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We introduce a new space ANlog,α(B) consisting of all holomorphic functions on the unit ball
B ⊂ C

n such that ‖f‖ANlog,α
:=

∫
B
ϕe(ln(1 + |f(z)|))dVα(z) < ∞, where α > −1, dVα(z) =

cα,n(1 − |z|2)αdV (z) (dV (z) is the normalized Lebesgue volume measure on B, and cα,n is a
normalization constant, that is, Vα(B) = 1), and ϕe(t) = t ln(e + t) for t ∈ [0,∞). Some
basic properties of this space are presented. Among other results we proved that ANlog,α(B)
with the metric d(f, g) = ‖f − g‖ANlog,α

is an F-algebra with respect to pointwise addition and
multiplication. We also prove that every linear isometry T of ANlog,α(B) into itself has the form
Tf = c(f ◦ ψ) for some c ∈ C such that |c| = 1 and some ψ which is a holomorphic self-map of
B satisfying a measure-preserving property with respect to the measure dVα. As a consequence of
this result we obtain a complete characterization of all linear bijective isometries of ANlog,α(B).

Copyright q 2009 S. Stević and S.-I. Ueki. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let B denote the open unit ball in the n-dimensional complex vector space C
n, H(B) the

space of all holomorphic functions on B, dV (z) the normalized Lebesgue measure on B, dσ
the normalized surface measure on the boundary ∂B of the unit ball, and dVα(z) = cα,n(1 −
|z|2)αdV (z), where α > −1 and cα,n is a normalization constant, that is, Vα(B) = 1. For each
α > −1 we define the holomorphic function space ANlog,α(B) = ANlog,α as follows:

ANlog,α(B) =
{
f ∈ H(B) | ∥∥f∥∥ANlog,α

:=
∫

B

ϕe
(
ln
(
1 +

∣∣f(z)
∣∣))dVα(z) <∞

}
, (1.1)

where ϕe(t) = t ln(e + t) for t ∈ [0,∞).
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Since

ϕ′
e(t) = ln(e + t) +

t

e + t
≥ 1, ϕ′′

e(t) =
2e + t

(e + t)2
> 0, t ∈ [0,∞), (1.2)

it follows that ϕe(t) is an increasing convex function which is obviously nonnegative.
Let s(t) = ϕe(ln(1 + t)), then

s′′(t) =
ϕ′′
e(ln(1 + t)) − ϕ′

s(ln(1 + t))

(1 + t)2
. (1.3)

Let F(u) = ϕ′
s(u) − ϕ′′

e(u), then F(0) = 1 − (2/e), F ′(u) > 0, so that ϕ′′
e(u) ≤ ϕ′

s(u) for u ≥ 0.
Thus s(t) is a nonnegative concave function on the interval [0,∞), so that

s
(
x + y

) − s(x)
y

≤ s
(
y
) − s(0)
y

(1.4)

for x ≥ 0 and y > 0, and consequently s(x + y) ≤ s(x) + s(y), x, y ≥ 0, which implies the
following inequality:

ϕe
(
ln
(
1 + x + y

)) ≤ ϕe(ln(1 + x)) + ϕe
(
ln
(
1 + y

))
(1.5)

for all x, y ∈ [0,∞). It is easy to see that ‖cf‖ANlog,α
need not be equal to |c|‖f‖ANlog,α

, for every
c ∈ C and f ∈ ANlog,α(B). These facts imply that ‖ · ‖ANlog,α

is not a norm on ANlog,α(B) but
satisfies the triangle inequality

∥∥f + g
∥∥
ANlog,α

≤ ∥∥f
∥∥
ANlog,α

+
∥∥g

∥∥
ANlog,α

. (1.6)

Furthermore if we define d(f, g) = ‖f − g‖ANlog,α
for any f, g ∈ ANlog,α(B), then we see that

ANlog,α(B) is a metric space with respect to d(f, g).
LetX be a space of all holomorphic functions on some domain and T a linear isometry

of X into X [1]. When X is the Hardy space Hp(B) (0 < p < ∞, p /= 2), Forelli [2, 3] and
Rudin [4] have determined the injective and/or surjective isometries of Hp(B). For the case
when X is the weighted Bergman spaces Ap

