

biil(k)xi(k − l)
}

≤ xi(k) exp
{

ri(k) − aii(k)xi(k) exp
{

−
k−1∑

s=k+θ

ri(s)

}

−
σii∑

l=0

biil(k)xi(k) exp

{

−
k−1∑

s=k−l
ri(s)

}}

.

(2.14)

Since for any k ≥ τ and l ∈ [0, τ]Z

k−1∑

s=k+θ

ri(s) ≤ τrui , (2.15)

where rui = supk∈Zri(k), we have from (2.14),

xi(k + i) ≤ xi(k) exp
{

ri(k) − hi
(

aii(k) +
σii∑

l=0

biil(k)

)

xi(k)

}

(2.16)

for any k ≥ τ , where hi = exp{−τrui }.
We consider the following auxiliary equation:

yi(k + 1) ≤ yi(k) exp
{
ri(k) − βi(k)yi(k)

}
, k ∈ Z, (2.17)
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where βi(k) = hi(aii(k)+
∑σii

l=0 biil(k)), then by assumption (H3) and applying Lemma 2.1 there
exists a constantNi > 0 such that

lim sup
k→∞

xi(k) < Ni (2.18)

for any positive solution yi(k) of (2.17). Therefore, from the comparison theorem of difference
equation, we finally obtain

lim sup
k→∞

xi(k) < Ni. (2.19)

Further form inequality (2.19), there exists a positive constant ki ≥ τ such that

xi(k) < Ni, xi(k − δi) < Ni ∀k ≥ ki. (2.20)

Thus, from the second equation of system (1.8), we obtain

ui(k + 1) ≤ (1 − ei(k))ui(k) +
(
fi(k) + gi(k)

)
Ni (2.21)

for all k ≥ ki. We consider the following auxiliary equation:

vi(k + 1) = (1 − ei(k))vi(k) +
(
fi(k) + gi(k)

)
Ni, (2.22)

then by assumption (H4) and applying Lemma 2.2, there exists a constantN∗
i such that

lim sup
k→∞

vi(k) < N∗
i (2.23)

for any positive solution vi(k) of (2.22). Let v∗
i (k) be the solution of (2.22) with initial value

v∗
i (ki) = ui(ki), then from the comparison theorem of difference equation, we have ui(k) ≤
v∗
i (ki) for all k ≥ ki. Thus, we finally obtain

lim sup
k→∞

ui(k) < N∗
i . (2.24)

LetN = max1≤i≤n{Ni,N
∗
i }, then from (2.19) and (2.24) we finally see that the conclusions of

Lemma 2.4 hold.
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3. Main Results

In this section, we discuss the extinction of the part of species xr+1, . . . , xn of system (1.8).
Define functions as follows:

Aij(k) = aij
(
k + τij

)
+

σij∑

l=0

bijl(k + l),

Di(k) = di(k + τi), Ri(k) = gi(k + δi),

(3.1)

where i, j = 1, 2, . . . , n.

Theorem 3.1. Assume that assumptions (H1)–(H4) hold and there exists an integer 1 ≤ r < n such
that for any h > r there exists an integer ih < h such that

lim sup
k→∞

∑k+ω−1
s=k rh(s)

∑k+ω−1
s=k rih(s)

< lim inf
k→∞

Ahj(k)
Aihj(k)

∀j ≤ h,

lim inf
k→∞

Dh(k)
eh(k)

> lim sup
k→∞

(
Aihh(k)
Rh(k)

lim sup
k→∞

∑k+ω−1
s=k rh(s)

∑k+ω−1
s=k rih(s)

− Ahh(k)
Rh(k)

)

,

lim sup
k→∞

Dih(k)
eih(k)

< lim inf
k→∞

(
Ahih(k)
Rih(k)

lim inf
k→∞

∑k+ω−1
s=k rih(s)

∑k+ω−1
s=k rh(s)

− Aihih(k)
Rih(k)

)

,

(3.2)

then for each i = r + 1, . . . , n one has

lim
k→∞

xi(k) = 0, lim
k→∞

ui(k) = 0,
∞∑

k=0

xi(k) <∞ (3.3)

for any positive solution (x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , un(k)) of system (1.8).

