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In recent years, the impulsive population systems have been studied by many researchers.
However, seasonal effects on prey are rarely discussed. Thus, in this paper, the dynamics of
the Holling-type IV two-competitive-prey one-predator system with impulsive perturbations and
seasonal effects are analyzed using the Floquet theory and comparison techniques. It is assumed
that the impulsive perturbations act in a periodic fashion, the proportional impulses (the chemical
controls) for all species and the constant impulse (the biological control) for the predator at
different fixed time but, the same period. In addition, the intrinsic growth rates of prey population
are regarded as a periodically varying function of time due to seasonal variations. Sufficient
conditions for the local and global stabilities of the two-prey-free periodic solution are established.
It is proven that the system is permanent under some conditions. Moreover, sufficient conditions,
under which one of the two preys is extinct and the remaining two species are permanent, are also
found. Finally, numerical examples and conclusion are given.
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1. Introduction

Recently, it is of great interest to study dynamical properties for impulsive perturbations
in population dynamics. Impulsive prey-predator population systems have been discussed
by a number of researchers [1–8] and, what is more, there are also many literatures
on simple multispecies systems consisting of a three-species food chain with impulsive
perturbations [7, 9–18]. Especially, two-prey and one-predator impulsive systems are
drawing notice. For examples, Song and Li [13] studied dynamical behavior of a Holling
type II two-prey one-predator system with impulsive effect concerning biological control
and chemical control strategies at fixed time. Zhang et al. [17, 18] studied a Lotka-
Volterra type two-prey one-predator system with impulsive effect on the predator of a fixed
moment.
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It is necessary and important to consider systems with periodic ecological parameters
which might be quite naturally exposed such as those due to seasonal effects of weather
or food supply [19]. Indeed, it has been studied that dynamical systems with simple
dynamical behavior may display complex dynamical behavior when they have periodic
perturbations[20–22]. For this reason, in this paper, we consider the intrinsic growth rates
A of prey population as a periodically varying function of time due to seasonal variations.
The seasonality is superimposed as follows[19–22]:

A0 = A
(
1 + ε sin(ωt)

)
, (1.1)

where the parameter ε (i = 1, 2) represents the degree of seasonality, λ = Aε ≥ 0 is the
magnitude of the perturbation inA0, andω is the angular frequency of the fluctuation caused
by seasonality. It is pertinent to point out that the forced ecosystem we are studying in this
paper is similar to forced nonlinear oscillators in physics such as the Duffing oscillator.

Thus, we develop the Holling-type IV two-competitive-prey one-predator system with
seasonality by introducing a proportional periodic impulsive poisoning(spraying pesticide)
for all species and a constant periodic releasing, or immigrating, for the predator at different
fixed time as follows:

x′
1(t) = x1(t)

(
a1 + λ1 sin

(
ω1t
) − b1x1(t) − γ1x2(t) −

e1y(t)

1 + c1x
2
1(t)

)
,

x′
2(t) = x2(t)

(
a2 + λ2 sin

(
ω2t
) − b2x2(t) − γ2x1(t) −

e2y(t)

1 + c2x
2
2(t)

)
,

y′(t) = y(t)
(
− a3 +

β1x1(t)

1 + c1x
2
1(t)

+
β2x2(t)

1 + c2x
2
2(t)

)
,

t /=nT, t /= (n + τ − 1)T,

Δx1(t) = −p1x1(t),

Δx2(t) = −p2x2(t),

Δy(t) = −p3y(t),

t = (n + τ − 1)T,

Δx1(t) = 0,

Δx2(t) = 0,

Δy(t) = q,

t = nT,

(
x1(0

+), x2(0
+), y(0+)

)
=
(
x01, x02, y0

)
,

(1.2)

where ai (i = 1, 2) are intrinsic rates of increase, bi (i = 1, 2) are the coefficients of intra-
specific competition, γi (i = 1, 2) are parameters representing competitive effects between
two preys, ei (i = 1, 2) are the per-capita rates of predation of the predator, ci (i = 1, 2) are
the half-saturation constants, a3 > 0 denotes the death rate of the predator, βi (i = 1, 2) are
the rates of conversing prey into predator, λi (i = 1, 2) are the magnitude, ωi (i = 1, 2) are the
angular frequency, τ, T are the period of spaying pesticides (harvesting) and the impulsive
immigration or stock of the predator, respectively, 0 ≤ p1, p2, p3 < 1 present the fraction of
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the preys and the predator which die due to the harvesting or pesticides, and q is the size of
immigration or stock of the predator.

In Section 2, we give some notations and lemmas. In Section 3, we show the
boundedness of the system and take into account the local and global stabilities of two-
prey-free periodic solutions by using Floquet theory for the impulsive equation, small
amplitude perturbation skills and comparison techniques, and finally, prove that the system
is permanent under some conditions. Moreover, we give the sufficient conditions under
which one of the two prey extinct and the remaining two species are permanent. Numerical
examples are given in Section 4.

2. Preliminaries

Let R+ = [0,∞), R
∗
+ = (0,∞), and R

3
+ = {x = (x(t), y(t), z(t)) ∈ R

3 : x(t), y(t), z(t) ≥ 0}. Denote
N the set of all of nonnegative integers and f = (f1, f2, f3)

T the right hand of the first three
equations in (1.2). Let V : R+ × R

3
+ → R+, then V is said to belong to class V0 if

(1) V is continuous on ((n − 1)T, (n + τ − 1)T] × R
3
+ ∪ ((n + τ − 1)T, nT] × R

3
+, and

lim(t,y)→ (t0,x)V (t, y) = V (t0, x) exists, where t0 = (n + τ − 1)T+ and nT+,

(2) V is locally Lipschitzian in x.