α(B) (0 < p < ∞, p /= 2), the isometries were
completely characterized in a sequence of papers by Kolaski [5–7]. By these works we see that
the isometries on these holomorphic function spaces are described as weighted composition
operators, which is one of the reasons why these operators have been investigated so much
recently in the settings of the unit ball or the unit polydisk (see, e.g., monograph [8], recent
papers [9–19], and references therein). See also paper [20] for integral-type operators closely
related with weighted composition operators. The case whenX is not a Banach space has also
been studied by many authors. The Smirnov class N∗ and the Privalov space Np (1 < p < ∞)
which are contained in the Nevanlinna class N are examples of such spaces. These type of
spaces are F-spaces with respect to a suitable metric on them. For properties of these space,
we can refer [21]. Stephenson [22], Iida and Mochizuki [23] and Subbotin [24–26] have
studied linear isometries on these spaces. Their works showed that the injective isometries
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are weighted composition operators induced by some inner functions and inner maps of
B whose radial limit maps satisfy a measure-preserving property. Recently Matsugu and
the second author of the present paper have studied the weighted Bergman-Privalov space
AN

p
α(B) (1 ≤ p < ∞) and characterized the isometries of this space in [27]. They showed

that in this case, T has the form of a constant multiple composition operator which satisfies a
measure-preserving property with respect to the measure dVα.

Motivated by paper [28], in this paper, we investigate the space ANlog,α(B). Some
basic properties of the spaceANlog,α(B) are presented in Section 2; among other results it was
proved that ANlog,α(B)with the metric d(f, g) = ‖f − g‖ANlog,α

is an F-algebra with respect to
pointwise addition and multiplication. Also an estimate for the point evaluation functional
on ANlog,α(B) is given. In Section 3, we will prove that every linear isometry T of ANlog,α(B)
has the form Tf = c(f ◦ ψ), where c ∈ C such that |c| = 1 and ψ is a holomorphic self-
map of B satisfying a measure-preserving property with respect to the measure dVα. As a
consequence of this result we show that every surjective isometry T of ANlog,α(B) is of the
form Tf = c(f ◦ U) for any f ∈ ANlog,α(B), where c ∈ C with |c| = 1 and U is a unitary
operator on C

n.

2. Basic Properties of ANlog,α(B)

This section is devoted to collecting fundamental results onANlog,α(B)which will be used in
the proofs of the main results.

Recall that the weighted Bergman space A1
α(B) is defined as follows:

A1
α(B) =

{
f ∈ H(B) | ∥∥f∥∥A1

α
:=

∫

B

∣∣f(z)
∣∣dVα(z) <∞

}
. (2.1)

First we prove an elementary inequality, which has the main role in determining the
relationship between ANlog,α(B) space and the weighted Bergman space A1

α(B).

Lemma 2.1. The following inequality holds:

ϕe(ln(1 + x)) ≤ x, x ∈ [0,∞). (2.2)

Proof. Note that inequality (2.2) is transformed into

et − 1 − ϕe(t) ≥ 0, t ∈ [0,∞) (2.3)

by the change x = et − 1.
Let F(t) = et − 1 − ϕe(t). Then F(0) = 0 and

F ′(t) = et − ln(e + t) − t

e + t
, (2.4)
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which implies F ′(0) = 0 and

F ′′(t) = et − 1
e + t

− e

(e + t)2
≥ 1 − 2

e
> 0. (2.5)

From all these relations it follows that inequality (2.3) holds and consequently inequality
(2.2).

From Lemma 2.1 we obtain the following corollary.

Corollary 2.2. For each α > −1, A1
α(B) ⊂ ANlog,α(B).

Proof. From Lemma 2.1 it follows that

ϕe
(
ln
(
1 +

∣∣f(z)
∣∣)) ≤ ∣∣f(z)

∣∣ (2.6)

for every f ∈ A1
α(B) and z ∈ B.Multiplying this inequality by dVα(z), then integrating such

obtained inequality over B we obtain

∥∥f
∥∥
ANlog,α

≤ ∥∥f
∥∥
A1
α
, (2.7)

from which the result follows.

Remark 2.3. Note that from inequality (2.7) it follows that the inclusion i : A1
α(B) →

ANlog,α(B) has “norm” less than one, if we define operator norm as usual by

‖i‖A1
α →ANlog,α

= sup
‖f‖A1

α
≤1

∥∥i
(
f
)∥∥

ANlog,α
.

(2.8)

Lemmas 2.5 and 2.7 are based on the following lemma.

Lemma 2.4. LetΨ(x) = ln(1+ex) ln{e+ln(1+ex)}(x ∈ (−∞,∞)). ThenΨ is a positive continuous,
increasing, and convex function on (−∞,∞).

Proof. It is clear that Ψ is a positive and continuous function on the interval (−∞,∞). Now
we prove that it is increasing and convex on (−∞,∞). Note that Ψ(x) = ϕe(ln(1 + ex)). Hence

Ψ′(x) = ϕ′
e(ln(1 + e

x))
ex

1 + ex
,

Ψ′′(x) = ϕ′′
e(ln(1 + e

x))
(

ex

1 + ex

)2

+ ϕ′
e(ln(1 + e

x))
ex

(1 + ex)2
.

