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This paper proposes a one-sector multigroup growth model with endogenous labor supply in
discrete time. Proposing an alternative approach to behavior of households, we examine the
dynamics of wealth and income distribution in a competitive economy with capital accumulation
as the main engine of economic growth. We show how human capital levels, preferences, and
labor force of heterogeneous households determine the national economic growth, wealth, and
income distribution and time allocation of the groups. By simulation we demonstrate, for instance,
that in the three-group economy when the rich group’s human capital is improved, all the groups
will economically benefit, and the leisure times of all the groups are reduced but when any other
group’s human capital is improved, the group will economically benefit, the other two groups
economically lose, and the leisure times of all the groups are increased.
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1. Introduction

The purpose of this study is to study an economic growth model with heterogeneous
households for providing insights into relations between economic growth and income and
wealth distribution. In the economic growth literature, the Solow model is the starting
point for almost all analyses of economic growth [1]. Nevertheless, the Solow model does
not provide a mechanism of endogenous savings. Ramsey’s 1928 paper on optimal growth
theory has influenced modeling of consumers’ behavior since the late 1960s [2]. This
approach tends to be associated with higher dimensional dynamic systems. The approach
often makes the analysis intractable even for a simple economic growth problem. In his
original contribution to growth theory with capital accumulation, Diamond [3] used the
overlapping generations structure as proposed by Samuelson [4] to examine the long-
term dynamical efficiency of competitive production economies. The model has become
a standard tool in macroeconomics to study economic dynamics in discrete time. These
seminal papers were technically refined and generalized in different ways over years [5–
7], and many other factors, such as human capital, population growth, and innovation, have
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been introduced into these analytical frameworks (e.g., [8–14]). The purpose of this study
is to examine growth issues with endogenous time and heterogeneous groups. It should
be remarked that multigroup growth models with endogenous savings can be found in
literature of economic growth within the traditional approaches (see also, e.g., [15–18]). Our
main deviation from these approaches is that we deal with the problem within a discrete
framework with an alternative approach to behavior of consumers, as illustrated later. The
paper is also an extension of Zhang’s one-sector model with a homogenous population [19].
The paper is organized as follows. Section 2 defines the one-sector growth model with leisure
time and heterogeneous groups. Section 3 analyzes the dynamic behavior of the two-group
model. Section 4 examines impact of changes in some parameters on the wealth and income
distribution. Section 5 simulates the 3-group model. Section 6 concludes the study.

2. The Multigroup Growth Model in Discrete Time

First, we develop a multigroup model in discrete time [20]. The economy has an infinite
future. We represent the passage of time in a sequence of periods, numbered from zero and
indexed by t = 0, 1, 2, . . .. Time 0, being referred to the beginning of period 0, represents the
initial situation from which economy starts to grow. The end of period t − 1 coincides with
the beginning of period t; it can also be called period t. We assume that transactions are made
in each period. The population is classified into groups, indexed by j = 1, . . . , n. Each type
of consumers has a fixed number, denoted by Nj . As our model exhibits constant returns to
scale, the dynamics (in terms of per capita) will not be affected if we allow the population to
change at a constant growth rate over time. Let K(t) denote the capital existing in period t
and N(t) the flow of labor services used at time t for production. Then N(t) is given by

N(t) =
n∑

j=1

hjNjTj(t), (2.1)

where hj is the level of human capital of group j, j = 1, . . . , n, and Tj(t) is the work time of a
representative household of group j.

The production process is described by a neoclassical production function F(t) =
F(K(t),N(t)) [5, 8]. We assume that F(K(t),N(t)) is neoclassical. Introduce f(k(t)) ≡
F(k(t), 1),where k(t) ≡ K(t)/N(t). The function f has the following properties:

(i) f(0) = 0;

(ii) f is increasing, strictly concave on R+ and C2 on R++; f ′(k) > 0 and f ′′(k) < 0;

(iii) limk→ 0f
′(k) = ∞ and limk→+∞f ′(k) = 0.

Let δk denote the fixed rate of capital depreciation. Markets are competitive; thus labor and
capital earn their marginal products, and firms earn zero profits. We assume that the output
good serves as a medium of exchange and is taken as numeraire. The rate of interest, r(t), and
wage rate,w(t), are determined by markets. Hence, for any individual firm r(t) andw(t) are
given at each point of time. The production sector chooses the two variables K(t) and N(t)
to maximize its profit. The marginal conditions are given by

r(t) + δk = f ′(k(t)), w(t) ≡ f(k(t)) − k(t)f ′(k(t)). (2.2)

