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1. Introduction

Phase synchronization has been reported for various coupled chaotic systems [1, 2]. This
phenomenon occurs when the linearized system describing the evolution of the difference
between a pair of chaotic systems has some zero or positive conditional Lyapunov exponents.
As we have shown in [2], this behavior also depends upon the eigenvalues of the linearized
difference system. More precisely, suppose that two identical chaotic systems ẋ = F(x(t))
and ẏ = F(y(t)) are coupled, as derive and response systems, according to the method of
Pecora and Carroll [3] by a continuous coupling function h(x). If the system ė = F(x,h) −
F(y,h) = F(x,h) − F(x + e,h), which described the evolution of the difference between two
identical systems, has a zero or constant solutions, then the two systems have complete
synchronization or phase synchronization, recursively [2, 4–6]. Indeed, an analysis of the
linearized difference system, ė = Ae, may yield considerable information about the dynamics
of the coupled chaotic systems. For the synchronization, we need to determine the conditional
Lyapunov exponents of this system, and for the phase synchronization we need to also
find the eigenvalues of the system [2]. As shown below, similar results apply to the phase
synchronization Sprott systems [7], presented by Fractional Differential Equations (FDEs).
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That is, the real parts of the eigenvalues of the evolution matrix A provide information
about the ability to synchronize coupled chaotic systems presented by FDEs. In illustrated
numerical results, we can see several cases that may arise between derive and response
systems in the form of FDEs. In some cases, the difference between derive and response is
constant, while in other cases it is periodic or a function of time. These and some other cases
are presented in Section 2, followed by a stability discussion in Section 3.

2. Coupled Sprott Chaotic Systems Presented by FDEs

In this section we consider four different Sprott systems presented by FDEs. In each case the
derive and response systems are coupled using the methods of Carroll and Pecora [3, 8].

Example 2.1. Consider the coupled Sprott-S systems presented by the FDEs:

Dαx1 = −x1 + ax2

Dαx2 = x1 + x2
3

Dαx3 = 1 + x1

Dβy1 = −y1 + ay2,

Dβy2 = y1 + y2
3 ,

Dβy3 = 1 + x1.

(2.1)

These systems are coupled through the third equation, where Dαx(t) = Jn−αDnx(t) is the nth
order Riemann-Liouville integral operator defined by Jnx(t) = (1/Γ(n))

∫ t
0(t − τ)

n−1x(τ)dτ ,
with 0 < α ≤ 1 andDn(·) being ordinary derivative of order n for time t > 0. By the Grunwald-
Letnikov method [9, 10] the fractional derivative is discretized as Dαx(t) =

∑[tn/h]
k=0 cαkx(tn−k).

Here, h is the step size, [tn/h] denotes the integer part of tn/h, tn = nh, and cαk are the

Grunwald-Letnikov coefficients defined by cα
k
= h−α(−1)k

(
α

k

)
, k = 0, 1, 2, . . . . These coeffi-

cients can also be evaluated, recursively, by cα0 = h−α and cα
k
= (1−(1+α)/k)cα

k−1, k = 1, 2, 3, . . . .
Using these definitions, the above coupled Sprott-S systems are discretized as follows:

x1(tn) = hα[−x1(tn−1) + ax2(tn−1)] −
N∑

k=1

(
1 − 1 + α

k

)
x1(tn−k),

x2(tn) = hα
[
x1(tn−1) + x2

3(tn−1)
]
−

N∑

k=1

(
1 − 1 + α

k

)
x2(tn−k),

x3(tn) = hα[1 + x1(tn−1)] −
N∑

k=1

(
1 − 1 + α

k

)
x3(tn−k),

y1(tn) = hβ
[
−y1(tn−1) + ay2(tn−1)

]
−

N∑

k=1

(
1 −

1 + β
k

)
y1(tn−k),

y2(tn) = hβ
[
y1(tn−1) + y2

3(tn−1)
]
−

N∑

k=1

(
1 −

1 + β
k

)
y2(tn−k),

y3(tn) = hβ[1 + x1(tn−1)] −
N∑

k=1

(
1 −

1 + β
k

)
y3(tn−k).