(2.9)

From (1.2) and (2.9), and since ln(1+ex) ∈ (0,∞), when x ∈ (−∞,∞), the lemma follows.
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Lemma 2.5. Let α > −1. If f ∈ ANlog,α(B), then it holds that

lim
r→ 1−

∥
∥fr − f

∥
∥
ANlog,α

= 0, (2.10)

where fr(z) = f(rz) for each r ∈ (0, 1) and z ∈ B.

Proof. Take an f ∈ ANlog,α(B) and ε > 0. Then we can choose an r0 ∈ (0, 1) such that
∫

B\r0B
ϕe

(
ln
(
1 +

∣
∣f(z)

∣
∣))dVα(z) <

ε

3
, (2.11)

where r0B = {z ∈ B : |z| ≤ r0}. Since ϕe(ln(1 + |f(z)|)) = Ψ(ln |f(z)|), from Lemma 2.4 it
follows that ϕe(ln(1 + |f(z)|)) is a positive plurisubharmonic function in B. Hence we have

∫

∂B

ϕe
(
ln
(
1 +

∣
∣f(rtζ)

∣
∣))dσ(ζ) ≤

∫

∂B

ϕe
(
ln
(
1 +

∣
∣f(tζ)

∣
∣))dσ(ζ) (2.12)

for any r, t ∈ (0, 1). This inequality implies that

∫

B\r0B
ϕe

(
ln
(
1 +

∣∣fr(z)
∣∣))dVα(z) ≤

∫

B\r0B
ϕe

(
ln
(
1 +

∣∣f(z)
∣∣))dVα(z) <

ε

3
(2.13)

for any r ∈ (0, 1).
Now we choose an ε0 > 0 such that ϕe(ln(1 + ε0)) = ε/3. By the continuity of f on the

compact subset r0B, we see that there exists a δ ∈ (0, 1) such that if z,w ∈ r0B with |z−w| < δ,
then

∣∣f(z) − f(w)
∣∣ < ε0. (2.14)

Set r1 = 1 − δ. If r1 < r < 1, then

∫

r0B

ϕe
(
ln
(
1 +

∣∣fr(z) − f(z)
∣∣))dVα(z) ≤ ϕe(ln(1 + ε0)) = ε

3
. (2.15)

By (2.13), (2.15), and (1.5), we obtain

∥∥fr − f
∥∥
ANlog,α

=

(∫

r0B

+
∫

B\r0B

)

ϕe
(
ln
(
1 +

∣∣fr(z) − f(z)
∣∣))dVα(z)

≤
∫

r0B

ϕe
(
ln
(
1 +

∣∣fr(z) − f(z)
∣∣))dVα(z)

+
∫

B\r0B

{
ϕe

(
ln
(
1 +

∣∣fr(z)
∣∣)) + ϕe

(
ln
(
1 +

∣∣f(z)
∣∣))}dVα(z)

<
ε

3
+
ε

3
+
ε

3
= ε.

(2.16)

This completes the proof.
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Corollary 2.6. For each α > −1 the space ANlog,α(B) is separable.

Proof. Since the dilated function fr is approximated by the nth partial sum of its Taylor
expansion uniformly on B, Lemma 2.5 implies that polynomials are dense in ANlog,α(B).
Since the polynomials with rational coefficients approximate any polynomial on the close
unit ball B, the corollary follows.

Lemma 2.7. Let α > −1, f ∈ H(B) and z ∈ B. Then it holds that

ln
(
1 +

∣
∣f(z)

∣
∣) ln

{
e + ln

(
1 +

∣
∣f(z)

∣
∣)} ≤

(
1 + |z|
1 − |z|

)n+α+1∥
∥f

∥
∥
ANlog,α

. (2.17)

Moreover, if f ∈ ANlog,α(B), then f satisfies

ln
(
1 +

∣∣f(z)
∣∣) ln

{
e + ln

(
1 +

∣∣f(z)
∣∣)} = o

(
(1 − |z|)−(n+α+1)

) (
as |z| → 1−

)
. (2.18)

Proof. Fix f ∈ ANlog,α(B) and z ∈ B. Let ϕz be the biholomorphic involution of B described
in [29, page 25]. Since ϕe(ln(1 + |f ◦ ϕz|)) is a positive plurisubharmonic function in B by
Lemma 2.4, we have

ϕe
(
ln
(
1 +

∣∣f(z)
∣∣)) = ϕe

(
ln
(
1 +

∣∣f ◦ ϕz(0)
∣∣))

