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We investigate asymptotic behavior and periodic nature of positive solutions of the difference
equation xn = max{A/xn−1, 1/xα

n−3}, n = 0, 1, . . ., where A > 0 and 0 < α < 1. We prove that
every positive solution of this difference equation approaches x = 1 or is eventually periodic with
period 2.
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1. Introduction

In the recent years, there has been a lot of interest in studying the global attractivity and the
periodic nature of, so-called, max-type difference equations (see, e.g., [1–17] and references
therein).

In [10], the following difference equation was proposed by Ladas:

xn = max
{

A1

xn−1
,
A2

xn−2
, . . . ,

Ap

xn−p

}
, n = 0, 1, . . . , (1.1)

where A1, A2, . . . , Ap are real numbers and initial conditions are nonzero real numbers.
In [17], asymptotic behavior of positive solutions of the difference equation was

investigated

xn = max
{

1
xα
n−1

,
A

xn−2

}
, n = 0, 1, . . . , (1.2)
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where 0 < α < 1 and 0 < A. It was showed that every positive solution of this difference
equation approaches x = 1 or is eventually periodic with period 4.

In [14], it was proved that every positive solution of the difference equation,

xn = max
{

A

xα
n−1

,
B

x
β

n−2

}
, n = 0, 1, . . . , (1.3)

where 0 < α, β < 1, 0 < A, and 0 < B, converges to x = max{A1/(α+1), B1/(β+1)}.
In this paper, we investigate the difference equation

xn = max
{

A

xn−1
,

1
xα
n−3

}
, n = 0, 1, . . . , (1.4)

where 0 < A, 0 < α < 1 and initial conditions are positive real numbers. We prove that every
positive solution of this difference equation approaches x = 1 or is eventually periodic with
period 2.

2. The Case A = 1

In this section, we consider the difference equation

xn = max
{

1
xn−1

,
1

xα
n−3

}
, n = 0, 1, . . . , (2.1)

where 0 < α < 1.

Theorem 2.1. Let xn be a solution of (2.1). Then xn approaches x = 1.

Proof. Choose a number B such that 0 < B < 1, let xn = Byn for n ≥ −3. Then (2.1) implies the
difference equation

yn = min
{ − yn−1,−αyn−3

}
, n = 0, 1, . . . , (2.2)

where 0 < α < 1 and initial conditions are real numbers.
Let yn be a solution of (2.2). Then it suffices to prove yn → 0. Observe that there exists

a positive integer N such that

yN = −yN−1, yN+1 = −αyN−2 forN ≥ 0. (2.3)

By computation, we get that

yN+2 = −yN+1, yN+3 = −αyN, yN+4 = −yN+3 (2.4)
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and then

y4n+N = αnyN, y4n+N+1 = αnyN+1,

y4n+N+2 = −y4n+N+1, y4n+N+3 = −αy4n+N
∀n ≥ 0. (2.5)

So, y4n+N → 0, y4n+N+1 → 0, y4n+N+2 → 0, y4n+N+3 → 0. This implies yn → 0.

3. The Case 0 < A < 1

In this section, we consider (1.4), where 0 < α < 1.
Let xn = Ayn, n ≥ −3. Equation (1.4) implies the difference equation

yn = min
{
1 − yn−1, − αyn−3

}
, n = 0, 1, . . . , (3.1)

where initial conditions are real numbers.

Lemma 3.1. Let yn be a solution of (3.1). Then for all n ≥ 0,

|yn| ≤ max
{∣∣yn−1

∣∣ − 1, α
∣∣yn−3

∣∣}. (3.2)

Proof. From (3.1), we have the following statements:

if yn−1 ≥ 0 and yn−3 ≥ 0, then |yn| ≤ max{|yn−1| − 1, α|yn−3|};
if yn−1 ≤ 0 and yn−3 ≤ 0, then |yn| ≤ α|yn−3|;
if yn−1 ≥ 0 and yn−3 ≤ 0, then |yn| ≤ max{|yn−1| − 1, α|yn−3|};
if yn−1 ≤ 0 and yn−3 ≥ 0, then |yn| = α|yn−3|.

In general, we have |yn| ≤ max{|yn−1| − 1, α|yn−3|} for all n ≥ 0.