Definition 2.1. Let V ∈ V0. For (t, x) ∈ ((n − 1)T, (n + τ − 1)T] ×R
3
+ ∪ ((n + τ − 1)T, nT] ×R

3
+, the

upper right derivative of V with respect to the impulsive differential system (1.2) is defined
as

D+V (t, x) = lim sup
h→ 0+

1
h

[
V
(
t + h, x + hf(t, x)

) − V (t, x)
]
. (2.1)

The solution of system (1.2) is a piecewise continuous function X(t) : R+ → R3
+, X(t)

is continuous on ((n − 1)T, (n + τ − 1)T) ∪ ((n + τ − 1)T, nT) (n ∈ N, 0 ≤ τ ≤ 1). Obviously,
the smoothness properties of f guarantee the global existence and uniqueness of solutions of
system (1.2) [23, 24].

Definition 2.2. The system (1.2) is permanent if there exist M ≥ m > 0 such that, for any
solution (x1(t), x2(t), y(t)) of system (1.2) with (x01, x02, y0) > 0,

m ≤ lim
t→∞

infx1(t) ≤ lim
t→∞

supx1(t) ≤M,

m ≤ lim
t→∞

infx2(t) ≤ lim
t→∞

supx2(t) ≤M,

m ≤ lim
t→∞

infy(t) ≤ lim
t→∞

supy(t) ≤M.

(2.2)

We will use a comparison result of impulsive differential inequalities. Suppose that
g : R+ × R+ → R satisfies the following hypotheses.

(H) g is continuous on ((n − 1)T, (n + τ − 1)T] × R+ ∪ ((n + τ − 1)T, nT] × R+ and the
limit lim(t,y)→ (t0,x)g(t, y) = g(t0, x) exists, where t0 = (n + τ − 1)T+ and nT+, and is finite for
x ∈ R+ and n ∈ N.



4 Discrete Dynamics in Nature and Society

Lemma 2.3 (see [24]). Suppose V ∈ V0 and

D+V (t, x) ≤ g(t, V (t, x)
)
, t /= (n + τ − 1)T, nT,

V
(
t, x(t+)

) ≤ ψ1
n

(
V (t, x)

)
, t = (n + τ − 1)T,

V
(
t, x(t+)

) ≤ ψ2
n

(
V (t, x)

)
, t = nT,

(2.3)

where g : R+ × R+ → R satisfies (H), and ψ1
n, ψ

2
n : R+ → R+ are nondecreasing for all n ∈ N. Let

r(t) be the maximal solution for the impulsive Cauchy problem

u′(t) = g
(
t, u(t)

)
, t /= (n + τ − 1)T, nT,

u(t+) = ψ1
n

(
u(t)
)
, t = (n + τ − 1)T,

u(t+) = ψ2
n

(
u(t)
)
, t = nT,

u(0+) = u0 ≥ 0,

(2.4)

defined on [0,∞). Then, V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any
solution of (2.3).

We now indicate a special case of Lemma 2.3 which provides estimations for the
solution of a system of differential inequalities. For this, we let PC(R+,R)(PC1(R+,R)) denote
the class of real piecewise continuous (real piecewise continuously differentiable) functions
defined on R+.

Lemma 2.4 (see [24]). Let the function u(t) ∈ PC1(R+,R) satisfy the inequalities

du

dt
≤ f(t)u(t) + h(t), t /= τk, t > 0,

u
(
τ+
k

) ≤ αku
(
τk
)
+ θk, k ≥ 0,

u(0+) ≤ u0,

(2.5)

where f, h ∈ PC(R+,R) and αk ≥ 0, θk and u0 are constants and (τk)k≥0 is a strictly increasing
sequence of positive real numbers. Then, for t > 0,

u(t) ≤ u0

(
∏

0<τk<t

αk

)

exp
(∫ t

0
f(s)ds

)
+
∫ t

0

(
∏

s≤τk<t
αk

)

exp
(∫ t

s

f(γ)dγ
)
h(s)ds

+
∑

0<τk<t

(
∏

τk<τj<t

αj

)

exp
(∫ t

τk

f(γ)dγ
)
θk.

(2.6)

Similar result can be obtained when all conditions of the inequalities in the Lemmas
2.3 and 2.4 are reversed. Using Lemma 2.4, it is possible to prove that the solutions of the
Cauchy problem (2.4) with strictly positive initial value remain strictly positive.
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Lemma 2.5. The positive octant (R∗
+)

3 is an invariant region for system (1.2).

Proof. Let (x1(t), x2(t), y(t)) : [0, t0) → R
3 be a solution of system (1.2) with a strictly positive

initial value (x01, x02, y0). By Lemma 2.4, we can obtain that, for 0 ≤ t < t0,

x1(t) ≥ x01
(
1 − p1

)[t/T] exp
(∫ t

0
g1(s)ds

)
,

x2(t) ≥ x02
(
1 − p2

)[t/T] exp
(∫ t

0
g2(s)ds

)
,

y(t) ≥ y0
(
1 − p3

)[t/T] exp
(∫ t

0
g3(s)ds

)
,

(2.7)

where g1(s) = a1 − λ1 − b1x1(s) − γ1x2(s) − e1y(s), g2(s) = a2 − λ2 − b2x2(s) − γ2x1(s) − e2y(s),
and g3(s) = −a3. Thus, x1(t), x2(t) and y(t) remain strictly positive on [0, t0).

Now, we give the basic properties of an impulsive differential equation as follows:

y′(t) = −a3y(t), t /=nT, t /= (n + τ − 1)T,

Δy(t) = −p3y(t), t = (n + τ − 1)T,

Δy(t) = q, t = nT.