= 2ncα,n

∫1

0
r2n−1

(
1 − r2

)α
ϕe

(
ln
(
1 +

∣∣f
(
ϕz(0)

)∣∣))dr

≤ 2ncα,n

∫1

0
r2n−1

(
1 − r2

)α
dr

∫

∂B

ϕe
(
ln
(
1 +

∣∣f
(
ϕz(rζ)

)∣∣))dσ(ζ)

= cα,n

∫

B

ϕe
(
ln
(
1 +

∣∣f
(
ϕz(w)

)∣∣))(1 − |w|2)αdV (w)

= cα,n

∫

B

ϕe
(
ln
(
1 +

∣∣f(w)
∣∣))(JRϕz

)
(w)(1 − ∣∣ϕz(w)

∣∣2)
α
dV (w),

(2.19)

where (JRϕz)(w) denotes the real Jacobian of ϕz at w. By [29, Theorem 2.2.2 and 2.2.6], for
w ∈ B we have

(
JRϕz

)
(w)(1 − ∣∣ϕz(w)

∣∣2)
α ≤

(
1 + |z|
1 − |z|

)n+α+1

(1 − |w|2)α. (2.20)

By (2.19) and (2.20), we obtain

ϕe
(
ln
(
1 +

∣∣f(z)
∣∣)) ≤

(
1 + |z|
1 − |z|

)n+α+1∥∥f
∥∥
ANlog,α

, (2.21)

which completes the proof of the first claim.
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Next we prove the second claim. Fix an ε > 0. By Lemma 2.5, there exists an r ∈ (0, 1)
such that ‖fr − f‖ANlog,α

< ε. From, (1.5) and (2.21) applied to the function fr − f we have that

ϕe
(
ln
(
1 +

∣
∣f(z)

∣
∣))(1 − |z|)n+α+1 ≤ 2n+α+1

∥
∥fr − f

∥
∥
ANlog,α

+ (1 − |z|)n+α+1Mr

< 2n+α+1ε + (1 − |z|)n+α+1Mr,
(2.22)

whereMr = maxw∈rBϕe(ln(1 + |f(w)|)) < ∞. Letting |z| → 1− in (12) and using the fact that
ε is an arbitrary positive number we obtain

ϕe
(
ln
(
1 +

∣
∣f(z)

∣
∣))(1 − |z|)n+α+1 −→ 0, as |z| → 1−. (2.23)

This completes the proof of this lemma.

Lemma 2.8. ANlog,α(B) is a complete metric space.

Proof. In the introduction we have seen that ANlog,α(B) is a metric space. Since the
convergence in ANlog,α(B) implies the uniform convergence on compact subsets of B by
Lemma 2.7, a usual normal family argument along with Fatou’s lemma shows that every
Cauchy sequence in ANlog,α(B) converges to an element of ANlog,α(B). Hence the space
ANlog,α(B) equipped with the metric d(f, g) = ‖f − g‖ANlog,α is a complete metric space.

Recall that a metric space (X, d) is called an F-space if it is a complete and

(i) d(x, y) = d(x − y, 0) for every x, y ∈ X;

(ii) for each sequence {xk} ⊂ X such that d(xk, 0) → 0 as k → ∞ it follows that
d(cxk, 0) → 0 for every c ∈ C;

(iii) for each sequence {ck} ⊂ C such that ck → 0 as k → ∞, d(ckx, 0) → 0 for each
x ∈ X.

If in an F-space (X, d) is introduced an operation of pointwise multiplication such that
X becomes an algebra and the operation of multiplication is continuous in the metric d, then
the F-space (X, d) is called an F-algebra.

Before we prove our next result we will prove two technical lemmas.

Lemma 2.9. The following inequality holds:

ϕe(ln(1 + cx)) ≤ max
{
1, c2

}
ϕe(ln(1 + x)) (2.24)

for x, c ≥ 0.

Proof. It is enough to prove the case c > 1. Since ϕe is an increasing function and ln(1 + cx) ≤
c ln(1 + x), we have

ϕe(ln(1 + cx)) ≤ ϕe(c ln(1 + x)) = c ln(1 + x) ln(e + c ln(1 + x)). (2.25)
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Let

η(t) = (e + t)c − (e + ct), for t ∈ [0,∞). (2.26)

Then from

η′(t) = c
(
(e + t)c−1 − 1

)
, (2.27)

we see that η is an increasing function on the interval [0,∞), so that η(t) ≥ η(0) = ec − e > 0.
Hence (e + ct) < (e + t)c. This implies that

ln(e + ct) < c ln(e + t). (2.28)

So we obtain

ϕe(ln(1 + cx)) ≤ c2 ln(1 + x) ln(e + ln(1 + x)) = c2ϕe(ln(1 + x)), (2.29)

completing the proof of the lemma.

