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1. Introduction

We consider the following Cauchy problem:

∂xxu + u∂yu − ∂tu = f(·, u),
(
t, x, y

)
∈ (0, T] × R2, (1.1)

u(0, ·) = u0
(
x, y

)
,

(
x, y

)
∈ R2. (1.2)

This problem arises in financial mathematics recently; more and more mathematicians have
been interested in it. In [1], Antonelli et al. introduced a new model for agents’ decision under
risk, in which the utility function is the solution to (1.1)-(1.2); they also proved, by means of
probability methods, the existence of a continuous viscosity solution of (1.1)-(1.2), which
satisfies

∣∣u
(
x, y, t

)
− u

(
ξ, η, τ

)∣∣ ≤ CT

(
|x − ξ| +

∣∣y − η
∣∣) (1.3)

for every (x, y), (ξ, η) ∈ R2, t ∈ [0, T), under the assumption that f is uniformly Lipschitz
continuous function. In [2], Citti et al. studied the interior regularity properties of this
problem; they proved that the viscosity solutions are indeed classical solutions. On the
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other hand, Antonelli and Pascucci [3] showed that the solution u found in [1] can be also
considered as a distributional solution.

However, all the above results are obtained when T is suitably small; say, the solution is
local. The global weak solutions of the Cauchy problem for a more general class of equations,
that contains (1.1), are obtained in [4–7], and so forth. This kind of solutions, however, is few
regular and does not satisfy condition (1.3) in general.

In this paper, we will solve the Cauchy problem (1.1)-(1.2) in another simpler way and
get the result as [2] again. Moreover, some examples are provided by numerical computation.
The results of computation show that the strong solutions of the above equation may blow-up
in finite time, though there exist the global weak solutions.

2. Line Method

In order to describe our method, we have to quote the well-known Prandtl system for a
nonstationary boundary layer arising in an axially symmetric incompressible flow past a solid
body, it has the form

∂tu + u∂xu + v∂yu = ∂tU +U∂xU + ∂2
yu,

∂x(ru) + ∂y(rv) = 0
(2.1)

in a domain D = {0 < t < T, 0 < x < X, 0 < y < ∞}, where U(t, x) and r(x) are given
functions. If we introduce the Crocco variables:

τ = t, ξ = x, η =
u(t, x)
U(t, x)

, (2.2)

we obtain the following equation for w(τ, ξ, η) = ∂yu/U:

w2wηη −wτ − ηUwξ +Awη + Bw = 0. (2.3)

Oleinik and Samokhin [8] had done excellent work in the boundary theory by the line
method. Comparing this equation with (1.1), it is natural to conjecture that we are able to
solve problem (1.1)-(1.2) by Qleinik’s method.

Consider the following initial boundary problem:

wηη −wτ +wwξ = f
(
τ, ξ, η,w

)
, (2.4)

w
(
0, ξ, η

)
= u0

(
ξ, η

)
, (2.5)

where u0 ∈ C2(R2); its first-order derivatives and u0ηη are all bounded.

Definition 2.1. A function w(τ, ξ, η) is said to be a solution of problem (2.4)-(2.5) if w has
first-order derivatives in (2.4) which is continuous in (0, T] × R2, and its derivative wηη is
continuous; w satisfies (2.4) in (0, T] × R2, together with condition (2.5).
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The solution of problem (2.4)-(2.5) will be constructed as the limit of a sequence wn,
n → ∞, which consists of solutions of the equations

Ln(wn) = wn
ηη −wn

τ +w
n−1wn

ξ − f(·, w
n) = 0, (2.6)

wn(0, ξ, η
)
= w0

(
ξ, η

)
. (2.7)

As w0(τ, ξ, η) we take a function which is smooth in [0, T] × R2.
Suppose that for some nonnegative number p

∣
∣f(·, v)

∣
∣ ≤ c

(
1 + |v|p

)
, (2.8)

and when v1 − v2 ≥ 0,

c1(v1 − v2) ≥ f(·, v1) − f(·, v2) ≥ c2(v1 − v2),

max

{∣∣∣∣
∂f

∂τ

∣∣∣∣,
∣∣∣∣
∂f

∂ξ

∣∣∣∣,
∣∣∣∣
∂f

∂η

∣∣∣∣

∣∣∣∣∣
∂2f

∂v2

∣∣∣∣∣

}

≤ c.
(2.9)

Lemma 2.2. Let V be a smooth function such that Ln(V ) ≥ 0 in (0, T)×R2, V ≤ wn for τ = 0. Then
V ≤ wn everywhere (0, T) × R2. Let V1 be a smooth function such that Ln(V1) ≤ 0 in (0, T) × R2,
V ≥ wn for τ = 0. Then V1 ≥ wn everywhere in (0, T) × R2.