(2.8)

System (2.8) is a periodically forced linear system. It is easy to obtain that

y∗(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q exp
( − a3

(
t − (n − 1)T

))

1 − (1 − p3
)

exp
( − a3T

) , (n − 1)T < t ≤ (n + τ − 1)T,

q
(
1 − p3

)
exp
( − a3

(
t − (n − 1)T

))

1 − (1 − p3
)

exp
( − a3T

) , (n + τ − 1)T < t ≤ nT,
(2.9)

y∗(0+) = y∗(nT+) = q/(1− (1−p3) exp(−a3T)), y∗((n+ τ −1)T+) = (q(1−p3) exp(−a3τT))/(1−
(1 − p3) exp(−a3T)) is a positive periodic solution of (2.8). Moreover, we can obtain that

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − p3

)n−1
(
y(0+) − q

(
1 − p3

)
e−T

1 − (1 − p3
)

exp
( − a3T

)
)

exp
( − a3t

)
+ y∗(t),

(n − 1)T < t ≤ (n + τ − 1)T,

(
1 − p3

)n
(
y(0+) − q

(
1 − p3

)
e−T

1 − (1 − p3
)

exp
( − a3T

)
)

exp
( − a3t

)
+ y∗(t),

(n + τ − 1)T < t ≤ nT

(2.10)

is a solution of (2.8). From (2.9) and (2.10), we get easily the following result.
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Lemma 2.6. limt→∞|y(t) − y∗(t)| = 0 for all solutions y(t) of (2.8) with y(0+) ≥ 0.

Therefore, system (1.2) has a two-prey-free periodic solution

(
0, 0, y∗(t)

)
. (2.11)

3. Main Results

Theorem 3.1. The periodic solution (0, 0, y∗(t)) of system (1.2) is globally asymptotically stable if
for i = 1, 2,

(
ai + λi

)
T − b2

i eiqΨ

b2
i + ci

(
ai + λi

)2
< ln

1
1 − pi , (3.1)

where Ψ = (1 − (1 − p3) exp(−a3T) − p3 exp(−a3τT))/a3(1 − (1 − p3) exp(−a3T)).

Proof. First, we will prove the local stability of the periodic solution (0, 0, y∗(t)). For this,
consider the following impulsive differential equation:

x′
11(t) = x11(t)

(
a1 + λ1 − b1x11(t) − γ1x12(t) −

e1y1(t)

1 + c1x
2
11(t)

)
,

x′
12(t) = x12(t)

(
a2 + λ2 − b2x12(t) − γ2x11(t) −

e2y1(t)

1 + c2x
2
12(t)

)
,

y′
1(t) = y1(t)

(
− a3 +

β1x11(t)

1 + c1x
2
11(t)

+
β2x12(t)

1 + c2x
2
12(t)

)
,

t /=nT, t /= (n + τ − 1)T,

Δx11(t) = −p1x11(t),

Δx12(t) = −p2x12(t),

Δy1(t) = −p3y1(t),

t = (n + τ − 1)T,

Δx11(t) = 0,

Δx12(t) = 0,

Δy1(t) = q,

t = nT,

(
x11(0

+), x12(0
+), y1(0

+)
)
=
(
x01, x02, y0

)
.

(3.2)

Then, 0 ≤ x1(t) ≤ x11(t), 0 ≤ x2(t) ≤ x12(t), and 0 ≤ y(t) ≤ y1(t) by Lemma 2.3,
where (x1(t), x2(t), y(t)) and (x11(t), x12(t), y1(t)) are solutions of systems (1.2) and (3.2),
respectively. Thus we will show the local stability of the solution (0, 0, y∗

1(t)) of system (3.2),
where y∗

1(t) = y∗(t). The local stability of the two-pest-free periodic solution (0, 0, y∗
1(t))

may be determined by considering the behavior of small amplitude perturbations of the
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solution. Let (x11(t), x12(t), y1(t)) be any solution of system (3.2). Define u(t) = x11(t), v(t) =
x12(t), w(t) = y(t) − y∗

1(t). Then, they may be written as

⎛

⎜
⎝

u(t)

v(t)

w(t)

⎞

⎟
⎠ = Φ(t)

⎛

⎜
⎝

u(0)

v(0)

w(0)

⎞

⎟
⎠ , (3.3)

where Φ(t) satisfies

dΦ
dt

=

⎛

⎜
⎝

a1 + λ1 − e1y
∗
1(t) 0 0

0 a2 + λ2 − c2y
∗
1(t) 0

β1y
∗
1(t) β2y

∗
1(t) −a3

⎞

⎟
⎠Φ(t) (3.4)

and Φ(0) = I, the identity matrix. So the fundamental solution matrix is

Φ(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

exp
(∫ t

0
a1 + λ1 − e1y

∗
1(s)ds

)
0 0

0 exp
(∫ t

0
a2 + λ2 − e2y

∗
1(s)ds

)
0

exp
(∫ t

0
β1y

∗
1(s)ds

)
exp
(∫ t

0
β2y

∗
1(s)ds

)
exp
(∫ t

0
− a3ds

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.5)

The resetting impulsive conditions of system (3.2) become

⎛

⎜
⎝

u
(
(n + τ − 1)T+)

v
(
(n + τ − 1)T+)

u
(
(n + τ − 1)T+)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 − p1 0 0

0 1 − p2 0

0 0 1 − p3

⎞

⎟
⎠

⎛

⎜
⎝

u
(
(n + τ − 1)T

)

v
(
(n + τ − 1)T

)

w
(
(n + τ − 1)T

)

⎞

⎟
⎠ ,

⎛

⎜
⎝

u(nT+)

v(nT+)

w(nT+)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

u(nT)

v(nT)

w(nT)

⎞

⎟
⎠ .

(3.6)

Note that all eigenvalues of

S =

⎛

⎜
⎝

1 − p1 0 0

0 1 − p2 0

0 0 1 − p3

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟
⎠Φ(T) (3.7)



8 Discrete Dynamics in Nature and Society

are μ1 = (1 − p1) exp(
∫T

0a1 + λ1 − e1y
∗
1(t)dt), μ2 = (1 − p2) exp(

∫T
0a2 + λ2 − e2y

∗
1(t)dt), and

μ3 = (1 − p3) exp(−a3T) < 1. Since

(
a1 + λ1

)
T − e1qΨ <

(
a1 + λ1

)
T − b2

1e1qΨ

b2
1 + c1

(
a1 + λ1

)2
,

(
a2 + λ2

)
T − e2qΨ <

(
a2 + λ2

)
T − b2

2e2qΨ

b2
2 + c2

(
a2 + λ2

)2
,

∫T

0
y∗

1(t)dt =
q
(
1 − (1 − p3

)
exp
( − a3T

) − p3 exp
( − a3τT

))

a3
(
1 − (1 − p3

)
exp(−a3T

)) ,

(3.8)

we obtain from (3.1) that the conditions |μ1| < 1 and |μ2| < 1 hold. Therefore, from the Floquet
theory [23], we obtain (0, 0, y∗(t)) is locally stable.

