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The original Hopfield neural networks model is adapted so that the weights of the resulting
network are time varying. In this paper, the Discrete Hopfield neural networks with weight
function matrix (DHNNWFM) the weight changes with time, are considered, and the stability
of DHNNWFM is analyzed. Combined with the Lyapunov function, we obtain some important
results that if weight function matrix (WFM) is weakly (or strongly) nonnegative definite function
matrix, the DHNNWFM will converge to a stable state in serial (or parallel) model, and if
WFM consisted of strongly nonnegative definite function matrix and column (or row) diagonally
dominant function matrix, DHNNWFMwill converge to a stable state in parallel model.
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1. Introduction

Discrete Hopfield neural network (DHNN) [1] is one of the famous neural networks with
a wide range of applications. With the development of DHNN in theory and application,
the model is more and more complex. It is well known that the nonautonomous phenomena
often occur in many realistic systems. Particularly when we consider a long-term dynamical
behavior of the system and consider seasonality of the changing environment, the parameters
of the system usually will change with time [2, 3]. However, the original DHNN is difficult
to adapt this change, because the matrixes of DHNN and DHNN with time or time-varying
delay are constant matrixes [1, 4–22] and the parameters of DHNN, which change with time,
are seldom considered. In order to implement a desired flow vector field distribution by using
conventional matrix encoding scheme, a time-varying Hopfield model (TVHM) is proposed
[23]. Inmany applications, the properties of periodic oscillatory solutions are of great interest.
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For example, the human brain has been in periodic oscillatory or chaos state, hence it is of
prime importance to study periodic oscillatory and chaos phenomenon of neural networks.
So, the literature [2, 3] studies the global exponential stability and existence of periodic
solutions of the high-order Hopfield-type neural networks. In [23, 24], we consider that the
weight function matrix and the threshold function vector, respectively, converge to a constant
matrix and a constant vector and the weight function matrix is a symmetric function matrix,
and, we analyze the stability of the model. In this paper, with the stability of asymmetric
Hopfield Neural Networks [4, 5], we work on the stability analysis of discrete Hopfield
neural networks with the nonnegative definite monotone increasing weight function
matrix.

This paper has the following organization. In Section 1, we provide the introduction. In
Section 2, we introduce some basic concepts. In Section 3, we analyze the stability analysis of
discrete Hopfield neural networks with the nonnegative definite monotone increasing weight
function matrix. The last section offers the conclusions of this paper.

2. Basic Definitions

In this section, we will introduce basic concepts which will be used in the following to obtain
some results.

DHNNwithweight functionmatrix (DHNNWFM) varies with the discrete time factor
t by step length h (in this paper, h = 1). Formally, let N(t) = (W(t), θ(t)) be a DHNN
with n neurons, which have the discrete time factor t with step length 1 and are denoted
by {x1, x2, . . . , xn}. In the pair N(t) = (W(t), θ(t)), W(t) = (wij(t)) is an n × n function
matrix where wij(t) changes with time t, representing the connection weight from xj to
xi, and θ(t) = (θi(t)) is an n-dimensional function vector where θi(t) changes with time t,
representing the threshold attached to the neuron xi. The state of the i neuron at time t is
denoted by xi(t). Each neuron is assumed to have two possible states: 1 and −1. The state
of the network at time t is the vector X(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ Rn. In general, the
state, X(t + 1), of the network at time t + 1 is a function of {W(t), θ(t)} and the state, X(t),
of the network at time t. The network is, thus, completely determined by the parameters
{W(t), θ(t)}, the initial value, X(0), of the states, and the manner in which the neurons are
updated (evolved).

If at time step t, a neuron xi is chosen to be updated, then at the next step

xi(t + 1) = sgn
(
yi(t)

)
=

⎧
⎨

⎩

1, yi(t) ≥ 0,

−1, yi(t) < 0,
(2.1)

where yi(t) =
∑n

j=1 wij(t)xj(t) − θi(t), i = 1, 2, . . . , n.
(1) The network is updated asynchronously, that is, only one neuron xi is selected at

time t + 1. The updating rule is

xj(t + 1) =

⎧
⎨

⎩

sgn
(
yj(t)

)
, j = i,

xj(t), j /= i.
(2.2)
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(2) The network is updated synchronously, that is, every neuron xj is selected at time
t + 1. The updating rule is

xj(t + 1) = sgn
(
yj(t)

)
, j = 1, 2, . . . , n. (2.3)