Let kj(t) denote per capita wealth of group j in t. According to the definitions, we haveK(t) =∑n
j=1kj(t)Nj .
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Divide the two sides of the above equation by N(t):

k(t) =
n∑

j=1

kj(t)nj(t), (2.3)

where nj(t) ≡ Nj/N(t). From (2.1), we see that r(t) andwj(t) are functions of kj(t) and nj(t).
Consumers make decisions on choice of consumption levels of services and

commodities as well as on how much to save. In order to provide proper description of
endogenous savings, we should know how individuals perceive the future. Different from the
optimal growth theory in which utility defined over future consumption streams is used, we
assume that we can find preference structure of consumers over leisure time, consumption,
and saving at the current state. The preference over current and future consumption is
reflected in the consumer’s preference structure over leisure, consumption and saving.
This study uses the approach to consumers’ behavior proposed by Zhang. Theoretical and
empirical implications and applications of the approach are examined in Zhang [21]. We now
describe behavior of consumers. Group j’s per capita current income yj(t) from the interest
payment r(t)kj(t) and the wage payment wj(t)Tj(t) is defined by

yj(t) = r(t)kj(t) +wj(t)Tj(t). (2.4)

The sum of money that consumers are using for consuming, saving, or transferring are not
necessarily equal to the current income because consumers can sell wealth to pay, for instance,
current consumption if the temporary income is not sufficient for purchasing goods and
services. Retired people may not only live on the interest payment but also have to spend
some of their wealth. The total value of wealth that consumer j can sell to purchase goods
and to save is equal to kj(t). Here, we do not allow borrowing for current consumption.
We assume that selling and buying wealth can be conducted instantaneously without any
transaction cost. This is evidently a strict consumption as it may take time to draw savings
from bank or to sell one’s properties. The per capita disposable income of consumer j is defined
as the sum of the current income and the wealth available for purchasing consumption goods
and saving:

ŷj(t) = yj(t) + kj(t) = (1 + r(t))kj(t) +wj(t)Tj(t), j = 1, . . . , n. (2.5)

The disposable income is used for saving and consumption. At each point of time, a consumer
would distribute the total available budget among savings, sj(t), and consumption of goods,
cj(t). The budget constraint is given by

cj(t) + sj(t) = ŷj(t). (2.6)

Denote Thj(t) the leisure time at time t and the (fixed) available time for work and leisure by
T0. The time constraint is expressed by Tj(t) + Thj(t) = T0. Substituting this function into the
budget constraint yields

wj(t)Thj(t) + cj(t) + sj(t) = yj(t) ≡ (1 + r(t))kj(t) +wj(t)T0, j = 1, . . . , n. (2.7)
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At each point of time, consumers decide the three variables subject to the disposable income.
We assume that utility level Uj(t) is dependent on the leisure time, Thj(t), the consumption
level of commodity, cj(t), and the savings, sj(t), as follows:

Uj(t) = T
σj

hj (t)c
ξj
j (t)s

λj
j (t), σj , ξj , λj > 0, σj + ξj + λj = 1, j = 1, . . . , n, (2.8)

where σj , ξj , and λj are, respectively, group j’s propensities to consume and to hold wealth.
Here, for simplicity, we specify the utility function with the Cobb-Douglas. It is important
to examine dynamics with general utility functions. Maximizing Uj subject to the budget
constraints (2.7) yields

wj(t)Thj(t) = σjyj(t), cj(t) = ξjyj(t), sj(t) = λjyj(t). (2.9)

Per capita wealth of group j in period t + 1 is equal to the savings made in period t, that is,

kj(t + 1) = sj
(
yj(t)

)
, j = 1, . . . , n. (2.10)

We will show that the above mappings control the motion of the system.
As output is either consumed or saved, the sum of net savings and consumption equals

output, that is,

C(t) + S(t) −K(t) + δkK(t) = F(t), (2.11)

where C(t) is the sum of consumption, S(t) − K(t) + δkK(t) is the sum of net savings of the
groups, and C(t) =

∑
jcj(t)Nj. It can be shown that (2.11) is redundant in the sense that it can

be derived from the other equations in the system.
The dynamics consist of n-dimensional maps. In order to analyze properties of the

dynamic system, it is necessary to express the dynamics in terms of n variables. The following
lemma, which is proved in Appendix A, shows that the dynamics is controlled by an n-
dimensional maps system.

Lemma 2.1. The dynamics of the economic system is governed by the following n-dimensional
difference equations:

kj(t + 1) = φj

(
k1(t), . . . , kn(t)

)
, j = 1, . . . , n, (2.12)

where φj are differentiable functions of k1(t), . . . , kn(t). Moreover, all the other variables can be
determined as functions of k1(t), . . . , kn(t) in any period by the following procedure: k(t) by (A.9)
→ Tj(t) by (A.7) → Thj(t) = T0 − Tj(t) → N(t) by (2.1) → r(t) and wj(t) by (2.2) → yj(t) by
(2.7) → cj(t) and sj(t) by (2.9) → K(t) = k(t)N(t) → F(K(t),N(t)) → f(t) = F(t)/N(t) →
Uj(t) by (2.8).