The next lemma improves inequality (19) in [28].

Lemma 2.10. The following inequality holds:

ϕe
(
x + y

) ≤ 2
(
ϕe(x) + ϕe

(
y
))

(2.30)

for x, y ≥ 0.

Proof. First note that the function

f
(
x, y

)
= 2

(
ϕe(x) + ϕe

(
y
)) − ϕe

(
x + y

)
(2.31)

satisfies the following condition: f(x, y) = f(y, x). Hence it is enough to prove inequality
(2.30) for the case x ≥ y ≥ 0. Note that f(0, y) = ϕe(y) ≥ 0 and

∂f

∂x

(
x, y

)
= 2

(
ln(e + x) +

x

e + x

)
− ln

(
e + x + y

) − x + y
e + x + y

≥ 2
(
ln(e + x) +

x

e + x

)
− ln(e + 2x) − 2x

e + 2x

≥ ln (e + x)2 − ln(e + 2x) > 0.

(2.32)

Hence, for each fixed y we have that f(x, y) ≥ f(0, y) ≥ 0, from which inequality (2.30)
follows.
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Theorem 2.11. ANlog,α(B) is an F-algebra with respect to pointwise addition and multiplication.

Proof. By Lemma 2.8 ANlog,α(B) is a complete metric space satisfying the condition d(f, g) =
d(f − g, 0). From Lemma 2.9 we have the inequality

ϕe(ln(1 + st)) ≤ max
{
1, s2

}
ϕe(ln(1 + t)), t, s ≥ 0, (2.33)

which implies that

∥
∥cf

∥
∥
ANlog,α

≤ max
{
1, |c|2

}∥
∥f

∥
∥
ANlog,α

(2.34)

for each c ∈ C, so that the operation of the multiplication by complex numbers is closed
in ANlog,α(B). On the other hand, by inequality (1.5) it follows that the pointwise addition
is also closed in ANlog,α(B). From (2.34) it follows that the condition d(fk, 0) → 0 implies
d(cfk, 0) → 0 for every c ∈ C, since

d
(
cfk, 0

)
=
∥∥cfk

∥∥
ANlog,α

≤ max
{
1, |c|2

}∥∥fk
∥∥
ANlog,α

= max
{
1, |c|2

}
d
(
fk, 0

)
. (2.35)

Now assume that {ck}k∈N
⊂ C is a sequence such that ck → 0 as k → ∞. Note that for each

such sequence there is k0 ∈ N such that |ck| ≤ 1 for k ≥ k0. Hence we have that for each
f ∈ ANlog,α(B) and z ∈ B

ϕe
(
ln
(
1 +

∣∣ckf(z)
∣∣)) ≤ ϕe

(
ln
(
1 +

∣∣f(z)
∣∣)), k ≥ k0. (2.36)

From (2.36), since

ϕe
(
ln
(
1 +

∣∣ckf(z)
∣∣)) −→ 0 as k → ∞ (2.37)

for each z ∈ B, and by the Lebesgue dominated convergence theorem, we get d(ckf, 0) =
‖ckf‖ANlog,α

→ 0 as k → ∞, which proves (iii) and that ANlog,α(B) is an F-space.
Now we prove that ANlog,α(B) is closed with respect to the pointwise multiplication.

From Lemma 2.10 we have that

ϕe(t + s) ≤ 2
(
ϕe(t) + ϕe(s)

)
, t, s ≥ 0, (2.38)

from which it follows that

∥∥fg
∥∥
ANlog,α

≤ 2
(∥∥f

∥∥
ANlog,α

+
∥∥g

∥∥
ANlog,α

)
, (2.39)

so that ANlog,α(B) is closed with respect to the pointwise multiplication.
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Finally, we prove that the pointwise multiplication is continuous with respect to the
metric d, that is, that from d(fk, f) → 0 as k → ∞ and d(gl, g) → 0 as l → ∞ it follows that
d(fkgl, fg) → 0 as k, l → ∞. Note that from triangle inequality and by (2.39) it follows that

∥
∥fkgl − fg

∥
∥
ANlog,α

≤ ∥
∥(fk − f)(gl − g)

∥
∥
ANlog,α

+
∥
∥(fk − f)g

∥
∥
ANlog,α

+
∥
∥f(gl − g)

∥
∥
ANlog,α

≤ 2
(∥∥fk − f

∥∥
ANlog,α

+
∥∥gl − g

∥∥
ANlog,α

)
+
∥∥(fk − f)g

∥∥
ANlog,α

+
∥∥f(gl − g)

∥∥
ANlog,α

.