Let N(t) = (W(t), θ(t)) be a DHNNWFM. If the output of n neurons does not change
any longer after a limited time interval t from its initial state X(0), that is, X(t + 1) = X(t),
then we can say that the network is a stable state, and we call X(t + 1) = X(t) a stable point
ofN. In addition, we say that the network converges about the initial state X(t0). It is easy to
know if X is a stable point of DHNNWFM, then X(t) = sgn(W(t)X(t) − θ(t)). Sometimes we
call X that satisfies the above formula a stable attraction factor of the network N. If X is an
attraction factor DHNNWFMN(t) = (W(t), θ(t)), we denote attraction domain of X as Γ(X),
which represents the set which consists of all of the initial state X(0) attracted to X.

Let N(t) = (W(t), θ(t)) be a DHNNWFM. X(0), X(1), . . . , X(r − 1), (r ≥ 1) are n-
dimensional vectors. If X(t + 1) = sgn(W(t)X(t) − θ(t)), t = 0, 1, 2, . . . , r − 2, and X(0) =
sgn(W(r−1)X(r−1)−θ(r−1)), thenwe called a limit cycle attraction factor ofN(t), sometimes
abbreviated to limit cycle; its length is r, and is denoted by (X(0), X(1), . . . , X(r − 1)). Similar
to the attraction domain of a stable attraction factor, the attraction domain of cycle attraction
factor (X(0), X(1), . . . , X(r−1)), denoted by Γ(X(0), X(1), . . . , X(r−1)), represents the set that
consists of all the possible initial states which are attracted to (X(0), X(1), . . . , X(r − 1)).

Definition 2.1. W(t) is a column or row-diagonally dominant function matrix, if it satisfies the
following conditions:

wii(t) ≥ 1
2

∑

1≤j≤n,j /= i

∣∣wji(t)
∣∣, i = 1, 2, . . . , n, (2.4)

or

wii(t) ≥ 1
2

∑

1≤j≤n,j /= i

∣∣wij(t)
∣∣, i = 1, 2, . . . , n. (2.5)

Definition 2.2. let W(t) be a column or row-diagonally dominant function matrix. W(t) is
called a column or row-diagonally dominant monotone increasing function matrix, if it
satisfies the following conditions:

Δwii(t) ≥ 1
2

∑

1≤j≤n,j /= i

∣∣Δwji(t)
∣∣, i = 1, 2, . . . , n, (2.6)

or

Δwii(t) ≥ 1
2

∑

1≤j≤n,j /= i

∣∣Δwij(t)
∣∣, i = 1, 2, . . . , n, (2.7)

where Δwij(t) = wij(t + 1) −wij(t).
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Definition 2.3. W(t) is called a nonnegative definite matrix on the set {−2, 0, 2}, if it satisfies
PTW(t)P ≥ 0 for each P ∈ {−2, 0, 2}n.

Definition 2.4. let W(t) be a nonnegative definite function matrix. W(t) is called nonnegative
definite monotone increasing function matrix, if it satisfies

PTΔW(t)P ≥ 0, (2.8)

where ΔW(t) = W(t + 1) −W(t), for each P ∈ {−2, 0, 2}n.

Definition 2.5. W(t) is called a weakly nonnegative definite function matrix, if it satisfies

wii(t) ≥ 1
2

∑

1≤j≤n

∣
∣wji(t) −wij(t)

∣
∣, i = 1, 2, . . . , n. (2.9)

Definition 2.6. let W(t) be a weakly nonnegative definite function matrix. W(t) is called
weakly nonnegative definite monotone increasing function matrix, if it satisfies

Δwii(t) ≥ 1
2

∑

1≤j≤n

∣∣Δwji(t) −Δwij(t)
∣∣, i = 1, 2, . . . , n, (2.10)

where Δwij(t) = wij(t + 1) −wij(t).
For an n × n matrix W(t), we denote in this paper the corresponding matrix W∗(t) =

(w∗
ij(t))with

w∗
ij(t) =

⎧
⎪⎨

⎪⎩

wii(t) − 1
2

∑

1≤k≤n
|wki(t) −wik(t)|, i = j,

wij(t), i /= j.

(2.11)

Definition 2.7. W(t) is called a strongly nonnegative definite function matrix, if the
corresponding matrix W∗(t) is a nonnegative definite function matrix.