Proof. From assumption (H2), there exist constant η0 > 0 and integer K0 > 0 such that

k+ω−1∑

s=k

ri(s) ≥ η0 ∀k ≥ K0. (3.4)
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We first prove that limk→∞xn(k) = 0. Let h = n and ih = p. From conditions (3.2) we can find
positive constants αn1, αn2, αn3, αn4, εn and integer Kn ≥ K0 such that

∑k+ω−1
s=k rn(s)

∑k+ω−1
s=k rp(s)

<
αn1
αn2

− εn < αn1
αn2

<
Anj(k)
Apj(k)

,

Dn(k)
en(k)

>
αn4
αn2

>
αn1Apn(k) − αn2Ann(k)

αn2Rn(k)
,

Dp(k)
ep(k)

<
αn3
αn1

<
αn2Anp(k) − αn1App(k)

αn1Rp(k)

(3.5)

for all k ≥ Kn and j = 1, 2, . . . , n. Consequently,

k+ω−1∑

s=k

(−αn1rp(s) + αn2rn(s)
)
< −εnαn2η0, (3.6)

αn1Apj(k) − αn2Anj(k) < 0, (3.7)

αn4en(k) − αn2Dn(k) < 0, (3.8)

αn1App(k) − αn2Anp(k) + αn3Rp(k) < 0, (3.9)

−αn3ep(k) + αn1Dp(k) < 0 (3.10)

αn1Apn(k) − αn2Ann(k) − αn4Rn(k) < 0 (3.11)

for all k ≥ Kn and j = 1, 2, . . . , n.
Let (x(k), u(k)) = (x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , un(k)) be any positive

solution of system (1.8). Constructing the following discrete Lyapunov functional

Vn(k) = x
−αn1
p (k)xαn2n (k)

× exp

⎧
⎨

⎩
αn3up(k) − αn4un(k)

+ αn1
n∑

j=1

k−1∑

s=k−τpj
apj

(
s + τpj

)
xj(s) + αn1

n∑

j=1

σpj∑

l=0

k−1∑

s=k−l
bpjl(s + l)xj(s)

+ αn1
k−1∑

s=k−τp
dp

(
s + τp

)
up(s) − αn2

n∑

j=1

k−1∑

s=k−τnj
anj

(
s + τnj

)
xj(s)

− αn2
n∑

j=1

σnj∑

l=0

k−1∑

s=k−l
bnjl(s + l)xj(s) − αn2

k−1∑

s=k−τn
dn(s + τn)un(s)

+ αn3
k−1∑

s=k−δp
gp

(
s + δp

)
xp(s) − αn4

k−1∑

s=k−δn
gn(s + δn)xn(s)

⎫
⎬

⎭
.

(3.12)
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By calculating, we obtain

Vn(k + 1)
Vn(k)

= exp

⎧
⎨

⎩
− αn1

⎡

⎣rp(k) −
n∑

j=1

apj(k)xj
(
k − τpj

) −
n∑

j=1

σpj∑

l=0

bpjl(k)xj(k + l) − dp(k)up
(
k − τp

)
⎤

⎦

+ αn2

⎡

⎣rn(k) −
n∑

j=1

anj(k)xj
(
k − τnj

) −
n∑

j=1

σnj∑

l=0

bnjl(k)xj(k + l) − dn(k)un(k − τn)
⎤

⎦

+ αn3
[−ep(k)up(k) + gp(k)xp

(
k − δp

)] − αn4
[−en(k)un(k) + gn(k)xn(k − δn)

]

+ αn1
n∑

j=1

[
apj

(
k + τpj

)
xj(k) − apj(k)xj

(
k − τpj

)]