(2.40)

From (2.40) and the symmetry ‖fg‖ANlog,α
= ‖gf‖ANlog,α

we see that it is enough to prove that
from d(fk, f) → 0 as k → ∞, for each g ∈ ANlog,α(B), it follows that d(fkg, fg) → 0 as
k → ∞. Fix a g ∈ ANlog,α(B) and put Es = {z ∈ B : |g(z)| ≥ s} for each s ∈ [0,∞). Hence we
see that for every δ > 0 there is an s0 > 0 such that for every s ≥ s0

Vα(Es) ≤ 1
ϕe(ln(1 + s))

∫

B

ϕe
(
ln
(
1 +

∣∣g(z)
∣∣))dVα(z) < δ. (2.41)

Fix an ε > 0. Since ϕe(ln(1+ |g|)) ∈ L1(dVα), we have that for every ε > 0 there is a δ1 > 0 such
that

∫

E

ϕe
(
ln
(
1 +

∣∣g(z)
∣∣))dVα(z) < ε (2.42)

for every set E such that Vα(E) < δ1. From (2.41) with δ = δ1 we have that Vα(Es) < δ for
sufficiently large s. From this and inequalities (2.34) and (2.39) we have that

∥∥g(fk − f)
∥∥
ANlog,α

=
∫

B

ϕe
(
ln
(
1 +

∣∣g(z)
(
fk(z) − f(z)

)∣∣))dVα(z)

=

(∫

B\Es
+
∫

Es

)

ϕe
(
ln
(
1 +

∣∣g(z)
(
fk(z) − f(z)

)∣∣))dVα(z)

≤ 2
∫

Es

ϕe
(
ln
(
1 +

∣∣g(z)
∣∣))dVα(z)

+ 2
∫

Es

ϕe
(
ln
(
1 +

∣∣fk(z) − f(z)
∣∣))dVα(z)

+
∫

B\Es
ϕe

(
ln
(
1 + s

∣∣fk(z) − f(z)
∣∣))dVα(z)

≤ 2ε +max
{
3, 2 + s2

}∥∥fk − f
∥∥
ANlog,α

.

(2.43)

Letting k → ∞ in (2.43) and since ε is an arbitrary positive number, it follows that
‖g(fk − f)‖ANlog,α

→ 0 as k → ∞, finishing the proof of the theorem.



Discrete Dynamics in Nature and Society 11

3. Linear Isometries of ANlog,α(B)

In this section, we investigate linear isometries of ANlog,α(B) into ANlog,α(B), by modifying
ideas from some earlier papers in this area (see, e.g., [23, 27, 28]).

The following two lemmas play an important role in the proofs of the main results in
this section.

Lemma 3.1. If T is a linear isometry of ANlog,α(B) into itself, then the restriction of T to A1
α(B) is

also a linear isometry of A1
α(B) into itself.

Proof. Take an f ∈ A1
α(B) and put g = Tf . For each m ∈ N we have g/m = T(f/m), and so

the assumption T which is an isometry of ANlog,α(B) gives

∫

B

ϕe

(

ln

(

1 +

∣
∣f(z)

∣
∣

m

))

dVα(z) =
∫

B

ϕe

(

ln

(

1 +

∣
∣g(z)

∣
∣

m

))

dVα(z). (3.1)

By inequality (2.2), we have

mϕe

(

ln

(

1 +

∣∣f(z)
∣∣

m

))

≤ ∣∣f(z)
∣∣ (3.2)

for anym ∈ N and z ∈ B. Also, it is easy to see that

lim
m→∞

mϕe

(

ln

(

1 +

∣∣f(z)
∣∣

m

))

=
∣∣f(z)

∣∣ (3.3)

for each z ∈ B. Hence the Lebesgue-dominated convergence theorem gives

lim
m→∞

∫

B

mϕe

(

ln

(

1 +

∣∣f(z)
∣∣

m

))

dVα(z) =
∫

B

∣∣f(z)
∣∣dVα(z). (3.4)

On the other hand, Fatou’s lemma (3.1) and (3.4) show that

∫

B

∣∣g(z)
∣∣dVα(z) ≤ lim inf

m→∞

∫

B

mϕe

(

ln

(

1 +

∣∣g(z)
∣∣

m

))

dVα(z)

= lim inf
m→∞

∫

B

mϕe

(

ln

(

1 +

∣∣f(z)
∣∣

m

))

dVα(z)

=
∫

B

∣∣f(z)
∣∣dVα(z),

(3.5)
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and so g ∈ A1
α(B). By applying the Lebesgue-dominated convergence theorem once more

again, we have

lim
m→∞

∫

B

mϕe

(

ln

(

1 +

∣∣g(z)
∣∣

m

))

dVα(z) =
∫

B

∣
∣g(z)

∣
∣dVα(z). (3.6)

By (3.1), (3.4), and (3.6), we see that T is a linear isometry of A1
α(B) into A

1
α(B).