As it is difficult to find explicit conclusions about dynamic behavior of the system, in
the remainder of this study we are concerned with a few special cases of the general model.
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3. The Two-Group Model with the Cobb-Douglas Production Function

This section is concerned with the case that there are two groups of labor force, and the
production function takes on the Cobb-Douglas form by f(k) = Akα, where 0 < α < 1.
As shown in (A.9) in Appendix A, k is determined as a function of k1(t) and k2(t) by the
following equation:

Λ(k) ≡ k − φ1
(
k1, k2

)
kβ − φ2

(
k1, k2

)
= 0, (3.1)

in which

φ1
(
k1, k2

) ≡
∑

j

kjσj > 0, φ2
(
k1, k2

) ≡ AK − αA
∑

j

njkj > 0,

σj ≡
σjNjδA

A
> 0, nj = Nj

(
ξj + λj

)
, A ≡ 1

(∑
jhjnj

)
βT0

> 0.
(3.2)

Equation (3.1) has a unique solution for given k1(t) and k2(t). The existence of at least one
positive solution is guaranteed by Λ(0) < 0 and Λ(k) → +∞ as k → +∞. Let the minimum
positive solution of Λ(k) = 0 be K. As

Λ′(K) = 1 − βφ1K
−α = 1 − φ1K

−α + αφ1K
−α =

φ2

K
+ αφ1K

−α > 0,

Λ′′(k) = βαφ1k
−1−α > 0, ∀k > 0,

(3.3)

we conclude that Λ′(k) > 0 for any k ≥ K. As Λ(K) = 0, we see that it is impossible for any
k > K to satisfy Λ(k) = 0. As K is the minimum positive solution, the equation thus has a
unique positive solution. We denote this solution by k = φ(k1, k2). According to (A.1) and
with f(k) = Akα, we have

yj(t) =
(
αAk−β + δ

)
kj + hjβT0Akα, j = 1, 2. (3.4)

Insert sj = λjyj and (3.4) into the difference equations (2.10):

kj(t + 1) = λj
[(
αAφ−β(t) + δ

)
kj(t) + hjβT0Aφα(t)

]
, j = 1, 2. (3.5)

The two difference equations contain only two variables, k1(t) and k2(t). With proper initial
conditions k1(0) and k2(0), the two difference equations determine values of k1(t) and k2(t) in
any period. According to Lemma 2.1, we can determine all the other variables in the system.
Hence, it is sufficient to examine the dynamic properties of the two difference equations (3.5).

An equilibrium point of the system is given by

hjβT0Aφα =
(

1
λj

− δ − αAφ−β
)
kj . (3.6)
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At equilibrium we also have λjyj = kj . From λjyj = kj and (3.4), we have

kj =
hjβT0Akα

(
λj − αAk−β) , (3.7)

where λj ≡ (ξj+σj)/λj+δk > 0. To guarantee that kj is positive, we should require λj > αAk−β.
From (2.11), we have

∑

j

(
cj + sj

)
Nj = (f + δk)N. (3.8)

Insert (2.9) and λjyj = kj into the above equation:

(
λ̃1 −Ak−β)N1k1 +

(
λ̃2 −Ak−β)N2k2 = 0, (3.9)

where we use kN = k1N1 + k2N2 and λ̃j ≡ ξj/λj + δk > 0. Substitute (3.7) into the above
equation:

H(k) ≡
(
kβλ̃1 −A

)
h1N1

(
kβλ1 − αA

) +

(
kβλ̃2 −A

)
h2N2

(
kβλ2 − αA

) = 0. (3.10)

As denominators are positive, for the equation to have solutions, kβλ̃1 − A and kβλ̃2 − A
should have the opposite signs. For convenience of analysis, in the reminder of this we require
λ̃1 > λ̃2, that is, ξ1/λ1 > ξ2/λ2. This requirement implies that group 1’s “relative” propensity to
save is higher than group 2’s. Under this requirement, we have kβλ̃1 −A > 0 and kβλ̃2 −A < 0.
In Appendix B, we show that this equation has a unique (economically meaningful) solution.
The following lemma is proved in Appendix B.

Lemma 3.1. The two-group economy has a unique equilibrium.
It should be noted that as discussed in Appendix B, the equilibrium may be either stable or

unstable, depending on the parameter values. Now the impact of changes in some parameters is
examined.

4. Impact of Changes of Some Parameters in the Two-Group Model

This section examines effects of changes in some parameters on the economic system. First,
we study impact of change in group 1’s human capital. Taking derivatives of (3.10) with
respect to h1,

−dH
dk

dk

dh1
=

(
kβλ̃1 −A

)
N1

(
kβλ1 − αA

) > 0, (4.1)

in which dH/dk < 0 is given by (B.5). As h1 is increased, the capital intensity, k, increases. As
the productivity of group 1’s labor force is increased, the average human capital tends to be



Discrete Dynamics in Nature and Society 7

increased. In the long term, the capital intensity in terms of the qualified labor input tends to
be increased. From r = αAk−β − δk and wj = hjβAkα,we see that as group 1’s level of human
capital increases, the rate of interest falls, and the wage rates rise.