+ αn1
n∑

j=1

σpj∑

l=0

[
bpjl(k + l)xj(k) − bpjl(k)xj(k − l)]

+ αn1
[
dp

(
k + τp

)
up(k) − dp(k)up

(
k − τp

)]

− αn2
n∑

j=1

[
anj

(
k + τnj

)
xj(k) − anj(k)xj

(
k − τnj

)]

− αn2
n∑

j=1

σnj∑

l=0

[
bnjl(k + l)xj(k) − bnjl(k)xj(k − l)]

− αn2[dn(k + τn)un(k) − dn(k)un(k − τn)]
+ αn3

[
gp

(
k + δp

)
xp(k) − gp(k)xp

(
k − δp

)]

− αn4
[
gn(k + δn)xn(k) − gn(k)xn(k − δn)

]
⎫
⎬

⎭

= exp

⎧
⎨

⎩
− αn1rp(k) + αn2rn(k) −

(
αn3ep(k) − αn1Dp(k)

)
up(k)

− (αn2Dn(k) − αn4en(k))un(k) +
n−1∑

j /= p

(
αn1Apj(k) − αn2Anj(k)

)
xj(k)

+
(
αn1App(k) − αn2Anp(k) − αn3Rp(k)

)
xp(k)

+
(
αn1Apn(k) − αn2Ann(k) − αn4Rn(k)

)
xn(k)

⎫
⎬

⎭
.

(3.13)
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From inequalities (3.7)–(3.11), we can obtain

Vn(k + 1) ≤ Vn(k) exp
{−αn1rp(k) + αn2rn(k)

} ∀k ≥ Kn. (3.14)

For any k > Kn, we choose an integer m ≥ 0, such that k ∈ [Kn +mω,Kn + (m + 1)ω), then
from (3.6) and (3.14) we further have

Vn(k) ≤ Vn(Kn) exp

{
k−1∑

s=Kn

(−αn1rp(s) + αn2rn(s)
)
}

≤ Vn(Kn) exp

{(
Kn+mω−1∑

s=Kn

+
k−1∑

s=Kn+mω

)
(−αn1rp(s) + αn2rn(s)

)
}

≤ Vn(Kn) exp
{−εnαn2η0m +Mn

}

≤ Vn(Kn) exp{−λnk +M∗
n},

(3.15)

where

λn =
εnαn2η0

ω
, M∗

n =Mn + εnαn2η0
(
1 +

Kn

ω

)
,

Mn = sup
k∈Z

(−αn1rp(k) + αn2rn(k)
)
ω.

(3.16)

On the other hand, from assumptions (H1), we have

Vn(k) ≥ x−αn1
p (k)xαn2n (k)

× exp

⎧
⎨

⎩
−αn4un(k) −

n∑

j=1

αn2
k−1∑

s=k−τnj
anj

(
s + τnj

)
xj(s)

−
n∑

j=1

αn2

σnj∑

l=0

k−1∑

s=k−l
bnjl(s + l)xj(s) − αn2

k−1∑

s=k−τn
dn(s + τn)un(s)

− αn4
k−1∑

s=k−δn
gn(s + δn)xn(s)

}

≥ x−αn1
p (k)xαn2n (k)

× exp

⎧
⎨

⎩
−αn4M0 − αn2τ

n∑

j=1

anjM0

− αn2
n∑

j=1

σnj∑

l=0

bnjllM0 − αn2τdnM0 − αn4τgnM0

⎫
⎬

⎭

(3.17)
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for all k ≥ τ , where constantM0 is given in Lemma 2.4. Hence, there exist a positive constant
Qn > 0 such that

Vn(k) ≥ x−αn1
p (k)xαn2n (k)Qn ∀k ≥ τ. (3.18)