Lemma 3.2. There exists a bounded continuous function θ(x) on [0,∞) such that

(
1
2
− 1
e

)
x2 − x3θ(x) = x − ϕe(ln(1 + x)) ≥ 0 x ∈ [0,∞). (3.7)

Proof. Set

θ(x) :=
ϕe(ln(1 + x)) − x − (−1/2 + 1/e)x2

x3
(3.8)

for x ∈ (0,∞). Since θ(x) is a continuous function on (0,∞) such that θ(x) → 0 as x → +∞,
it is enough to prove that θ(x) has a finite limit as x → 0+. By the application of Taylor’s
theorem to ϕe(ln(1 + x)), we have

ϕe(ln(1 + x)) = x +
(
−1
2
+
1
e

)
x2 +

(
1
3
− 1
e
− 1
2e2

)
x3 + R4(x), (3.9)

where R4(x) denotes the remainder term of order 4. Since R4(x)/x3 → 0 as x → 0+, we
obtain

lim
x→ 0+

θ(x) =
1
3
− 1
e
− 1
2e2

, (3.10)

which completes the proof.

Theorem 3.3. Every linear isometry T of ANlog,α(B) into itself has the form Tf = c(f ◦ ψ) for any
f ∈ ANlog,α(B), where c ∈ C with |c| = 1 and ψ : B → B is a holomorphic map which satisfies the
condition

∫

B

h
(
ψ(z)

)
dVα(z) =

∫

B

h(z)dVα(z) (3.11)

for every bounded or positive Borel function h in B.

Proof. First suppose that T : ANlog,α(B) → ANlog,α(B) is a linear isometry. By Lemma 3.1, the
restriction of T to A1

α(B) is a linear isometry of A1
α(B) into A

1
α(B). Hence Kolaski’s theorem

[6, page 911, Theorem 2.11] implies that T has the following form:

Tf(z) = g(z)f
(
ψ(z)

) (
f ∈ A1

α(B), z ∈ B

)
, (3.12)
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where g = T1 and ψ is a holomorphic self-map of B such that

∫

B

h
(
ψ(z)

)∣∣g(z)
∣
∣dVα(z) =

∫

B

h(z)dVα(z) (3.13)

for every bounded or positive Borel function h in B. Fix an f ∈ ANlog,α(B). Since {fr}0<r<1 ⊂
A1
α(B), the representation (3.12) and Lemmas 2.5 and 2.7 give

Tf(z) = lim
r→ 1−

Tfr(z) = lim
r→ 1−

g(z)fr
(
ψ(z)

)
= g(z)f

(
ψ(z)

)
(3.14)

for all z ∈ B. Since g = T1 ∈ A1
α(B) and Vα(B) = 1, Hölder’s inequality gives

1 = ‖1‖A1
α
=
∥
∥g

∥
∥
A1
α
≤ ∥
∥g

∥
∥
A2
α
, (3.15)

where ‖g‖2
A2
α
=
∫

B
|g|2dVα. On the other hand, from Lemma 3.2 it follows that

∫

B

{(
1
2
− 1
e

)∣∣tg(z)
∣∣2 − ∣∣tg(z)

∣∣3θ
(∣∣tg(z)

∣∣)
}
dVα(z)

=
∫

B

{∣∣tg(z)
∣∣ − ϕe

(
ln
(
1 +

∣∣tg(z)
∣∣))}dVα(z)

=
∫

B

|T(t)(z)|dVα(z) −
∫

B

ϕe(ln(1 + |T(t)(z)|))dVα(z)

=
∫

B

tdVα(z) −
∫

B

ϕe(ln(1 + |t|))dVα(z)

=
(
1
2
− 1
e

)
t2 − t3θ(t).