Definition 2.8. let W(t) be a strongly nonnegative definite function matrix. W(t) is called
a strongly nonnegative definite monotone increasing function matrix, if the corresponding
matrix W∗(t) is nonnegative definite monotone increasing function matrix.

In this paper, the function matrix is the sum of the initial weight matrix and increment
matrixes, that is,

W(t) = W(0) +
∑

0≤s<t
ΔW(s). (2.12)

And the n-dimensional function vector is the sum of the initial vector and increment
vectors, that is,

θ(t) = θ(0) +
∑

0≤s<t
Δθ(s). (2.13)
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In order to describe, let L(t) = {0, 1, . . . , t−1}∪{0}, I = {1, 2, . . . , n}, andW(0) = ΔW(0).
0 represents 0 of W(0)

L1(t) =
{
s ∈ L(t) | ΔW(s) = ΔWT (s)

}
,

L2(t) =
{
s ∈ L(t) | PTΔW∗(s)P ≥ 0

}
,

L3(t) =

{
s ∈ L(t) | ΔW(s) is weakly

nonnegative definite function matrix

}

.

(2.14)

3. Main Results

Theorem 3.1. LetN(t) = (W(t), θ(t)) be a DHNNWFM.
(1) If W(t) is a weakly nonnegative definite monotone increasing function matrix and

limt→∞θ(t) → θ , thenN(t) will converge to a stable state in serial mode.
(2) If W(t) is a strongly nonnegative definite monotone increasing function matrix and

limt→∞θ(t) → θ, thenN(t) will converge to a stable state in parallel mode.

Proof. Based on (2.12) and (2.13), we have the following.
Let Δεi(t) = max{Δδi(t) + Δθi(t) | Δδi(t) + Δθi(t) < 0}, where

Δδi(t) =
n∑

j=1

Δwij(t)xj(t), xj(t) ∈ {1,−1}, j ∈ I. (3.1)

If ∀xj ∈ {1,−1}, j ∈ I, Δδi(t) ≥ 0, then Δδi(t) is assigned an arbitrary negative
number. Suppose Δθ(0) = θ(0), θ(t) =

∑
s∈L(t) Δθ(s),where Δθ(s) = (Δθ1(s), . . . ,Δθn(s)) and

Δθi(s) = Δθi(s) − (Δεi(s)/2), i ∈ I. Then we consider energy function (Lyapunov function)
of the DHNNWFM as follows:

E(t) = −1
2
XT (t)W(t)X(t) −XT (t)θ(t). (3.2)

Combined with (2.12) and (2.13), we have

E(t) = −1
2
XT (t)

⎛

⎝
∑

s∈L(t)
ΔW(s)

⎞

⎠X(t) −XT (t)

⎛

⎝
∑

s∈L(t)
Δθ(s)

⎞

⎠,

E(t + 1) = −1
2
XT (t + 1)W(t)X(t + 1) −XT (t + 1)θ(t) + χ(t),

(3.3)

where

χ(t) = −1
2
XT (t + 1)ΔW(t)X(t + 1) −XT (t + 1)Δθ(t). (3.4)



6 Discrete Dynamics in Nature and Society

χ(t)that is the increasing energy for the connected weight matrix increases. So, the change of
energy is

ΔE(t) = E(t + 1) − E(t) =
∑

s∈L(t)
βs(t) + χ(t), (3.5)

where

βs(t) = −1
2
XT (t + 1)ΔW(s)X(t + 1) −XT (t + 1)Δθ(s)

+
1
2
XT (t)ΔW(s)X(t + 1) +XT (t)Δθ(s).

(3.6)

According to (3.4) and Δθi(t) = Δθi(t) − (Δεi(t)/2),we obtain

χ(t) = −1
2
XT (t + 1)ΔW(t)X(t + 1) +XT (t + 1)

Δε(t)
2

−XT (t + 1)Δθ(t)

= −1
2
XT (t + 1)ΔW(t)X(t + 1) +

1
2
XT (t + 1)ΔW(t)X(t) −XT (t + 1)Δθ(t).

(3.7)

By ΔX(t) = 2X(t + 1) = −2X(t),

χ(t) = −XT (t + 1)ΔW(t)X(t + 1) −XT (t + 1)Δθ(t). (3.8)

Because limt→∞θ(t) → θ (i.e., limt→∞Δθ(t) → 0) and ΔW(t) is nonnegative definite,
we have

χ(t) ≤ 0. (3.9)

(1)Here,W(t) is a weakly nonnegative definite monotone increasing function matrix,
so ΔW(s), s ∈ L3(t) is weakly nonnegative definite matrixes. Then, based on [4], whenN(t)
is operating in serial mode, we obtain βs(t) ≤ 0, s ∈ L3(t). Then ΔE(t) ≤ 0. Therefore, N(t)
will converge to a stable state in serial mode.