From (3.7), we have

dk1
dh1

=
k1
h1

+

(
λ1 −Ak−β

λ1 − αAk−β

)
αk1
k

dk

dh1
,

dk2
dh1

=

(
λ2 −Ak−β

λ2 − αAk−β

)
αk2
k

dk

dh1
.

(4.2)

We see that if λ2 < (>)Ak−β, then an increase in group 1’s human capital reduces (increases)
group 2’s per capita wealth. As λ2 = (ξ2+σ2)/λ2+δk,we see that λ2 > Ak−β tends to be satisfied
if group 2’s propensity to save is relatively low. In the case that group 2’s propensity to save
is relatively low, group 2’s wealth per capita is increased when group 1’s human capital rises.
If λ1 > Ak−β, then an increase in group 1’s human capital increases group 1’s per capita
wealth. In the case of λ1 < Ak−β, the impact on k1 is ambiguous if no further requirement
on the parameter values is added. We see that as group 1’s human capital is improved, the
impact on the capital intensity is certain but the effects on the levels of wealth per capita are
ambiguous. From (B.6), we have

dThj

dh1
= − αAβk−β−1Thj(

λj − αAk−β
)

dk

dh1
< 0. (4.3)

As group 1’s level of human capital is increased, the leisure time of each group falls. As the
human capital is improved, the capital intensity is increased. Consequently, the wage rate is
increased. The value of work hour becomes higher for each group. Hence, the leisure time is
reduced. By yj = kj/λj and cj = ξjkj/λj , we have

dyj

dh1
=

1
λj

dkj

dh1
,

dcj

dh1
=

ξj

λj

dkj

dh1
. (4.4)

The effects on the disposable incomes and consumption levels have the same direction as that
of the effect on the wealth per capita.

To study impact of preference change, we have to specify change pattern as σj + ξj +
λj = 1. We are concerned with group 1’s propensity to use leisure time, σ1. We specify the
preference change pattern by dσ1 = −dξ1 and dλ1 = 0. That is, as the propensity to use leisure
increases, the propensity to consume goods declines, and the propensity to save remains
invariant. Taking derivatives of (3.10)with respect to σ1,

−dH
dk

dk

dσ1
= − h1N1
(
kβλ1 − αA

)
λ1

< 0. (4.5)
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As the propensity to consume leisure increases, k decreases. As the household of group 1
values more leisure, the capital intensity is reduced. From (B.6), we have

dTh1
dσ1

=
Th1
σ1

− αAβk−β−1Th1
(
λ1 − αAk−β)

dk

dσ1
> 0,

dTh2
dσ1

= − αAβk−β−1Th2
(
λ2 − αAk−β)

dk

dσ1
> 0.

(4.6)

As group 1’s propensity to use leisure increases, the leisure time of each group rises. From
r = αAk−β − δk and wj = hjβAkα, we see that as group 1’s propensity to use leisure time
increases, the rate of interest rises, and the wage rates fall. From (3.6), we have

dkj

dσ1
=

(
λj −Ak−β

λj − αAk−β

)
αkj

k

dk

dσ1
. (4.7)

We see that if λj < (>)Ak−β, then an increase in group 1’s propensity to enjoy leisure reduces
(increases) group j’s per capita wealth. By yj = kj/λj and cj = ξjkj/λj ,we have

dyj

dσ1
=

1
λj

dkj

dσ1
,

dc1
dσ1

=
ξ1
λ1

dk1
dσ1

− k1
λ1

,
dc2
dσ1

=
ξ21
λ2

dk2
dσ1

. (4.8)

5. Simulating the 3-Group Model

This section simulates the model when the economy consists of three different groups.
For illustration, we specify α = 1/3. That is, the production function takes on the Cobb-
Douglas form, f(k) = Ak1/3. The choice does not seem to be unrealistic. For instance, some
empirical studies on the US economy demonstrate that the value of the parameter, α, in the
Cobb-Douglas production is approximately equal to 0.3 (e.g., [22]). As shown in (A.9) in
Appendix A, k is determined as a function of kj(t), j = 1, 2, 3 by the following equation:

Λ(k) ≡ k − φ1k
2/3 − φ2 = 0, (5.1)

in which

φ1 ≡
3∑

j=1

kjσj > 0, φ2 ≡ AK − αA
3∑

j=1

njkj > 0,

σj ≡
σjNjδA

A
> 0, nj = Nj(ξj + λj), A ≡ 1

(∑5
j=1hjnj

)
βT0

> 0.