Now, to prove the global stability of the two-prey-free periodic solution, let
(x1(t), x2(t), y(t)) be a solution of system (1.2). From (3.1), we can take a sufficiently small
number ε1 > 0 satisfying

ζ =
(
1 − p1

)
exp
(
(
a1 + λ1

)
T +

b2
1e1
(
ε1T − qΨ)

b2
1 + c1

((
a1 + λ1

)2 + 2
(
a1 + λ1

)
b1ε1 + b2

1ε
2
1

)

)
< 1. (3.9)

It follows from the first equation in (1.2) that x′
1(t) ≤ x1(t)(a1 +λ1 − b1x1(t)) for t /=nT, t /= (n+

τ − 1)T and x1(t+) = (1 − p1)x1(t) ≤ x1(t) for t = (n + τ − 1)T . Then, from Lemma 2.3, we have
x1(t) ≤ u(t), where u(t) is a solution of the following impulsive differential equation:

u′(t) = u(t)
(
a1 + λ1 − b1u(t)

)
, t /=nT, t /= (n + τ − 1)T,

Δu(t) = 0, t = nT, t = (n + τ − 1)T,

u(0+) = x1(0
+).

(3.10)

Since u(t) → (a1 + λ1)/b1 as t → ∞, x1(t) ≤ (a1 + λ1)b1 + ε for any ε > 0 with t large enough.
For simplicity, we may assume that x1(t) ≤ (a1 + λ1)/b1 + ε1 for all t > 0. Similarly, we get
x2(t) ≤ (a2 + λ2)/b2 + ε2 for any ε2 > 0 and t > 0. Since y′(t) ≥ −a3y(t) for t /=nT, (n + τ − 1)T ,
we can obtain from Lemmas 2.3 and 2.6 that

y(t) > y∗(t) − ε1, (3.11)

for t sufficiently large. Without loss of generality, we may suppose that (3.11) holds for all
t ≥ 0. From (1.2), and (3.11) we obtain

x′
1(t) ≤ x1(t)

(
a1 + λ1 −

e1
(
y∗(t) − ε1

)

1 + c1
(((

a1 + λ1
)
/b1
)
+ ε1
)2

)
, t /=nT, t /= (n + τ − 1)T,

Δx1(t) = −p1x1(t), t = (n + τ − 1)T,

Δx1(t) = 0, t = nT.

(3.12)
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Integrating (3.12) on ((n + τ − 1)T, (n + τ)T], we get

x1
(
(n + τ)T

) ≤ x1
(
(n + τ − 1)T+) exp

(∫ (n+τ)T

(n+τ−1)T
a1 + λ1 −

e1
(
y∗(t) − ε1

)

1 + c1
(((

a1 + λ1
)
/b1
)
+ ε1
)2
dt

)

= x1
(
(n + τ − 1)T

)
ζ,

(3.13)

and thus x1((n + τ)T) ≤ x1(τT)ζn which implies that x1((n + τ)T) → 0 as n → ∞. Further,
we obtain, for t ∈ ((n + τ − 1)T, (n + τ)T],

x1(t) ≤ x1
(
(n + τ − 1)T +

)
exp
(∫ t

(n+τ−1)T
a1 + λ1 −

e1
(
y∗(t) − ε1

)

1 + c1
(((

a1 + λ1
)
/b1
)
+ ε1
)2
dt

)

≤ x1
(
(n + τ − 1)T

)
exp
((
a1 + λ1 + e1ε1

)
T
)
,

(3.14)

which implies that x1(t) → 0 as t → ∞. Similarly, we obtain x2(t) → 0 as t → ∞. Now,
take sufficiently small positive numbers ε3 and ε4 satisfying β1ε3 + β2ε4 < a3 to prove that
y(t) → y∗(t) as t → ∞. Without loss of generality, we may assume that x1(t) ≤ ε3 and
x2(t) ≤ ε4 for all t ≥ 0. It follows from the third equation in (1.2) that, for t /= (n + τ − 1)T and
t /=nT ,

y′(t) ≤ y(t)( − a3 + β1ε3 + β2ε4
)
. (3.15)

Thus, by Lemma 2.3, we induce that y(t) ≤ ỹ∗(t), where ỹ∗(t) is the solution of (2.8) with a3

changed into a3 −β1ε3 −β2ε4. Therefore, by taking sufficiently small ε3 and ε4, we obtain from
Lemma 2.6 and (3.11) that y(t) tends to y∗(t) as t → ∞.

Let Fi(T) = (ai + λi)T − (b2
i eiqΨ/(b

2
i + ci(ai + λi)

2)) + ln(1 − pi) for i = 1, 2. Then Fi(0) =
ln(1 − pi) < 0, Fi(T) → ∞, and F ′′

i (T) > 0. Thus Fi(T) has a unique positive solution Ti.

Corollary 3.2. The periodic solution (0, 0, y∗(t)) of system (1.2) is globally asymptotically stable if
T < min{T1, T2}.

From the proof of Theorem 3.1, we can easily get the following corollary.