From (3.15) and (3.18), we obtain

xn(k) ≤
[
Q−1
n x

αn1
p (k)Vn(Kn) exp{−λnk +M∗

n}
]1/αn2

≤ Q∗
n exp{−λ∗nk}

(3.19)

for all k ≥ Kn + τ , where

Q∗
n = sup

k∈Z

[
xαn1p (k)Vn(Kn)Q−1

n expM∗
n

]1/αn2
, λ∗n =

λn
αn2

. (3.20)

From (3.19), we finally obtain

lim
k→∞

xn(k) = 0,
∞∑

k=0

xn(k) <∞. (3.21)

Next, we consider the second equation of system (1.8), applying Lemma 2.3 we can
easily obtain un(k) → 0 as k → ∞.

Now, we suppose that for any t > r, we have obtained

lim
k→∞

xi(k) = 0, lim
k→∞

ui(k) = 0,
∞∑

k=0

xn(k) <∞ (3.22)

for all i > t. We further will prove

lim
k→∞

xt(k) = 0,
∞∑

k=0

xt(k) <∞. (3.23)

From conditions (3.2), we can choose positive constants αt1, αt2, αt3, αt4, εt and integerKt ≥ Kn

such that

∑k+ω−1
s=k rt(s)

∑k+ω−1
s=k rq(s)

<
αt1
αt2

− εt < αt1
αt2

<
Atj(k)
Aqj(k)

,

Dt(k)
et(k)

>
αt4
αt2

>
αt1Aqn(k) − αt2Att(k)

αt2Rt(k)
,

Dq(k)
eq(k)

<
αt3
αt1

>
αt2Atq(k) − αt1Aqq(k)

αt1Rq(k)

(3.24)
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for all k ≥ Kt and j = 1, 2, . . . , t, where ih = q. Consequently,

k+ω−1∑

s=k

(−αt1rq(s) + αt2rt(s)
)
< −εtαt2η0, (3.25)

αt1Aqj(k) − αt2Atj(k) < 0, (3.26)

αt4et(k) − αt2Dt(k) < 0, (3.27)

αt1Aqq(k) − αt2Atq(k) + αt3Rq(k) < 0, (3.28)

−αt3eq(k) + αt1Dq(k) < 0 (3.29)

αt1Aqt(k) − αt2Att(k) − αt4Rt(k) < 0 (3.30)

for all k ≥ Kt and j = 1, 2, . . . , t. Constructing the following discrete Lyapunov functional

Vt(k) = x
−αt1
q (k)xαt2t (k)

× exp

⎧
⎨

⎩
αt3uq(k) − αt4ut(k)

+ αt1
n∑

j=1

k−1∑

s=k−τqj
aqj

(
k + τqj

)
xj(s) + αt1

n∑

j=1

σqj∑

l=0

k−1∑

s=k−l
bqjl(k + l)xj(s)

+ αt1
k−1∑

s=k−τq
dq

(
k + τq

)
uq(s) − αt2

n∑

j=1

k−1∑

s=k−τtj
atj

(
k + τtj

)
xj(s)

− αt2
n∑

j=1

σtj∑

l=0

k−1∑

s=k−l
btjl(k + l)xj(s) − αt2

k−1∑

s=k−τt
dt(k + τt)ut(s)

+ αt3
k−1∑

s=k−δq
gq

(
k + δq

)
xq(s) − αt4

k−1∑

s=k−δt
gt(k + δt)xt(s)

⎫
⎬

⎭
.