(2.2)
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Figure 1: Phase synchronization for coupled chaotic Sprott-S systems presented by FDEs. (a) shows the
constant difference between the derive (Series 1) and response (Series 2) systems for α = β = 1 and (b) for
α = β = 0.96.

Numerical chaotic results for a = −4 in the (x3, t) and (y3, t) planes are illustrated in Figure 1.
Figure 1(a) shows the phase synchronization for α = β = 1, which is in complete agreement
with the direct Euler solutions of the original system for Sprott-S ODEs with h = 5 × 10−4,
and Figure 1(b) shows the phase synchronization for α = β = 0.96 with the same value of
h. As we can see in both figures, the trajectories of the derive and response show that the
response attractor is a copy of the derive displaced by some distance in the y direction.
This distance depends on the initial conditions. It is easy to see that the evolution matrix A

in above Sprott-S systems of FDEs takes the form
(
−1 −4 0
1 0 2e3
0 0 0

)
which has obviously a zero

and two complex eigenvalues −1/2 ± i
√

15/2 around e = 0. So we should expect the phase
synchronization only between x3 and y3.

Example 2.2. In this example we consider two Sprott-C systems that are coupled by the second
method of Pecora and Carroll. That is, y1 variable in the response system is completely
replaced by its counterpart x1 variable in the derive system,

Dαx1 = x2x3,

Dαx2 = x1 − x2,

Dαx3 = 1 + ax2
1,

Dβy2 = x1 − y2,

Dβy3 = 1 + ax2
1.

(2.3)
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Figure 2: Phase synchronization for coupled chaotic Sprott-C presented by FDEs. (a) shows the constant
differnce between the derive (Series 1) and response (Series 2) systems for α = β = 1 and (b) for α = β =
0.96.

In this example, for the chaotic case a = −1, the eigenvalues of the evolution matrix A are −1
and zero, and hence, we expect phase synchronization between x3 and y3. The numerical
results from the related discretized system are illustrated in Figure 2. Figure 2(a) shows
the phase synchronization between x3 and y3 for α = β = 1 and h = 5 × 10−5 that are
in complete harmony with the numerical results found by Euler’s method for the coupled
Sprott-C presented by ODEs. Figure 2(b) shows the phase synchronization between x3 and
y3 for α = β = 0.96 and h = 5 × 10−5. The difference between the derive and response in
these two cases converges to a constant depending on the initial values. Indeed, as long as
the phase synchronization exists, this difference between derive and response systems will
remain constant for any values of α and β. In this case we should note that, since there is
only one negative eigenvalue, the phase synchronization is very sensitive to the values of α,
β as well as to the initial conditions. That is, a slight change in these values may replace the
chaotic behavior with periodic or steady state solutions.

Example 2.3. Next, consider two Sprott-L systems linked through the second Pecora-Carroll
method:

Dαx1 = x2 + ax3,

Dαx2 = bx2
1 − x2,

Dαx3 = 1 − x1,

Dβy2 = x2 + ay3,

Dβy3 = 1 − y2.
(2.4)
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The Sprott-L system presented by ODEs with the parameters a = 3.9 and b = 0.9 is chaotic,
and in its above coupled form, the related evolution matrix A has two imaginary eigenvalues
λ1,2 = ±

√
3.9. In this case, as illustrated in Figure 3, phase synchronization between the

derive and response occurs in such way that the differences between them will change in
oscillatory fashion for different values of α and β. The frequency of this oscillation depends
on the imaginary part of the eigenvalues, but its amplitude is constant depending on the
initial values. This phenomenon is called marginal oscillatory synchronization [11]. Figure 3
shows solutions for x1, y1 and their differences for various values of α and β. As illustrated
in Figure 3(d), the difference between derive and response for the values α = β = 0.96 is
converging to zero in an oscillatory fashion. From numerical results, we note that this coupled
system is no longer chaotic for values of α and β less than 0.96.

Example 2.4. Finally, couple two Sprott-R systems presented by FDEs by the first method of
Pecora-Carroll as follows:

Dαx1 = a − x2,

Dαx2 = b + x3,

Dαx3 = x1x2 − x3,

Dαy1 = a − y2,

Dαy2 = b + x3,

Dαy3 = y1y2 − y3.