(5.2)
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Equation (5.1) has a unique solution for given kj(t). The solution is explicitly given by

k(t) = φ
({

kj(t)
})

=

[
φ1

3
+

21/3φ2
1

3
(
2φ3

1 + 27φ2 + 3φ0
√
3φ2
)1/3 +

(
2φ3

1 + 27φ2 + 3φ0
√
3φ2
)1/3

3
√
2

]3
,

(5.3)

where

φ0
({

kj(t)
}) ≡

[
4φ2

1

{
kj(t)

}
+ 27φ2

{
kj(t)

}]1/2
. (5.4)

According to (A.1) and with f(k) = Akα,we have

yj(t) =

(
Ak−2/3

3
+ δ

)
kj +

2hjT0Ak1/3

3
, j = 1, 2, 3. (5.5)

Insert sj = λjyj and (5.5) into the difference equations: (2.10)

kj(t + 1) = λj

[(
Aφ−2/3({kj

})

3
+ δ

)
kj +

2hjT0Aφ1/3({kj
})

3

]
, j = 1, 2, 3. (5.6)

The three difference equations contain three variables, {kj(t)}. With proper initial conditions
{kj(0)}, these difference equations determine values of {kj(t)} in any period. According to
Lemma 2.1, we can determine all the other variables in the system. Hence, it is sufficient to
examine the dynamic properties of the difference equations (5.3) as with the two-group case
in the previous sections.

At equilibrium we have λjyj = kj . From λjyj = kj and (5.5), we solve {kj} as in (3.7).
Similar to (3.10), the equilibrium value of k is given by

H(k) ≡
3∑

j=1

(
k2/3λ̃j −A

)
hjNj

(
k2/3λj −A/3

) = 0. (5.7)

Similar to the requirements (B.1)–(B.3), we should require k to satisfy certain conditions for
the equilibrium solution to be meaningful.

Rather than further examining these conditions, we simulate the model. To simulate
the model, we specify the groups’ human capital and preferences as follows:

⎛

⎝
h1

h2

h3

⎞

⎠ =

⎛

⎝
13
4
1

⎞

⎠ ,

⎛

⎝
λ1
λ2
λ3

⎞

⎠ =

⎛

⎝
0.65
0.55
0.25

⎞

⎠ ,

⎛

⎝
σ1

σ2

σ3

⎞

⎠ =

⎛

⎝
0.29
0.3
0.45

⎞

⎠ ,

⎛

⎝
N1

N2

N3

⎞

⎠ =

⎛

⎝
3
82
15

⎞

⎠ .

(5.8)
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Group 1 is called the rich class—with the highest level of human capital and the highest
propensity to own wealth. The population share of the rich in the total population is only 3
percent. Group 2 is termed as the working class. Its population share is 82 percent. Group 3 is
the poor class. The human capital level of this group is low, and its propensity to save is low.
The share of the population is 15 percent. We specify the rest three parameters as follows

A = 3.3, δk = 0.06, T0 = 24. (5.9)

The simulation demonstrates a unique equilibrium value of k = 34.08. The equilibrium values
of the other variables are as follows:

K = 86975.5, F = 27305.6, r = 0.045,
⎛

⎝
k1
k2
k3

⎞

⎠ =

⎛

⎝
4506.55
885.21
57.92

⎞

⎠ ,

⎛

⎝
Th1
Th2
Th3

⎞

⎠ =

⎛

⎝
21.68
16.92
14.62

⎞

⎠ ,

⎛

⎝
c1
c2
c3

⎞

⎠ =

⎛

⎝
415.99
241.42
69.51

⎞

⎠ ,

⎛

⎝
w1

w2

w3

⎞

⎠ =

⎛

⎝
92.73
28.53
7.13

⎞

⎠ .

(5.10)

The wealth per capita of the rich group is 5 times as that of the working class, and the wealth
per capita of the working class is 15 times as that of the poor class. The rich class’s population
is only 3 percent but its shares of income and wealth are, respectively, 5.65 and 15.54 percent;
the middle class’s share of population is 82 percent, and its shares of income and wealth are,
respectively, 89.6 and 83.5 percent; the poor class’s share of population is 15 percent, and its
shares of income and wealth are, respectively, 4.72 and 0.01. The rich class enjoys the highest
leisure time. The poor class has the least leisure time. The rich class consumes much more
than the poor class. Due to the human capital differences, the three groups have different
wage rates. The three eigenvalues are given by

ρ1,2 = 22998.6 ± 277585i, ρ3 = 0.69. (5.11)

The steady state is unstable. Further simulation results demonstrate that the system may be
either stable or unstable, depending on the parameter values. Since the stability conditions
are difficult to interpret, we do not further examine them.

As the dynamic system has a unique equilibrium, we can examine impact of changes in
the parameters. First, we examine impact of change in human capital. We fix the parameter
values as in (5.8) and (5.9) except one parameter h1. We increase the rich class’s level of
human capital from 13 to 14. We calculate the new equilibrium values as

Δk = 31, ΔK = 1228.27, ΔF = 218.72, Δr = −0.001,

Δh1 = 1 :

⎛

⎝
Δk1
Δk2
Δk3

⎞

⎠ =

⎛

⎝
355.14
1.96
0.16

⎞

⎠ ,

⎛

⎝
ΔTh1
ΔTh2
ΔTh3

⎞

⎠ =

⎛

⎝
−0.03
−0.01
−0.01

⎞

⎠ ,

⎛

⎝
Δc1
Δc2
Δc3

⎞

⎠ =

⎛

⎝
32.78
1.53
0.20

⎞

⎠ ,

⎛

⎝
Δw1

Δw2

Δw3

⎞

⎠ =

⎛

⎝
7.44
0.09
0.02

⎞

⎠ .