Corollary 3.3. The periodic solution (0, 0, y∗(t)) of system (1.2) is locally stable if

(
a1 + λ1

)
T − e1qΨ < ln

1
1 − p1

,
(
a2 + λ2

)
T − e2qΨ < ln

1
1 − p2

. (3.16)

Furthermore, the periodic solution of system (1.2) may remain globally stable even if
there are no the seasonal effects on system (1.2).
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Corollary 3.4. Suppose that λ1 = λ2 = 0. Then, the periodic solution (0, 0, y∗(t)) of system (1.2) is
globally asymptotically stable if

a1T − b2
1e1qΨ

b2
1 + c1a

2
1

< ln
1

1 − p1
, a2T − b2

2e2qΨ

b2
2 + c2a

2
2

< ln
1

1 − p2
. (3.17)

Now, we show that all solutions of system (1.2) are uniformly bounded.

Theorem 3.5. There is an M > 0 such that x1(t) ≤ M,x2(t) ≤ M, and y(t) ≤ M for all t large
enough, where (x1(t), x2(t), y(t)) is a solution of system (1.2).

Proof. Let (x1(t), x2(t), y(t)) be a solution of (1.2) with x01, x02, y0 ≥ 0 and let F(t) =
(β1/e1)x1(t) + (β2/e2)x2(t) + y(t) for t > 0. Then, if t /=nT and t /= (n + τ − 1)T , we obtain that
(dF(t)/dt)+δF(t) = −(b1β1/e1)x2

1(t)+(β1/e1)(a1+λ1 sin(ω1t)+δ)x1(t)−(β1γ1/e1)x1(t)x2(t)−
(b2β2/e2)x2

2(t) + (β2/e2)(a2 + λ2 sin(ω2t) + δ)x2(t) − (β2γ2/e2)x1(t)x2(t) + (δ − a3)y(t). From
choosing 0 < δ0 < a3, we have, for t /=nT, t /= (n + τ − 1)T and t > 0,

dF(t)
dt

+ δ0F(t) ≤ −b1β1

e1
x2

1(t) +
β1

e1

(
a1 + λ1 + δ0

)
x1(t) −

b2β2

e2
x2

2(t) +
β2

e2

(
a2 + λ2 + δ0

)
x2(t).

(3.18)

As the right-hand side of (3.18) is bounded from above by M0 = (β1(a1 + λ1 + δ0)
2/4b1e1) +

(β2(a2 + λ2 + δ0)
2/4b2e2), it follows that

dF(t)
dt

+ δ0F(t) ≤M0, t /=nT, n /= (n + τ − 1)T, t > 0. (3.19)

If t = nT , then ΔF(t) = q and if t = (n+τ −1)T , then ΔF(t) ≤ −pF(t), where p = min{p1, p2, p3}.
From Lemma 2.4, we get that

F(t) ≤ F0(1 − p)[t/kT] exp
(∫ t

0
− δ0ds

)

+
∫ t

0
(1 − p)[(t−s)/kT] exp

(∫ t

s

− δ0dγ

)
M0ds

+
[t/kT]∑

j=1

(1 − p)[(t−kT)/jT] exp
(∫ t

kT

− δ0dγ

)
q

≤ F0 exp
( − δ0t

)
+
M0

δ0

(
1 − exp

( − δ0t
))

+
q exp

(
δ0T
)

exp
(
δ0T
) − 1

,

(3.20)

where F0 = (β1/e1)x01 + (β2/e2)x02 + y0. Since the limit of the right-hand side of (3.20) as
t → ∞ is

M0

δ0
+

q exp
(
δ0T
)

exp
(
δ0T
) − 1

<∞, (3.21)
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it easily follows that F(t) is bounded for sufficiently large t. Therefore, x1(t), x2(t) and y(t)
are bounded by a constant M for sufficiently large t.

Theorem 3.6. System (1.2) is permanent if a3 > max{((a1 − λ1)β1/b1), ((a2 − λ2)β2/b2)},

(
a1 − λ1 −

γ1
(
a2 − λ2

)

b2

)
T − e1qΘ2 > ln

1
1 − p1

,

(
a2 − λ2 −

γ2
(
a1 − λ1

)

b1

)
T − e2qΘ1 > ln

1
1 − p2

,

(3.22)

where

Θi =
1 − (1 − p3

)
exp
(( − a3 +

(
βi(ai − λi

)
/bi
))
T
) − p3 exp

(( − a3 +
(
βi(ai − λi

)
/bi
))
τT
)

(
a3 −

(
βi
(
ai − λi

)
/bi
))(

1 − (1 − p3
)

exp
(( − a3 +

(
βi(ai − λi

)
/bi
))
T
)) ,

i = 1, 2.
(3.23)

Proof. Let (x1(t), x2(t), y(t)) be a solution of system (1.2) with (x01, x02, y0) > 0. From
Theorem 3.5, we may assume that x1(t), x2(t), y(t) ≤ M and M > max{(a1/e1), (a2/e2)}.
Thus, we only need to prove the existence of the lower bound m. For this, we consider the
following impulsive differential equation:

x′
21(t) = x21(t)

(
a1 − λ1 − b1x21(t) − γ1x22(t) −

e1y2(t)

1 + c1x
2
21(t)

)
,

x′
22(t) = x22(t)

(
a2 − λ2 − b2x22(t) − γ2x21(t) −

e2y2(t)

1 + c2x
2
22(t)

)
,

y′
2(t) = y2(t)

(
− a3 +

β1x21(t)

1 + c1x
2
11(t)

+
β2x22(t)

1 + c2x
2
22(t)

)
,

t /=nT, t /= (n + τ − 1)T,

Δx21(t) = −p1x21(t),

Δx22(t) = −p2x22(t),

Δy2(t) = −p3y2(t),

t = (n + τ − 1)T,

Δx21(t) = 0,

Δx22(t) = 0,

Δy2(t) = q,

t = nT,

(x21(0
+), x22(0

+), y2(0
+)) =

(
x01, x02, y0

)
.