(3.31)
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Calculating Vt(k + 1)/Vt(k), similarly to Vn(k), we can obtain

Vt(k + 1)
Vt(k)

= exp

⎧
⎨

⎩
− αt1rq(k) + αt2rt(k)

− (
αt3eq(k) − αt1Dq(k)

)
uq(k)

+ (−αt2Dt(k) + αt4et(k))ut(k)

+
n−1∑

j /= q,t

(
αt1Aqj(k) − αt2Atj(k)

)
xj(k)

+
(
αt1Aqq(k) − αt2Atp(k) − αt2Rq(k)

)
xq(k)

+
(
αt1Aqt(k) − αt2Att(k) − αt4Rt(k)

)
xt(k)

⎫
⎬

⎭

(3.32)

for all k ≥ Kt. From inequalities (3.26)–(3.30), we further obtain

Vt(k + 1) ≤ Vt(k) exp
{−αt1rq(k) + αt2rt(k) + P(k)

}
(3.33)

for all k ≥ Kt, where

P(k) =
n∑

j=t+1

(
αt1Aqj(k) + αt2Atj(k)

)
xj(k). (3.34)

From (3.19) we have P(k) → 0 as k → ∞. Hence,

lim
k→∞

k+ω−1∑

s=k

P(s) = 0. (3.35)

Thus, from (3.22) we can obtain that there exists an integer K∗
t ≥ Kt such that

k+ω−1∑

s=k

(−αt1rq(s) + αt2rt(s) + P(s)
)
< −1

2
εtαn2η0 (3.36)

for all k > K∗
t . By calculating, from (3.33)we obtain

Vt(k) ≤ Vt(K∗
t ) exp

⎧
⎨

⎩

k−1∑

s=K∗
t

(−αt1rq(s) + αt2rt(s) + P(s)
)
⎫
⎬

⎭
. (3.37)
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From this, a similar argument as in the proof of (3.15)–(3.19), we further can obtain

xt(k) ≤ Q∗
t exp{−λ∗t k} ∀k ≥ K∗

t , (3.38)

where Q∗
t and λ

∗
t are two positive constants. From (3.38), we finally obtain

lim
k→∞

xt(k) = 0,
∞∑

k=0

xt(k) <∞. (3.39)

Next, we consider the second equation of system (1.8), applying Lemma 2.3 we can
easily obtain ut(k) → 0 as k → ∞.

Finally, according to the induction principle, we have

lim
k→∞

xi(k) = 0, lim
k→∞

ui(k) = 0,
∞∑

k=0

xi(k) <∞ ∀i > r. (3.40)

This completes the proof of Theorem 3.1.

As consequences of Theorem 3.1, we consider the following two special cases of
system (1.8).

Case 1. Nondelayed nonautonomous discrete n-species Lotka-Volterra competitive systems
with feedback controls

xi(k + 1) = xi(k) exp

{

ri(k) −
n∑

j=1
aij(k)xj(k) − di(k)ui(k)

}

,

ui(k + 1) = (1 − ei(k))ui(k) + gi(k)xi(k), i = 1, 2, . . . , n.

(3.41)

For system (3.41), assumptions (H1) and (H3) become into the following form

(H ′
1) ri(k) is a bounded sequence defined on Z; aij(k), di(k) and gi(k) (i, j = 1, 2, . . . , n)

are nonnegative bounded sequences defined on Z.

(H ′
3) There exist positive integers ω and λ such that for each i = 1, 2, . . . , n

lim inf
n→∞

n+ω−1∑

s=n
ri(s) > 0, lim inf

n→∞

n+λ−1∑

s=n
aii(s) > 0. (3.42)

Directly from Theorem 3.1, we have the following corollary.
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Corollary 3.2. Assume that assumptions (H ′
1), (H2), (H ′

3) and (H4) hold and there exists a integer
1 ≤ r < n such that for any h > r there exists an integer ih < h such that

lim sup
k→∞

∑k+ω−1
s=k rh(s)

∑k+ω−1
s=k rih(s)

< lim inf
k→∞

ahj(k)
aihj(k)

∀j ≤ h,

lim inf
k→∞

dh(k)
eh(k)

> lim sup
k→∞

(
aihh(k)
gh(k)

lim sup
k→∞

∑k+ω−1
s=k rh(s)

∑k+ω−1
s=k rih(s)

− ahh(k)
gh(k)

)