(2)Here,W(t) is a strongly nonnegative definite monotone increasing functionmatrix,
so ΔW(s), s ∈ L2(t) is strongly nonnegative definite matrixes. According to [4], we know
that βs(t) ≤ 0 in parallel mode. ThenΔE(t) ≤ 0. Therefore,N(t)will converge to a stable state
in parallel mode. The proof is completed.

Theorem 3.2. LetN(t) = (W(t), θ(t)) be a DHNNWFM.
(1) If there exits an integer constant K such that ΔW(s), 0 ≤ s ≤ K is symmetric or

weakly nonnegative definite matrix, ΔW(s), K < s is weakly nonnegative definite matrix and
limt→∞θ(t) → θ, thenN(t) will converge to a stable state in serial mode.

(2) If there exits an integer constant K such that ΔW(s), 0 ≤ s ≤ K is symmetric or
strongly nonnegative definite matrix ΔW(s), K < s is strongly nonnegative definite matrix and
limt→∞θ(t) → θ, then N(t) will converge to a limit cycle of length at most 2 or a stable state in
parallel mode.
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Proof. We consider energy function (Lyapunov function) of the DHNNWFM as follows:

E(t) = −1
2
XT (t)W(t)X(t) −XT (t)θ(t). (3.10)

According to the proof of Theorem 3.1, now we have ΔE(t) =
∑

s∈L(t) βs(t) + χ(t)
(1)Here, we know L(t) = L1(t) ∪ L3(t) ∧ L1(t) ∩ L3(t) = ∅. Then

ΔE(t) =
∑

s∈L1(t)

βs(t) +
∑

s∈L3(t)

βs(t) + χ(t). (3.11)

Based on [1, 4], when N(t) is operating in serial mode, we obtain βs(t) ≤ 0, s ∈ L(t)
for ΔW(s), s ∈ L(t) is symmetric or weakly nonnegative definite matrixes and according to
(3.9) we know χ(t) ≤ 0. Then ΔE(t) ≤ 0. Therefore, N(t) will converge to a stable state in
serial mode.

(2)Here, we know L(t) = L1(t) ∪ L2(t) ∧ L1(t) ∩ L2(t) = ∅. Then

ΔE(t) =
∑

s∈L1(t)

βs(t) +
∑

s∈L2(t)

βs(t) + χ(t). (3.12)

If ΔW(s)(s ∈ L1(t)), according to [4]we know that βs(t) ≤ 0 if and only if X(t)/=X(t +
1) = X(t − 1) or X(t) = X(t + 1) = X(t − 1) in parallel mode.

If ΔW(s)(s ∈ L2(t)), according to [4] we know that βs(t) ≤ 0 in parallel mode.
According to (3.9), we know χ(t) ≤ 0.
Based on the above, we obtain that if X(t)/=X(t + 1) = X(t − 1) or X(t) = X(t + 1) =

X(t − 1), then ΔE(t) ≤ 0. So, N(t) will converge to a limit cycle of length at most 2 or a stable
state in parallel mode. The proof is completed.

Combined with [25], we have the following.

Theorem 3.3. Let N(t) = (W(t) + U(t) + O(t), θ(t)) be a DHNNWFM. If U(t) is column
diagonally dominant monotone increasing function matrix, O(t) is row diagonally dominant
monotone increasing function matrix, andW(t) is strongly nonnegative definite monotone increasing
function matrix, thenN(t) will converge to a stable state in parallel mode.

Proof. Let Δεi(t) = max{Δδi(t) + Δθi(t) | Δδi(t) + Δθi(t) < 0}, where

Δδi(t) =
n∑

j=1

Δwij(t)xj(t), xj(t) ∈ {1,−1}, j ∈ I. (3.13)

If ∀xj ∈ {1,−1}, j ∈ I, Δδi(t) ≥ 0, then Δδi(t) is assigned an arbitrary negative
number. Suppose Δθ(0) = θ(0), θ(t) =

∑
s∈L(t) Δθ(s) where Δθ(s) = (Δθ1(s), . . . ,Δθn(s)) and

Δθi(s) = Δθi(s) − (Δεi (s)/2), i ∈ I. Then we consider energy function (Lyapunov function)
of the DHNNWFM as follows:

E(t) = −1
2
XT (t)W(t)X(t) −XT (t)U(t)X(t) −XT (t)O(t)X(t) −XT (t)θ(t), (3.14)
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where W(t) =
∑

s∈L(t) ΔW(s), U(t) =
∑

s∈L(t) ΔU(s), O(t) =
∑

s∈L(t) ΔO(s), and θ(t) =
∑

s∈L(t) Δθ(s).
We have that the change of energy is

ΔE(t) = E(t + 1) − E(t) (3.15)

ΔE(t) =
1
2
ΔXT (t)W(t)XT (t) − 1

2
XT (t)W(t)ΔXT (t)

− 1
2
ΔXT (t)W(t)ΔXT (t) −ΔXT (t)

(
(W(t) +U(t) +O(t))XT (t) + θ

)

−XT (t + 1)(U(t) +O(t))ΔX(t) − 1
2
XT (t + 1)ΔW(t)X(t + 1) −XT (t + 1)ΔU(t)X(t + 1)

−XT (t + 1)ΔO(t)X(t + 1) −XT (t + 1)Δθ(t)

= −ϕ(t) − η(t) − κ(t) − γ(t),
(3.16)

where

ϕ(t) = −1
2
ΔXT (t)W(t)XT (t) +

1
2
XT (t)W(t)ΔXT (t) +

1
2
ΔXT (t)W(t)ΔXT (t),

η(t) = ΔXT (t)
(
(W(t) +U(t) +O(t))XT (t) + θ

)
,

κ(t) = XT (t + 1)(U(t) +O(t))ΔX(t),

γ(t) =
1
2
XT (t + 1)ΔW(t)X(t + 1) +XT (t + 1)ΔU(t)X(t + 1)

+XT (t + 1)ΔO(t)X(t + 1) +XT (t + 1)Δθ(t).

(3.17)

Based on [4, Theorem 2], we obtain ϕ(t) ≥ 0.
Obviously, when ΔX(t)/= 0, ΔX(t) = 2X(t + 1) = −2X(t), η(t) ≥ 0.
When it is operating in parallel mode, let I1(t) = {i ∈ I | Δxi(t)/= 0}, I2(t) = I \ I1(t).
According to the property of column (or row) diagonally dominant matrix, we have

κ(t) = 2XT (t + 1)U(t)X(t + 1) + 2XT (t + 1)O(t)X(t + 1)

≥
∑

i∈I1(t)

⎛

⎝uii(t) −
∑

j /= i

∣∣uji(t)
∣∣

⎞

⎠ +
∑

i∈I1(t)

⎛

⎝oii(t) −
∑

j /= i

∣∣oij(t)
∣∣

⎞

⎠

≥ 0.

(3.18)

According to Definition 2.2 and (3.9), we know γ(t) ≥ 0.
Based on the above, we have ΔE(t) ≤ 0. So, N(t) will converge to a stable state in

parallel mode. The proof is completed.



Discrete Dynamics in Nature and Society 9

4. Examples

Example 4.1. Let N(t) = (W(t), θ(t)) be a DHNNWFM, where W(t) =
[ 2t −t t

t 3t −2t
t 2t 3t

]
and θ(t) = 0.

N(t)will converge to a stable state in parallel mode.

Example 4.2. Let N(t) = (W(t), θ(t)) be a DHNNWFM, where W(t) =
[ 2t −6t t

t t2 −2t
8t1/2 2t t2

]
and θ(t) =

0. N(t)will converge to a stable state in parallel mode.

Example 4.3. LetN(t) = (W(t) +U(t) +O(t), θ(t)) be a DHNNWFM, whereW(t) =
[ 2t −t t

t 3t −2t
t 2t 3t

]
,

O(t) = 0, U(t) =
[ 3t 3t t
2t 5t −2t
−t t 3t

]
and θ(t) = 0. N(t)will converge to a stable state in parallel mode.

5. Conclusion

In this paper, we firstly introduce the DHNNWFM. Then we mainly discuss stability
of DHNNWFM that WFM is a symmetric or nonnegative definite, or column (or row)
diagonally dominant function matrix. This work widens the DHNN model. And we
obtain some important results, which supply some theoretical principles to the application.
DHNNWFM has many interesting phenomena. We will continue for the theoretic and the
practical research about DHNNFWM.
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