(3.24)

Then, x1(t) ≥ x21(t), x2(t) ≥ x22(t) and y(t) ≥ y2(t) by Lemma 2.3, where (x1(t), x2(t), y(t)),
and (x21(t), x22, y2(t)) are solutions of systems (1.2) and (3.24), respectively. So, we will show
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that x21(t) ≥ m1, x22(t) ≥ m1, and y2(t) ≥ m1. As in the proof of Theorem 3.1, we can show
that x21(t) ≤ ((a1 − λ1)/b1) + ε1 and x22(t) ≤ ((a2 − λ2)/b2) + ε2 for t > 0. Let m = (q(1 −
p3) exp(−a3T)/1 − (1 − p3) exp(−a3T)) − ε for ε > 0. Since y2(t) ≥ −a3y(t) for t /=nT, t /= (n +
τ − 1)T , it follows from Lemmas 2.3 and 2.6 that y2(t) > y∗(t) − ε and hence y2(t) > m for
sufficiently large t. Thus we only need to findm1 andm2 such that x21(t) ≥ m1 and x22(t) ≥ m2

for t large enough. We will do this in the following two steps.
Step 1. First, take sufficiently small positive numbers m1 and m2 such that m1 < (1/β1)(a3 −
β2(((a2 −λ2)/b2)+ε2)), m2 < (1/β2)(a3 −β1(((a1 −λ1)/b1)+ε1)) and β1m1 +β2m2 < a3. We will
prove, there exist t1, t2 ∈ (0,∞) such that x21(t1) ≥ m1 and x22(t2) ≥ m2. Suppose not. Then
that, we have only the following three cases:

(i) there exists a t2 > 0 such that x22(t2) ≥ m2, but x21(t) < m1, for all t > 0;

(ii) there exists a t1 > 0 such that x21(t1) ≥ m1, but x22(t) < m2, for all t > 0;

(iii) x21(t) < m1 and x22(t) < m2 for all t > 0.

Case (i): from (3.22) we can take η1 > 0 small enough such that

φ1 =
(
1 − p1

)
exp
((

a1 − λ1 − b1m1 − γ1

(
a2 − λ2

b2
+ ε2

)
− e1η1

)
T − e1qΘ2

)
> 1. (3.25)

We obtain from the condition of case (i) that y′(t) ≤ y2(t)(−a3+β1x21(t)+β2x22(t)) ≤ y2(t)(−a3+
β1m1 + β2(((a2 − λ2)/b2) + ε2)) ≡ E1y2(t) for t /=nT, t /= (n + τ − 1)T , where E1 = −a3 + β1m1 +
β2(((a2 − λ2)/b2) + ε2) < 0. Thus we have y2(t) ≤ u(t) and u(t) → u∗(t) as t → ∞, where u(t)
is a solution of system

u′(t) = E1u(t), t /=nT, t /= (n + τ − 1)T,

Δu(t) = −p3u(t), t = (n + τ − 1)T,

Δu(t) = q, t = nT,

u(0+) = y(0+),

u∗(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q exp
(
E1
(
t − (n − 1)T

))

1 − (1 − p3
)

exp
(
E1T
) , (n − 1)T < t ≤ (n + τ − 1)T,

q
(
1 − p3

)
exp
(
E1
(
t − (n − 1)T

))

1 − (1 − p3
)

exp
(
E1T
) , (n + τ − 1)T < t ≤ nT.

(3.26)

Therefore, we can take a T1 > 0 such that y(t) ≤ u(t) < u∗(t) + η1 for t > T1. Thus we get

x′
21(t) ≥ x21(t)

(
a1 − λ1 − b1m1 − γ1

(
a2 − λ2

b2
+ ε2

)
− e1
(
u∗(t) + η1

)
)
,

t /=nT, t /= (n + τ − 1)T,

Δx21(t) = −p1x21(t), t = (n + τ − 1)T,

Δx21(t) = 0, t = nT,

(3.27)
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for t > T1. Let N1 ∈ N be such that (N1 + τ − 1)T ≥ T1. Integrating (3.17) on ((n + τ − 1)T, (n +
τ)T], n ≥N1, we can obtain that x21((n+ τ)T) ≥ x21((n+ τ − 1)T)(1− p1) exp(

∫ (n+τ)T
(n+τ−1)Ta1 − λ1 −

b1m1 − γ1(((a2 −λ2)/b2)+ ε2)−e1(v∗(t)+η1)dt = x21((n+ τ −1)T)φ1. Thus x21((N1 +k+ τ)T) ≥
x21((N1 + τ)T)φk1 → ∞ as k → ∞, which is a contradiction to the boundedness of x21(t).

Case (ii): the same argument as the case (i) can be applied. So we omit it.
Case (iii): we choose η2 > 0 sufficiently small so that

φ2 =
(
1 − p1

)
exp
((
a1 − λ1 − b1m1 − γ1m2

)
T − e1

(
qΨ + η2T

))
> 1. (3.28)

Then we obtain y′
2(t) ≤ y2(t)(−a3 + β1m1 + β2m2) ≡ E2y2(t) for t /=nT, t /= (n + τ − 1)T, where

E2 = −a3 + β1m1 + β2m2 < 0. It follows from Lemmas 2.3 and 2.6 that y2(t) ≤ w(t) and
w(t) → w∗(t) as t → ∞, where w(t) is a solution of the following system:

w′(t) = E2w(t), t /=nT, t /= (n + τ − 1)T,

Δw(t) = −p3w(t), t = (n + τ − 1)T,

Δw(t) = q, t = nT,

w(0+) = y(0+),

w∗(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q exp
(
E2
(
t − (n − 1)T

))

1 − (1 − p3) exp
(
E2T)

, (n − 1)T < t ≤ (n + τ − 1)T,

q
(
1 − p3) exp

(
E2
(
t − (n − 1)T

))

1 − (1 − p3
)

exp
(
E2T
) , (n + τ − 1)T < t ≤ nT.