(5.12)
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In (5.12), we denote the difference between equilibrium values of the variables at the new
equilibrium point and old one byΔ. From (5.12), we see that as the rich class’s human capital
is increased, the total output, the total wealth and per capita wealth of all the groups, the
wage rates, and consumption are all increased but the leisure times of all the groups are
slightly reduced. Hence, every group and the society as a whole benefit from human capital
improvement of the rich class. It should be remarked that the poor class benefits only slightly
from the change. This implies that as the rich class improves its human capital, the poor
class’s relative “social status” might become lower. The wealth and income gaps are enlarged
among the classes.

We increase levels of human capital of the other two classes as follows:

Δk = −0.52, ΔK = 17767.1, ΔF = 5914.91, Δr = 0.001,

Δh2 = 1 :

⎛

⎝
Δk1
Δk2
Δk3

⎞

⎠ =

⎛

⎝
−13.15
217.20
−0.27

⎞

⎠ ,

⎛

⎝
ΔTh1
ΔTh2
ΔTh3

⎞

⎠ =

⎛

⎝
0.05
0.02
0.01

⎞

⎠ ,

⎛

⎝
Δc1
Δc2
Δc3

⎞

⎠ =

⎛

⎝
−1.22
59.24
−0.33

⎞

⎠ ,

⎛

⎝
Δw1

Δw2

Δw3

⎞

⎠ =

⎛

⎝
−0.47
6.95
−0.04

⎞

⎠ ,

Δk = −2.77, ΔK = −4.96, ΔF = 1585.57, Δr = 0.006,

h3 = 2 :

⎛

⎝
Δk1
Δk2
Δk3

⎞

⎠ =

⎛

⎝
−70.89
−17.84
111.36

⎞

⎠ ,

⎛

⎝
ΔTh1
ΔTh2
ΔTh3

⎞

⎠ =

⎛

⎝
0.27
0.13
0.03

⎞

⎠ ,

⎛

⎝
Δc1
Δc2
Δc3

⎞

⎠ =

⎛

⎝
−6.54
−4.87
133.63

⎞

⎠ ,

⎛

⎝
Δw1

Δw2

Δw3

⎞

⎠ =

⎛

⎝
−2.58
−0.80
13.67

⎞

⎠ .

(5.13)

We see that as the working class’s human capital is improved, the levels of per capita wealth
and consumption and wage rates of the working class are increased and the levels of per
capita wealth and consumption and wage rates of the other two classes fall. As the poor class
improves its human capital, the class’s living conditions and wealth are improved but the
other two classes do not benefit, except that they have more leisure time. When the rich class
increases its level of human capital, the rate of interest decreases but when any of the other
two classes increases its level of human capital, the rate of interest increases. Here, we see that
changes in human capital of different groups have different implications for different groups.

We now examine the impact of technological parameter on the equilibrium values of
the dynamic system. We list up the effects on the variables as follows:

Δk = 11.40, ΔK = 29093.4, ΔF = 9133.75, Δr ≈ 0,

ΔA = 0.7 :

⎛

⎝
Δk1
Δk2
Δk3

⎞

⎠ =

⎛

⎝
1507.45
296.10
19.38

⎞

⎠ ,

⎛

⎝
ΔTh1
ΔTh2
ΔTh3

⎞

⎠ ≈
⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
Δc1
Δc2
Δc3

⎞

⎠ =

⎛

⎝
139.15
80.76
23.25

⎞

⎠ ,

⎛

⎝
Δw1

Δw2

Δw3

⎞

⎠ =

⎛

⎝
31.02
9.54
2.39

⎞

⎠ .

(5.14)
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As the technology is improved, the levels of per capita wealth, consumption, and wage rate
of all the classes are increased. The rate of interest is slightly affected by the technological
change. We see that the rich class benefits most from the general improvement. Although the
technological change benefits all the classes, the income and wealth gaps among the classes
are enlarged.

We also examine effects of change in the preferences. We increase the propensity
to save by Δλj and reduce the propensities to consume and use leisure time by −Δλj/2,
respectively. The simulation results show that as any class’s propensity to save is increased,
the rate of interest declines; the capital intensity of production increases; the total capital
stocks, the total output, and the wage rates of all the classes are increased. When any class
increases its propensity to save, its leisure time is increased but the two other classes’ leisure
times are reduced. We also simulated the effects of change in each group’s population. As
any group’s labor force increases, the total output level is increased, and the rate of interest
is slightly affected. When the rich class increases its population, the levels of per capita
wealth, the wage rates, and the consumption levels of all the classes are increased, and the
leisure times of all the classes are reduced. When the working class or poor class increases
its population, the wage rates, and the levels of per capita wealth and of consumption
of all the classes are reduced and the leisure times are increased. As the simulations are
straightforward, we will not provide the results here.