Theorem 3.2. ifxn is a solution of (1.4), xn approaches x = 1.

Proof. Let yn be a solution of (3.1). To prove xn → 1, it suffices to prove yn → 0.
Choose a number β such that 0 < |yn−1| − 1 ≤ β|yn|. Then from inequality (3.2), we get

that

∣∣yn

∣∣ ≤ max
{
β
∣∣yn−1

∣∣, α∣∣yn−3
∣∣}, n ≥ 0. (3.3)

Let γ = max{β, α}, then 0 < γ < 1 and

|yn| ≤ γ max
{|yn−1|, |yn−3|

}
, n ≥ 0. (3.4)

From (3.4) and by induction, we get that

∣∣yn

∣∣ ≤ γ [n/3]+1 max
{∣∣y−1

∣∣, ∣∣y−2
∣∣, ∣∣y−3

∣∣}, n ≥ 0. (3.5)

This implies yn → 0.
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4. The Case A > 1

In this section, we consider (1.4). Let xn = Ayn for n ≥ −3. Equation (1.4) implies the
difference equation

yn = max
{
1 − yn−1,−αyn−3

}
, n = 0, 1, . . . , (4.1)

where 0 < α < 1 and initial conditions are real numbers.

Theorem 4.1. If xn is a solution of (1.4), then the following statements are true:

(a) xn approaches x = 1, if there is an integerN such that

xN =
A

xN−1
, xN+1 =

1
xα
N−2

for 0 ≤ n ≤ N. (4.2)

(b) xn is eventually periodic with period 2, if there is an integerN such that

xN =
A

xN−1
, xN+1 = xN−1, A−α/(1−α) ≤ xN−1 ≤ A1/(1−α) for 0 ≤ n ≤ N. (4.3)

Proof. (a) Change of variables xn = Ayn, n ≥ −3. If xN = A/xN−1 and xN+1 = 1/xα
N−2 for

0 ≤ n ≤ N, then yN = 1 − yN−1 and yN+1 = −αyN−2. Let yn be a solution of (4.1). So, to
prove xn → 1, it suffices to prove yn → 0. From (4.1), there is at least an integerN such that
yN = 1 − yN−1 > 0 and yN+1 = −αyN−2 for 0 ≤ n ≤ N. By computation from (4.1), we get that
yN+1 < 0, yN−2 ≥ yN > 0 and then

yN+2 = 1 + αyN−2, yN > yN+2 > 0,

yN+3 = −αyN, yN+1 < yN+3 < 0,

yN+4 = 1 + αyN, yN > yN+2 ≥ yN+4 > 0,

yN+5 = −αyN+2, yN+1 ≤ yN+3 < yN+5 < 0.

(4.4)

So, we have

y4n+N > y4n+N+2 ≥ y4n+N+4 > 0, y4n+N+1 ≤ y4n+N+3 < y4n+N+5 < 0 (4.5)

for all n ≥ 0. This implies yn → 0.
(b) Change of variables xn = Ayn, n ≥ −3. Let yn be a solution of (4.1).
If xN = A/xN−1, xN+1 = xN−1, and A−α/(1−α) ≤ xN−1 ≤ A1/(1−α) for 0 ≤ n ≤ N, then

yN = 1 − yN−1, yN+1 = yN−1,
−α
1 − α

≤ yN−1 ≤ 1
1 − α

. (4.6)

Clearly, there is at least an integer N such that yN = 1 − yN−1 for 0 ≤ n ≤ N.
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Suppose that yN+1 = yN−1 and yN−1/∈[−α/(1 − α), 1/(1 − α)].
If yN−1 > 1/(1 − α) then from (4.1), we have yN+2 = −αyN−1. So, from (a) we get

immediately that yn → 0.
If yN−1 < −α/(1−α), then we have yN+2 = 1−yN+1 and yN+3 = −αyN. Then we get that

yn → 0, from (a).
We assume that yN+1 = yN−1 and −α/(1 − α) ≤ yN−1 ≤ 1/(1 − α). To prove the desired

result, it suffices to show that yn is eventually periodic with period 2. By computation from
(4.1), we get immediately yN = 1 − yN−1 for all 0 ≤ n ≤ N. This is the desired result.
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