Proof. Let us prove the first statement of Lemma 2.2. The difference zn = wn − V satisfies the
inequality

0 ≥ Ln(zn) = Ln(wn) − Ln(V ) = znηη − znτ +wn−1znξ −
(
f(·, wn) − f(·, V )

)
. (2.10)

Let zn1 = e−ατzn. Then

0 ≥ zn1ηη − z
n
1τ + αz

n
1 +wn−1zn1ξ − e

−ατ(f(·, wn) − f(·, V )
)

≥ zn1ηη − z
n
1τ − αz

n
1 +wn−1zn1ξ − c1z

n
1 .

(2.11)

If we choose α large enough, by the maximal principle, we know V ≤ wn everywhere in
(0, T) × R2.

Let us construct functions satisfying the conditions of Lemma 2.2. To this end, we
define a twice continuously differentiable even function such that V1 = (1 − e−β|η|)eβτ for
|η| > 1, V1 = ϕ(η)eβτ for |η| ≤ 1, where ϕ(η) is a C2 function, |ϕηη| ≤ c.

When |η| > 1,

Ln(V1) = V n
1ηη − V1τ −wn−1V n

1ξ − f(·, V1)

= −β2
1e
−β1|η|eβτ − β

(
1 − e−β1|η|

)
eβτ − f(·, V1)

≤ −β2
1e
−β1|η|eβτ − β

(
1 − e−β1|η|

)
eβτ + c

(
1 − e−β1|η|

)p
epβτ + c < 0

(2.12)

if we chose β large enough and βτ ≤ T0 small enough.
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When |η| ≤ 1,

Ln(V1) = ϕηηeβτ − βϕeβτ − f(·, V1)

≤ ϕηηeβτ − βϕeβτ + c
(

1 + ϕpeβτp
)
< 0

(2.13)

by the same reason.
Let V = ψ(η)e−ατ , α1 > ψ(η) ≥ α0 > 0, |ψηη| ≤ c. Then

Ln(V ) = ψηηe−ατ + αψeατ − f(·, V )

≥ ψηηe−ατ + αψeατ − c
(
1 + ψpeατp

)
≥ 0

(2.14)

if we chose α large enough and ατ ≤ T0 small enough.
Similarly, we are able to prove the second statement of Lemma 2.2.

Thus we have the following.

Lemma 2.3. Suppose that f satisfies (2.9) and V (0, ξ, η) ≤ w0 ≤ V1(0, ξ, η), then

V ≤ wn ≤ V1. (2.15)

The smooth functions V , V1 can be constructed as in [8], and we omit details here.

Let

Φn = Φ = (unτ )
2 +

(
unξ

)2
+
(
unη

)2
, (2.16)

where un = wn. We will show that there exist positive constants M and T such that the
conditions Φμ ≤M for τ ≤ T , μ ≤ n − 1, imply that Φn ≤M for τ ≤ T .

First, we rewrite (2.6) as

unηη − uτ + un−1unξ − f(·, u
n) = 0,

(
τ, ξ, η

)
∈ (0, T] × R2. (2.17)

Applying the operator 2unτ (∂/∂τ) + 2un
ξ
(∂/∂ξ) + 2unη(∂/∂η) to (2.17),

2unτu
n
τηη + 2unτ

(
un−1
τ unξ + u

n−1unξτ

)
− 2unτu

n
ττ − 2

∂f

∂u
(unτ )

2 − 2unτ
∂f

∂τ
,

2unξ u
n
ξηη + 2unξ

(
un−1
ξ unξ + u

n−1unξξ

)
− 2unξ u

n
τξ − 2

∂f

∂u

(
unξ

)2
− 2unξ

∂f

∂ξ
,

2unηu
n
ηηη + 2unη

(
wn−1
η unξ +w

n−1unξη

)
− 2unηu

n
τη − 2

∂f

∂u

(
unη

)2
− 2unη

∂f

∂ξ
= 0,

(2.18)
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then

un−1Φξ =
(

2unτu
n
τξ + 2unξ u

n
ξξ + 2unηu

n
ηξ

)
un−1,

−Φτ = −2unτu
n
ττ − 2unξ u

n
ξτ − 2unηu

n
ητ ,

Φηη = 2
(
uτη

)2 + 2unτu
n
τηη + 2

(
uξη

)2 + 2unξ u
n
ξηη + 2

(
uηη

)2 + 2unηu
n
ηηη,

Φηη+un−1Φξ−Φτ− 2
∂f

∂u
Φ+2unτu

n
ξ u

n−1
ξ +2

(
unξ

)2
un−1
ξ +2unηu

n
ξ u

n−1
η − 2unτ

∂f

∂τ
− 2unξ

∂f

∂ξ
− 2unη

∂f

∂ξ
= 0.