6. Conclusions

We proposed a one-sector growth multigroup model with endogenous labor supply to
provide some insights into dynamics of wealth and income distribution in a competitive
economywith capital accumulation as the main engine of economic growth. This study treats
capital accumulation as the main engine of economic growth. It is known that almost all the
contemporary growth models with microeconomic foundation are based on Ramsey’s 1928
paper. As the Ramsey [2] model provides a rational mechanism of household behavior, it is
reasonable to expect that the homogenous population Ramsey model has been extended to
economies with heterogeneous households over years. It has become clear that the Ramsey
growth model with heterogeneous households tends to result in dynamically intractable
problems. A typical model of the Ramsey approach is reflected in a model of heterogeneous
households by Becker [15]. The model forges a link between income distribution, wealth
distribution, and economic growth. The Becker model demonstrates that if an agent’s lifetime
utility function over an infinite horizon is represented by a stationary, additive, discounted
function with a constant pure rate of time preference, then the income distribution is shown
in the long-run steady state to be determined by the lowest discount rate. The household
(e.g., a single household) with the lowest rate of discount owns all the capital and earns a
wage income; all other households (e.g., other twenty millions households) receive a wage
income and have no wealth. Different from the standard Ramsey model, the model in this
paper shows nondegenerate long-run distribution among the heterogeneous households.
This paper also demonstrates the importance of introducing heterogeneous households into
the growth theory. By simulation we demonstrate, for instance, that in the three-group
economy when the rich group’s human capital is improved, all the groups will economically
benefit, and the leisure times of all the groups are reduced, but when any other group’s
human capital is improved, the group will economically benefit, the other two groups
economically lose, and the leisure times of all the groups are increased. We show that the
same change in different groups may have different implications for the national economy.
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An immediate and important extension of the model is to make technological change, human
capital, preferences as well as the labor force (which all have been fixed in this study) as
endogenous variables. There is huge amount of literature about endogenous technological
change, human capital accumulation, preference change, and population in economics. It
would be fruitful to examine different issues of economic growth and development within
the framework proposed in this study.

Appendices

A. Proving Lemma 2.1

We now prove Lemma 2.1 in Section 2. From the definition of yj(t) in (2.7) and (2.1), we have

yj(t) = fδ(k)kj + hjf0(k), (A.1)

in which

fδ(k) ≡ f ′(k) + δ > 0, f0(k) ≡
[
f(k) − kf ′(k)

]
T0 > 0, ∀k > 0. (A.2)

From wjThj = σjyj ,we have

Th1
Thj

=
σjy1

yj

, j = 2, . . . , n, (A.3)

where we use w1/wj = h1/hj and

σj ≡
hjσ1

h1σj
, j = 1, . . . , n. (A.4)

From Thj = T0 − Tj , (A.1), and (A.3), we solve

Tj =

[(
σjk1 − kj

)
fδ + hjf0

]
T0 +

(
kjfδ + hjf0

)
T1(

k1fδ + h1f0
)
σj

, j = 2, . . . , n, (A.5)

where hj ≡ σjh1 − hj . From (2.1) and (2.3), we have

n∑

j=1

hjNjTj(t) =
K(t)
k(t)

. (A.6)
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Solve (A.5) and (A.6)with Tj(t) as variables

T1(t) = Ω1(k) ≡
[
K

k
−

n∑

j=2

[(
σjk1 − kj

)
fδ + hjf0

]
hjNjT0(

k1fδ + h1f0
)
σj

](
h1N1+

n∑

j=2

(
kjfδ + hjf0

)
hjNj(

k1fδ + h1f0
)
σj

)−1
,

Tj(t) = Ωj

(
k, k1, . . . , kn) ≡

[(
σjk1 − kj

)
fδ + hjf0

]
T0 +

(
kjfδ + hjf0

)
Ω1(

k1fδ + h1f0
)
σj

, j = 2, . . . , n.

(A.7)

As K, f0, fδ, and f are all functions of k and {kj}, the above equations show that the work
times of all the groups are uniquely determined as functions of k and {kj}.

From (2.11), we have

∑

j

(
cj + sj

)
Nj = F + δK = (f + δk)N. (A.8)

Insert (A.1), (2.1), and cj and sj in (2.11) into the above equation:

Λ
(
k; k1, k2

) ≡
(
f(k)
k

+ δ

)
K −

∑

j

Nj

(
ξj + λj

)(
kjfδ(k) + hjf0(k)

)
= 0, (A.9)

where we use N = K/k. We now show that for any given kj ≥ 0 for all j,Λ(k) = 0 has at
least one positive solution. Note that K > 0 (when at least one kj > 0) is a function of {kj}.
According to the definitions of f0 and fδ, and the properties of f, it is straightforward to check
the following properties of Λ(k) :

Λ(k) −→ +∞ as k −→ 0, Λ(k) −→ −∞ as k −→ +∞, (A.10)

where we use

f

k
−→ +∞ as k −→ 0,

f

k
−→ 0 as k −→ +∞,

f ′ − f

k
< 0, f ′ > 0, f ′′ < 0, ∀k > 0.