,

lim sup
k→∞

dih(k)
eih(k)

< lim inf
k→∞

(
ahih(k)
gih(k)

lim inf
k→∞

∑k+ω−1
s=k rih(s)

∑k+ω−1
s=k rh(s)

− aihih(k)
gih(k)

)

,

(3.43)

then for each i = r + 1, . . . , n one has

lim
k→∞

xi(k) = 0, lim
k→∞

ui(k) = 0,
∞∑

k=0

xi(k) <∞ (3.44)

for any positive solution (x1(k), x2(k), . . . , xn(k), u1(k), u2(k), . . . , un(k)) of system (3.41).

Case 2. Pure delayed nonautonomous discrete n-species Lotka-Volterra competitive systems
without feedback controls

xi(k + 1) = xi(k) exp

{

ri(k)−
n∑

j=1
aij(k)xj

(
k−τij

)−
n∑

j=1

σij∑

l=0
bijl(k)xj(k−l)

}

, i = 1, 2, . . . , n.

(3.45)

For system (3.41), assumption (H1) becomes into the following form.

(H ′′
1) ri(k) is a bounded sequence defined on Z; aij(k) and bijl(k) (i, j = 1, 2, . . . , n, l =

0, 1, . . . , σij) are nonnegative bounded sequences defined on Z; τij and σij (i, j =
1, 2, . . . , n) are nonnegative integers.

Directly from Theorem 3.1, we have the following corollary.

Corollary 3.3. Assume that assumptions (H ′′
1) and (H3) hold and there exists an integer 1 ≤ r < n

such that for any h > r there exists an integer ih < h such that

lim sup
k→∞

∑k+ω−1
s=k rh(s)

∑k+ω−1
s=k rih(s)

< lim inf
k→∞

Ahj(k)
Aihj(k)

∀j ≤ h, (3.46)

then for each i = r + 1, . . . , n one has

lim
k→∞

xi(k) = 0,
∞∑

k=0

xi(k) <∞ (3.47)

for any positive solution (x1(k), x2(k), . . . , xn(k)) of system (3.45).
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Remark 3.4. By comparison, we easily see that the results obtained in this paper are a very
good extension of the corresponding results obtained in [9] on the extinction of species
for nonautonomous continuous Lotka-Volterra competitive system with pure-delays and
feedback controls to discrete ones.

4. An Example

We consider the following periodic discrete three-species Lotka-Volterra competitive system
with pure-delays and feedback controls:

xi(k + 1) = xi(k) exp

{

ri(k) −
3∑

j=1
aij(k)xj

(
k − τij

) − di(k)ui(k − τi)
}

,

ui(k + 1) = (1 − ei(k))ui(k) + gi(k)xi(k − δi), i = 1, 2, 3.

(4.1)