(2.5)

This Sprott-R system is chaotic for a = 0.9 and b = 0.4. Here the related evolution matrix A
has two zero eigenvalues. In this case, note that for α = β = 1, we get ė1 = y2 − x2 from the
first equations in the derive and response systems. On the other hand, it is clear that from
the second equations that y2 − x2 = c. This means that ė1 = c, so e1 = ct, and the difference
between x1 and y1 is a straight line with slope equal to c, while the difference between x2 and
y2 remains constant. As illustrated in Figure 4, this is also the case for values of α and β less
than one.

Here, as with the examples above, the behavior of the coupled systems presented
by FDEs is not chaotic for values α and β less than 0.96. For example, Figure 5 shows the
solutions of coupled Sprott-R systems for α = β = 0.93 for which chaotic solutions become
periodic solutions.

3. Convergence Criteria

Suppose two identical chaotic FDEs Dαx = F(x(t)) and Dβy = F(y(t)), as derive and response
systems, are coupled according to the method of Pecora and Carroll [3] with α = β. Then the
stability analysis of linearized system Dαe = Ae, which is found by the difference between
two above systems, yields a good criteria for the stability of the phase synchronization
between the derive and response systems. More precisely, in the case of α = β = 1, it is
clear from linear stability theory in dynamical systems that the stability type of the zero
equilibrium in Dαe = Ae reflects the stability type of the synchronization between the two
chaotic systems and depends upon the signs of the real parts of the eigenvalues A [12]. Phase
synchronization also occurs if A does not have full rank, that is, if A has at least one zero
eigenvalue. For the case of α and β less than 1, we can use well-known theorem of Matignon
[13]. Because in the case of phase synchronization the error e(t) converges to a constant or
remains bounded by a constant, we may modify Matignon’s theorem to the following.
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Figure 3: Phase synchronization for coupled chaotic Sprott-L presented by FDEs. (a) shows the solution
x1 as derive (Series 1) and y1 as response (Series 2) for α = β = 1, and (b) shows the oscillatory difference
between derive and response. (c) shows the solution x1 as derive (Series 1) and y1 as response (Series 2)
for α = β = 0.96, and (d) shows the difference between derive and response that is converging to zero in
an oscillatory fashion.



Discrete Dynamics in Nature and Society 7

−10

20

50

80

0 50 100 150 200

Time

x
1-
y

1

(a)

−2

18

38

58

0 20 40 60 80 100

Time

x
1-
y

1

(b)

−20

0

20

40

60

80

0 50 100 150 200

Time

x
1-
y

1

(c)

−15

−10

−5

0

5

−20 10 40 70 100

Time

x
1-
y

1
(d)

−5
−3
−1

1
3
5
7

0 50 100 150 200

Time

x
2-
y

2

Series 1
Series 2

(e)

−2

−1

0

1

2

0 20 40 60 80 100

Time

x
2-
y

2

(f)

Figure 4: Phase synchronization for coupled chaotic Sprott-R presented by FDEs. (a) shows the solution
x1 as derive (Series 1) and y1 as response (Series 2) for α = β = 1, and (b) shows the time dependent
difference between derive and response. (c) shows the solution x1 as derive (Series 1) and y1 as response
(Series 2) for α = β = 0.96, and (d) shows the time dependent difference between derive and response. (e)
shows the solution x2 as derive (Series 1) and y2 as response (Series 2) for α = β = 0.96, and (f) shows the
constant difference between derive and response.

Theorem 3.1. Define E(t) = e(t) − c. Then the linear system of fractional differential equations
Eα(t) = AE(t) is asymptotically stable if and only if | arg spc(A)| > απ/2. In this case the vector
e(t) converges to c at the rate t−α.