(3.29)

Thus there exists a T2 > 0 such that y2(t) ≤ w(t) < w∗(t) + η2 for t > T2 and

x′
21(t) ≥ x21(t)

(
a1 − λ1 − b1m1 − γ1m2 − e1

(
w∗(t) + η2

))
,

t /=nT, t /= (n + τ − 1)T,

Δx21(t) = −p1x21(t), t = (n + τ − 1)T,

Δx21(t) = 0, t = nT,

(3.30)

for t > T2. Let N2 ∈ N be such that (N2 + τ − 1)T ≥ T2. Integrating (3.30) on ((n + τ − 1)T, (n +
τ)T], n ≥N2, we can obtain that x21((n+ τ)T) ≥ x21((n+ τ − 1)T)(1− p1) exp(

∫ (n+τ)
(n+τ−1)Ta1 − λ1 −

b1m1 − γ1m2 − e1(w∗(t) + η2)dt) = x21((n + τ − 1)T)φ2. Similarly, we have x21((N2 + k + τ)T) ≥
x21((N2 + τ)T)φk2 → ∞ as k → ∞, which is a contradiction to the boundedness of x21(t).
Therefore, there exist t1 > 0 and t2 > 0 such that x21(t1) ≥ m1 and x22(t2) ≥ m2.
Step 2. If x21(t) ≥ m1 for all t ≥ t1, then we are done. If not, we may let t∗ = inft>t1{x21(t) < m1}.
Then, x21(t) ≥ m1 for t ∈ [t1, t∗] and, by the continuity of x21(t), we have x21(t∗) = m1. In this
step, we have only to consider two possible cases.
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(i) Suppose that t∗ = (n1 + τ − 1)T for some n1 ∈ N. Then, (1 − p1)m1 ≤ x21(t∗+) =
(1 − p1)x21(t∗) < m1. Select n2, n3 ∈ N such that (n2 − 1)T > ln(η1/(M + q))/E1 and
(1 − p1)

n2φn3
1 exp(n2σT) > (1 − p1)

n2φn3
1 exp((n2 + 1)σT) > 1, where σ = a1 − λ1 − b1m1 −

γ1(((a2 −λ2)/b2)+ε2)−e1M < 0. Let T ′ = n2T +n3T . In this case, we will show that there exists
t3 ∈ (t∗, t∗+T ′] such that x21(t3) ≥ m1. Otherwise, by (2.10) and (3.26) with v(n1T

+) = y(n1T
+),

we have

v(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − p3

)n−(n1+1)

(

v
(
n1T

+) − q
(
1 − p3

)
exp(−T)

1 − (1 − p3
)

exp
(
E1T
)

)

exp
(
E1
(
t − n1T

))
+ v∗(t), (n − 1)T < t ≤ (n + τ − 1)T,

(
1 − p3

)(n−n1)

(

v
(
n1T

+) − q
(
1 − p3

)
exp(−T)

1 − (1 − p3
)

exp
(
E1T
)

)

exp
(
E1
(
t − n1T

))
+ v∗(t), (n + τ − 1)T < t ≤ nT,

(3.31)

and n1 + 1 ≤ n ≤ n1 + 1 + n2 + n3. So we get |v(t) − v∗(t)| ≤ (M + q) exp(E1(t − n1T)) < η1 and
y2(t) ≤ v(t) ≤ v∗(t) + η1 for n1T + (n2 − 1)T ≤ t ≤ t∗ + T ′, which implies that (3.27) holds for
t ∈ [t∗ + n2T, t

∗ + T ′]. As in step 1, we have

x21(t∗ + T ′) ≥ x21
(
t∗ + n2T

)
φn3

1 . (3.32)

Since y2(t) ≤M, we have

x′
21(t) ≥ x21(t)

(
a1 − λ1 − b1m1 − γ1

(
a2 − λ2

b2
+ ε2

)
− e1M

)
= σx21(t),

t /=nT, t /= (n + τ − 1)T,

Δx21(t) = −p1x21(t), t = (n + τ − 1)T,

Δx21(t) = 0, t = nT,

(3.33)

for t ∈ [t∗, t∗ + n2T]. Integrating (3.33) on [t∗, t∗ + n2T], we have

x21
((
t∗ + n2T

)) ≥ m1 exp
(
σn2T

)

> m1.
(3.34)

Thus x21(t∗ + T ′) ≥ m1(1 − p1)
n2 exp(σn2T)φ

n3
1 > m1 which is a contradiction. Now, let t =

inft>t∗{x21(t) ≥ m1}. Then, x21(t) ≤ m1 for t∗ ≤ t < t and x21(t) = m1. So, we have, for t ∈ [t∗, t),
x21(t) ≥ m1(1 − p1)

n2+n3 exp(σ(n2 +n3)T) ≡ m1. For t > t∗ the same argument can be continued
since x21(t) ≥ m1. Hence x21(t) ≥ m1 for all t > t1.

(ii) t∗ /= (n + τ − 1)T, n ∈ N. Suppose that t∗ ∈ ((n′1 + τ − 1)T, (n′1 + τ)T) for some n′1 ∈ N.
There are two possible cases for t ∈ (t∗, (n′1+τ)T). Firstly, if x21(t) ≤ m1 for all t ∈ (t∗, (n′1+τ)T),
similar to case (i), we can prove there must be a t′3 ∈ [(n′1 + τ)T, (n′1 + τ)T + T ′] such that
x21(t′3) ≥ m1. Here we omit it. Let t̂ = inft>t∗{x21(t) ≥ m1}. Then, x21(t) ≤ m1 for t ∈ (t∗, t̂)
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Figure 1: (a)–(c) Time series of system (1.2) with an initial value (2, 3, 1), (d)–(f) time series of system (1.2)
with an initial value (100, 100, 100).

and x21(t̂) = m1. For t ∈ (t∗, t̂), we have x21(t) ≥ m1(1 − p1)
n2+n3 exp(σ(n2 + n3 + 1)T) = m1.