where

r1(k) =
1
2
+ sin

(
1
3
+
π

2
k

)
, r2(k) =

1
2
+ sin

(
1
4
+
π

2
k

)
,

r3(k) = 3
(
1
4
+ sin

(
1
5
+
π

2
k

))
, a11(k) =

1
3

(
1 + cos2

(
1
3
+
π

2
k

))
,

a12(k) =
1
6
+ sin2

(
1
3
+
π

2
k

)
, a13(k) =

1
4
+ cos2

(
1
3
+
π

2
k

)
,

a21(k) = 1 + cos2
(
1
3
+
π

2
k

)
, a22(k) =

1
2
+ cos2

(
1
3
+
π

2
k

)
,

a31(k) = 4 + sin2
(
1
3
+
π

2
k

)
, a32(k) =

9
2
+ sin2

(
1
3
+
π

2
k

)
,

a33(k) = 8 + sin2
(
1
3
+
π

2
k

)
, d1(k) =

1
10

(
1 + sin2

(
1
3
+
π

2
k

))
,

d2(k) =
1
2
+ sin2

(
1
3
+
π

2
k

)
, d3(k) = 2 + cos2

(
1
3
+
π

2
k

)
,

e1(k) =
1
3

(
1 + cos2

(
1
3
+
π

2
k

))
, e2(k) =

1
4

(
1 + sin2

(
1
3
+
π

2
k

))
,

e3(k) =
1
3

(
1 + sin2

(
1
3
+
π

2
k

))
, g1(k) =

1
3

(
1 + cos2

(
1
3
+
π

2
k

))
,

g2(k) = 1 + cos2
(
1
3
+
π

2
k

)
, g3(k) = 1 + cos2

(
1
3
+
π

2
k

)
.

(4.2)
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Clearly, in system (4.2), r = 2, h = 3, and ih = 1. By calculating, we obtain

lim sup
k→∞

∑k+3
s=k r3(s)

∑k+3
s=k r1(s)

= lim sup
k→∞

∑k+3
s=k 3(1/4 + sin(1/5 + (π/2)s))

∑k+3
s=k[1/2 + sin(1/3 + (π/2)s)]

=
3
2
,

lim inf
k→∞

∑k+3
s=k r1(s)

∑k+3
s=k r3(s)

= lim inf
k→∞

∑k+3
s=k[1/2 + sin(1/3 + (π/2)s)]

∑k+3
s=k 3(1/4 + sin(1/5 + (π/2)s))

=
2
3
,

lim inf
k→∞

A33(k)
A13(k)

= lim inf
k→∞

8 + sin2(1/3 + (π/2)(k + τ33))
1/4 + cos2(1/3 + (π/2)(k + τ13))

≥ 32
5
,

lim inf
k→∞

A32(k)
A12(k)

= lim inf
k→∞

9/2 + sin2(1/3 + (π/2)(k + τ32))
1/6 + sin2(1/3 + (π/2)(k + τ13))

≥ 54
14
,

lim inf
k→∞

A31(k)
A11(k)

= lim inf
k→∞

4 + sin2(1/3 + (π/2)(k + τ31))
1/3(1 + cos2(1/3 + (π/2)(k + τ11)))

≥ 6,

lim sup
k→∞

(
A13(k)
R3(k)

lim sup
k→∞

∑k+3
s=k r3(s)

∑k+3
s=k r1(s)

− A33(k)
R3(k)

)

= lim sup
k→∞

3/2
(
1/4 + cos2(1/3 + (π/2)(k + τ13))

) −
(
8 + sin2(1/3 + (π/2)(k + τ33))

)

1 + cos2(1/3 + (π/2)(k + δ3))

≤ 3/2(1/4 + 1) − 8
2

< 0,

lim inf
k→∞

(
A31(k)
R1(k)

lim inf
k→∞

∑k+3
s=k r1(s)

∑k+3
s=k r3(s)

− A11(k)
R1(k)

)

= lim inf
k→∞

2/3
(
4 + sin2(1/3 + (π/2)(k + τ31))

)
− (

1/3
(
1 + cos2(1/3 + (π/2)(k + τ11))

))

1/3(1 + cos2(1/3 + (π/2)(k + δ1)))

≥ (2/3)4 − (1/3)2
2/3

= 3,

lim inf
k→∞

D3(k)
e3(k)

= lim inf
k→∞

2 + cos2(1/3 + (π/2)(k + τ3))

1/3
(
1 + sin2(1/3 + (π/2)k)

) ≥ 3,

lim sup
k→∞

D1(k)
e1(k)

= lim sup
k→∞

1/10
(
1 + sin2(1/3 + (π/2)(k + τ1))

)

1/3(1 + cos2(1/3 + (π/2)k))
≤ 3

5
.

(4.3)

From these inequalities we see that all conditions (3.2) in Theorem 3.1 hold. In addition, we
also see that assumptions (H1)–(H4) obviously hold. Therefore, by Theorem 3.1 we obtain
that species x3 in system (4.3) is extinct.
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