(3.16)

By Lemma 3.2 and Fatou’s lemma we have

∫

B

(
1
2
− 1
e

)∣∣g(z)
∣∣2dVα(z) ≤ lim inf

t→ 0+

∫

B

{(
1
2
− 1
e

)∣∣g(z)
∣∣2 − t∣∣g(z)∣∣3θ(∣∣tg(z)∣∣)

}
dVα(z)

= lim inf
t→ 0+

{(
1
2
− 1
e

)
− tθ(t)

}
=

1
2
− 1
e
,

(3.17)

and so ‖g‖A2
α
≤ 1. Combining this with (3.15), we obtain

∥∥g
∥∥
A1
α
=
∥∥g

∥∥
A2
α
= 1. (3.18)

This implies that g ≡ c in B for some c ∈ C with |c| = 1. Hence (3.13) and (3.14) show that
Tf = c(f ◦ ψ) for any f ∈ ANlog,α(B) and ψ satisfies the condition in (3.11).
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Conversely, for some complex number c with |c| = 1 and holomorphic self-map ψ of
B which satisfies (3.11) we define an operator T on ANlog,α(B) by Tf = c(f ◦ ψ) for f ∈
ANlog,α(B). Since ϕe(ln(1+ |f |)) is a positive Borel function in B, condition (3.11) implies that
T is a linear isometry of ANlog,α(B) into ANlog,α(B). This completes the proof.

Corollary 3.4. Every surjective isometry T of ANlog,α(B) is of the form Tf = c(f ◦ U) for any
f ∈ ANlog,α(B), where c ∈ C with |c| = 1 andU is a unitary operator on C

n.

Proof. Assume that T : ANlog,α(B) → ANlog,α(B) is a surjective isometry. Then Theorem 3.3
implies that T is written in the form Tf = cT (f ◦ ψT ) where cT ∈ C with |cT | = 1 and ψT is
a holomorphic self-map of B which satisfies (3.11). Since T−1 is also a surjective isometry of
ANlog,α(B), we see that

f = T−1(T
(
f
))

= T−1(cT
(
f ◦ ψT

))
= cT−1cT

(
f ◦ ψT ◦ ψT−1

)
, (3.19)

so that cT−1 = c−1T and ψT−1 = ψ−1
T , that is, ψT is an automorphism of B.

We prove that ψ := ψT fixes the origin. Let ψj (1 ≤ j ≤ n) be the components of ψ. For
each j ∈ {1, . . . , n} and an r ∈ (0, 1) we have

∫

∂B

ψj(rζ)dσ(ζ) =
∫

∂B

dσ(ζ)
1
2π

∫π

−π
ψj
(
reiθζ

)
dθ. (3.20)

Since the slice function (ψj)ζ of ψj is holomorphic in the open unit disc of C, the mean value

theorem gives (1/2π)
∫π
−πψj(re

iθζ)dθ = ψj(0) for each ζ ∈ ∂B and j ∈ {1, . . . , n}. Using
this fact in formula (3.20), multiplying such obtained equality by 2ncα,n(1 − r2)αr2n−1dr, then
integrating it from 0 to 1 and using the polar coordinates on the unit ball we get

∫

B

ψj(z)dVα(z) = ψj(0) (3.21)

for each j ∈ {1, . . . , n}. Now we fix a j ∈ {1, . . . , n}. By applying the condition (3.11) to a
bounded Borel function h(w) = 〈w, ej〉, j ∈ {1, . . . , n}, where ej is the standard orthonormal
base vector in C

n, we have

∫

B

ψj(z)dVα(z) =
∫

B

〈
ψ(z), ej

〉
dVα(z)

=
∫

B

〈
z, ej

〉
dVα(z)

= 2ncα,n

∫1

0
r2n

(
1 − r2

)α
dr

∫

∂B

〈
ζ, ej

〉
dσ(ζ).

(3.22)

From [29, page 15, §1.4.5(2)] we have that

∫

∂B

〈
ζ, ej

〉
dσ(ζ) =

n − 1
π

∫π

−π

∫1

0
(1 − t2)n−2t2eiθdtdθ = 0. (3.23)
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Hence (3.21), (3.22), and (3.23) show that ψj(0) = 0 for each j ∈ {1, . . . , n}, and so ψ fixes
the origin. By a well-known theorem [29] we see that ψ is a unitary operator on C

n. This
completes the proof.

Remark 3.5. Let Isom ANlog,α(B) denote the set of all surjective isometries ofANlog,α(B). Since
the transformations ψ in Corollary 3.4 form a group of unitary transformations the corollary
implies the following isomorphism:

Isom ANlog,α(B) � T ×U(n,C). (3.24)

Here T denotes the set of all complex numbers with |c| = 1 and U(n,C) being the group of
all unitary operators on C

n. For the Smirnov class N∗ and the Privalov space Np (p > 1),
analogous results are obtained by Stephenson and Subbotin (see [22, 24–26]). So we see that
every surjective isometry of ANlog,α(B) has the same form as one of the Smirnov class or the
Privalov space.
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[13] S. Stević, “Norm of weighted composition operators from Bloch space to H∞

μ on the unit ball,” Ars
Combinatoria, vol. 88, pp. 125–127, 2008.
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