So, m1 < m1 and x21(t) ≥ m1 for t ∈ (t∗, t̂). For t > t∗ the same argument can be
continued since x21(t̂) ≥ m1. Hence x21(t) ≥ m1 for all t > t1. Secondly, if there exists a
t ∈ (t∗, (n′1 + τ)T) such that x21(t) ≥ m1. Let t̆ = inft>t∗{x21(t) ≥ m1}. Then x21(t) ≤ m1

for t ∈ (t∗, t̆) and x21(t̆) = m1. For t ∈ (t∗, t̆), we have x21(t) ≥ x21(t∗) exp(σ(t − t∗)) ≥
m1 exp(σT) > m1. This process can be continued since x21(t̆) ≥ m1, and have x21(t) ≥ m1

for all t > t1. Similarly, we can show that x22(t) ≥ m2 for all t > t2. This completes the
proof.

Corollary 3.7. Suppose that λ1 = λ2 = 0. Then, system (1.2) is permanent if a3 > max{(a1β1/
b1), (a2β2/b2)}, (a1 − (γ1a2/b2))T − e1qΘ2 > ln 1/(1 − p1), and (a2 − (γ2a1/b1))T − e2qΘ1 >
ln 1/(1 − p2).

It follows from Theorems 3.1 and 3.6 that one of the two prey extinct and the remaining
two species are permanent under some conditions.

Corollary 3.8. Let (x1(t), x2(t), y(t)) be any solution of system (1.2). Then, x1 and y(t) are
permanent, and x2(t) → 0 as t → ∞ provided that a3 > (a2 − λ2)β2/b2, (a1 − λ1 − (γ1(a2 −
λ2)/b2))T − e1qΘ2 > ln(1/(1 − p1)), and (a2 + λ2)T − (b2

2e2qΨ/(b2
2 + c2(a2 + λ2)

2)) < ln (1/
(1 − p2)).

Corollary 3.9. Let (x1(t), x2(t), y(t)) be any solution of system (1.2). Then, x2 and y(t) are
permanent, and x1(t) → 0 as t → ∞ provided that a3 > (a1−λ1)β1/b1, (a1+λ1)T −(b2

1e1qΨ/(b2
1+

c1(a1 + λ1)
2)) < ln 1/(1 − p1) and (a2 − λ2 − (γ2(a1 − λ1)/b1))T − e2qΘ1 > ln 1/(1 − p2).
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Figure 2: (a)–(c) Time series. (d) The trajectory of system (1.2) with an initial value (2, 3, 1).

4. Numerical Examples

In this section, we will give some examples.

Case 1. If we take a1 = 1.1, a2 = 1.0, a3 = 0.7, b1 = 1.0, b2 = 1.2, c1 = 0.9, c2 = 1.0, e1 =
0.3, e2 = 0.2, γ1 = 0.1, γ2 = 0.1, β1 = 0.8, β2 = 1.0, p1 = 0.7, p2 = 0.8, p3 = 0.001, τ =
0.6, T = 1, q = 5, λ1 = 0.5, and λ2 = 0.6, then these parameters satisfy the condition of
Theorem 3.1. Thus the periodic solution (0, 0, y∗(t)) is globally asymptotically stable. (See
Figure 1.)

Case 2. Let a1 = 5, a2 = 4, a3 = 0.7, b1 = 1, b2 = 1.2, c1 = 0.9, c2 = 1, e1 = 0.3, e2 = 0.2, γ1 =
0.1, γ2 = 0.1, β1 = 0.1, β2 = 0.2, p1 = 0.3, p2 = 0.4, p3 = 0.001, τ = 0.6, T = 4, q = 2, λ1 = 4.0
and λ2 = 3. Then, from Theorem 3.6, we know that system (1.2) is permanent, (see Figure 2).

Case 3. From Corollary 3.8, we obtain that x1 and y(t) are permanent, and x2(t) → 0 as
t → ∞, where (x1(t), x2(t), y(t)) is a solution of system (1.2) with a1 = 5, a2 = 1.3, a3 =
0.7, b1 = 1, b2 = 0.8, c1 = 0.9, c2 = 1, e1 = 0.3, e2 = 1, γ1 = 0.1, γ2 = 0.1, β1 = 0.8, β2 =
0.9, p1 = 0.5, p2 = 0.8, p3 = 0.001, τ = 0.6, λ1 = 1, λ2 = 0.5, T = 1, and q = 2. Figure 3
exhibits this phenomenon.

Case 4. It follows from Corollary 3.9 that x2 and y(t) are permanent, and x1(t) → 0 as t → ∞,
where (x1(t), x2(t), y(t)) is a solution of system (1.2) with a1 = 1, a2 = 5, a3 = 0.8, b1 =
0.8, b2 = 0.8, c1 = 0.8, c2 = 1, e1 = 1, e2 = 0.2, γ1 = 0.1, γ2 = 0.1, β1 = 0.9, β2 = 0.8, p1 =
0.8, p2 = 0.5, p3 = 0.001, τ = 0.6, T = 1, q = 3, λ1 = 0.5 and λ2 = 1. (see Figure 4.)

5. Conclusion

In this paper, based on a Holling-type IV two-prey one-predator system, we established an
impulsive differential equation to model the seasonal effects, the process of a proportional
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Figure 3: (a)–(c) Time series. (d) The trajectory of system (1.2) with an initial value (2, 3, 1).
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Figure 4: (a)–(c) Time series. (d) The trajectory of system (1.2) with an initial value (2, 3, 1).

periodic impulsive harvesting, and a constant periodic releasing of the predator at different
fixed time. Using the Floquet theory of impulsive differential equation and small amplitude
perturbation skills, we proved that there exists a globally (locally) stable two-prey-free
periodic solution if the conditions of Theorem 3.1 (Corollary 3.3) are satisfied. Also, we
established permanence conditions of system (1.2) via the method of comparison including
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multiple Liapunov functions when the conditions of Theorem 3.6 are satisfied. From main
Theorems, we easily obtained the sufficient conditions under which one of the two preys is
extinct and whic of the remaining two species are permanent. In addition, we gave some
examples by using numerical simulations.
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