(A.11)

We see that Λ(k) = 0 has at least one positive solution. The solution can be expressed as a
function of {kj}. Take derivative of Λ(k)with respect to k:

dΛ
dk

=
(
f ′ − f

k

)
K

k
−
∑

j

Nj

(
ξj + λj

)(
kj − hjT0k

)
f ′′. (A.12)

As the sign of dΛ/dk is ambiguous, we are not sure about the uniqueness of solution. As k(t)
is a function of {kj} at any point of time, from (A.1) we see that yj(t) are functions of {kj}.
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Hence, from (2.10), (A.1), and sj = λjyj , we get

kj(t + 1) = φj

(
k1(t), . . . , kn(t)

) ≡ λj
fδ(k)kj + hjf0(k)�, j = 1, . . . , n. (A.13)

B. Proving Lemma 3.1

We now show that (3.10) has a unique solution. From (3.7), we see that it is necessary for k
to satisfy

k > max
j

{(
αA

λj

)1/β
}
. (B.1)

For (3.10) to positive solution, it is necessary to ask for λ̃1 − Ak−β and λ̃2 − Ak−β to have

the opposite sign if λ̃1 /= λ̃2. If λ̃1 = λ̃2, then k = (A/λ̃2)
1/β

, which also satisfies (B.1). For
convenience of analysis, let λ̃1 > λ̃2, that is, ξ1/λ1 > ξ2/λ2. From (3.10) and (B.1), we should
require

(
A

λ̃2

)1/β

> k >

(
A

λ̃1

)1/β

. (B.2)

As λ̃1 > λ̃2, we always have A/λ̃j > αA/λj. Hence for the requirements (B.1) and (B.2) to
satisfy, we should require

(
A

λ̃2

)1/β

> k > λ∗ ≡ max

{(
A

λ̃1

)1/β

,

(
αA

λ2

)1/β
}
. (B.3)

It is straightforward to check the following properties of H(k):

H

((
A

λ̃2

)1/β
)

=

(
λ̃1/λ̃2 − 1

)
h1N1

(
λ1/λ̃2 − α

) > 0,

H
(
λ∗
)
=

(
λ̃2/λ̃1 − 1

)
h2N2

(
λ2/λ̃1 − α

) < 0, if λ∗ =
(
A

λ̃1

)1/β

,

H
(
λ∗
)
< 0, if λ∗ =

(
αA

λ2

)1/β

.

(B.4)

Accordingly, H(k) = 0 has at least positive solution which satisfies (B.3). Take derivatives of
H(k) with respect to k:

dH

dk
=

[ (
λ1 − αλ̃1

)

(
kβλ1 − αA

)2h1N1 +

(
λ2 − αλ̃2

)

(
kβλ2 − αA

)2h2N2

]
Aβk−α < 0. (B.5)

From (B.4) and (B.5), we conclude that H(k) = 0 has a unique solution.
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From Thj = σjyj/wj , yj = kj/λj , and wj = βAkα,we have

Thj =
σjkj

βAhjkαλj
=

σjT0

λj

1
(
λj − αAk−β) . (B.6)

We see that under (B.3), we have 0 < Thj < T0. According to Lemma 2.1, we can determine all
the other variables. Hence, we proved that the system has a unique equilibrium.

We now determine stability of the unique equilibrium. The Jacobian matrix at
equilibrium is given by

J =
[
a11 a12

a21 a22

]
, (B.7)

where

a11 =
(
αA

kβ
+ δ

)
λ1 +

(
h1T0 − k1

k

)
λ1αβA

kβ

∂φ

∂k1
, a12 =

(
h1T0 − k1

k

)
λ1αβA

kβ

∂φ

∂k2
,

a21 =
(
h2T0 − k2

k

)
λ2αβA

kβ

∂φ

∂k1
, a22 =

(
αA

kβ
+ δ

)
λ2 +

(
h2T0 − k2

k

)
λ2αβA

kβ

∂φ

∂k2
,

(B.8)

in which we calculate from (3.1)

Λ′ ∂φ
∂kj

= σjk
β +A

(
Nj − αnj

)
> 0, j = 1, 2, (B.9)

where Λ′ > 0 is given by (3.3). We have ∂φ/∂kj > 0, j = 1, 2. The two eigenvalues, ρ1 and ρ2,
are determined by

ρ1,2 =
a11 + a22 ±

√(
a11 − a22

)2 + 4a12a21

2
. (B.10)

It is difficult to explicitly judge the stability conditions. Simulation demonstrates that the
unique equilibrium can be either stable or unstable, depending on the parameter values.
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