Now it is easy to see that | arg spc(A)| for the coupled FDEs of Sprott-S and Sprott-L
systems, in Examples 2.1 and 2.3, are 4 and

√
3.9, respectively. By using this modified theorem

of Matignon, if there is phase synchronization in these two coupled chaotic systems, then it
is convergent for any α and β less than one. However, for the coupled FDEs of Sprott-C and
Sprott-R systems in Examples 2.2 and 2.4, on which | arg spc(A)| is one, this modified theorem
does not apply. However, in this case we may use the following convergence criterion which
is discussed by Zhang and Sun [14] and Erjaee [12].
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Figure 5: Solutions of coupled Sprott-R presented by FDEs which illustrate the chaotic behavior turned
into periodic solutions for α = β = 0.93. (a) shows the solution x1 as derive (Series 1) and y1 as response
(Series 2), and (b) shows the solution x2 as derive (Series 1) and y2 as response (Series 2).

First we define matrix measure of A ∈ Rn×n as μ(A) = limε→ 0((‖I − εA(t)‖ − 1)/ε),
where I is the n × n identity matrix and ‖ · ‖ is any well-known matrix norm, such as one,
two, infinity, or the ω-norm defined by ‖A‖ω = maxj

∑n
i=0(ωi/ωj)|aij | with ωi � 0. Now,

different matrix measure can be defined as

μ1(A) = max
j

⎧
⎨

⎩
ajj +

n∑

i=1, i, /= j

∣∣aij
∣∣

⎫
⎬

⎭
,

μ2(A) =
1
2
λmax

(
AT +A

)
,

or μω(A) = max
j

⎧
⎨

⎩
ajj +

n∑

i=1, i, /= j

ωi

ωj

∣∣aij
∣∣

⎫
⎬

⎭
,

(3.1)

with ωi � 0. The following theorem shows that under some conditions the phase
synchronization in Sprott-C or Sprott-R is globally asymptotically stable around a constant
vector c on which e(t) = x(t) − y(t) = c.
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Theorem 3.2. Suppose that limt→+∞
∫ t
t0
μ(A(t))dt = −∞ for some matrix measure μ and t0 � 0.

Then the system ė = Ae is globally asymptotically stable around a constant vector c. Consequently
there is phase synchronization between derive and response systems, which is globally asymptotically
stable.

For the proof, see [12]. Now the matrix measure μ1(A) in coupled Sprott-C system
in Example 2.2 is −1, while the matrix measure μ2(A) in the coupled Sprott-R system
in Example 2.4 is −2. Consequently by Theorem 3.2, these two negative matrix measures
guarantee the global asymptotical stability of the phase synchronizations in the coupled
Sprott-C and Sprott-R systems presented by FDEs, whenever existing.

4. Conclusion

We have discussed the existence of phase synchronization in four different Sprott systems
presented by FDEs. Although the chaos synchronization broadly exists in the chaotic systems,
for example, refer to [15–17], phase synchronization is rear in the chaotic systems, and
whenever it does exit, it is very sensitive to the fractional order of the derivatives in both
derive and response systems. Since in this article we chose the two identical systems in our
coupling using the method of Pecora and Carroll, we restricted ourselves to the choice of two
identical values for α and β as the orders of derivatives in the derive and response systems.
Otherwise the phase synchronization would occur for smaller values than the ones that chose
here. For example, during our investigation, we saw that phase synchronization occurs for
α = 0.9 and β = 0.5 or for even smaller values in all the above four examples. However, these
systems would not be identical.
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[5] A. Tamaševicius, A. Cenys, A. Namajunas, and G. Mykolaitis, “Synchronising hyperchaos in infinite-
dimensional dynamical systems,” Chaos, Solitons & Fractals, vol. 9, no. 8, pp. 1403–1408, 1998.

[6] C. K. Duan and S. S. Yang, “Synchronizing hyperchaos with a scalar signal by parameter controlling,”
Physics Letters A, vol. 229, no. 3, pp. 151–155, 1997.

[7] J. C. Sprott, “Some simple chaotic flows,” Physical Review E, vol. 50, no. 2, pp. R647–R650, 1994.
[8] T. L. Carroll and L. M. Pecora, “Driving systems with chaotic signals,” Physical Review A, vol. 44, no.

4, pp. 2374–2383, 1991.
[9] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering,

Academic Press, New York, NY, USA, 1999.
[10] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.



10 Discrete Dynamics in Nature and Society
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