(2.19)

By (2.9), (2.15), and Cauchy inequality, we are able to get

Φηη + un−1Φξ −Φτ + RnΦ ≥ 0, (2.20)

where Rn depends on un−1 and its derivatives are up to the second. Let Φ1 = Φe−γτ with a
positive constant γ to be chosen later. Then

Φ1ηη + un−1Φ1ξ −Φ1τ +
(
Rn − γ

)
Φ ≥ 0 (2.21)

if we choose γ according to M such that Rn − γ ≤ −1. If Φ1 attains its positive maximum at
τ = 0, then

Φ1|τ=0 = Φe−γτ |τ=0 = Φ|τ=0 ≤ c, (2.22)

where the constant c does not depend on n. At the same time, the positive maximum of Φ1 in
(0, T] × R2 cannot be attained by maximal principle. Thus we have

Φ1 ≤ c. (2.23)

So, if we let T1 ≤ T small enough such that eγT1 = 2 and set M = 2c, then

Φ ≤ ceγT1 =M. (2.24)

In order to estimate the second derivatives of un in [0, T1] × R2, consider the function

F = (unττ)
2 +

(
unξξ

)2
+
(
unηη

)2
+
(
unτξ

)2
+
(
unξη

)2
+
(
unτη

)2
. (2.25)

Applying the operator

P = 2unττ
∂2

∂τ2
+ 2unξξ

∂2

∂ξ2
+ 2unηη

∂2

∂η2
+ 2unτξ

∂2

∂τ∂ξ
+ 2unτη

∂2

∂τ∂η
+ 2unξη

∂2

∂ξ∂η
(2.26)
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to both sides of (2.17), we find that

0 = 2unττu
n
ηηττ + 2unττ

(
un−1
ττ u

n
ξ + 2un−1

τ unξτ + u
n−1unξττ

)

− 2unττu
n
τττ + −2unττ

(
∂2f

∂u2 (u
n
τ )

2 +
∂f

∂u
unττ

)

+ 2unξξu
n
ηηξξ + 2unξξ

(
un−1
ξξ unξ + 2un−1

ξ unξξ + u
n−1unξξξ

)

− 2unξξu
n
τξξ − 2unξξ

(
∂2f

∂u2

(
unξ

)2
+
∂f

∂u
unξξ

)

+ 2unηηu
n
ηηηη + 2unηη

(
un−1
ηη u

n
ξ + 2un−1

η unξη + u
n−1unξηη

)

− 2unηηu
n
τξξ − 2unηη

(
∂2f

∂u2

(
unη

)2
−
∂f

∂u
unηη

)

+ 2unτξu
n
ηητξ + 2unτξ

(
un−1
τξ u

n
ξ + u

n−1
τ unξξ + u

n−1
ξ unξτ + u

n−1unξξτ

)

− 2unτξu
n
ττξ − 2unτξ

(
∂2f

∂u2
unτu

n
ξ +

∂f

∂u
unτξ

)

+ 2unξηu
n
ηηξη + 2unξη

(
un−1
ξη unξ + u

n−1
ξ unξη + u

n−1
η unξξ + u

n−1unξξη

)

− 2unξηu
n
ττξ − 2unξη

(
∂2f

∂u2
unηu

n
ξ +

∂f

∂u
unξη

)

+ 2unτηu
n
ηητη + 2unτη

(
un−1
τη u

n
ξ + u

n−1
τ unξη + u

n−1
η unξτ + u

n−1unξτη

)
− 2unτηu

n
ττη

− 2unτη

(
∂2f

∂u2
unηu

n
τ +

∂f

∂u
unτη

)

.

(2.27)

At the same time, we can calculate that

Fη = 2unττu
n
ττη + 2unξξu

n
ξξη + 2unηηu

n
ηηη + 2unτξu

n
τξη + 2unξηu

n
ξηη + 2unτηu

n
τηη,

Fηη = 2
(
unττη

)2
+ 2unττu

n
ττηη + 2

(
unξξη

)2
+ 2unξξu

n
ηηξξ + 2

(
unηηη

)2
+ 2unηηu

n
ηηηη

+ 2
(
unτξη

)2
+ 2unτξu

n
τξηη + 2

(
unηξξ

)2
+ 2unξηu

n
ξηηη + 2

(
unτηη

)2
+ 2unτηu

n
τηηη,

un−1Fξ = un−1
(

2unττu
n
ττξ + 2unξξu

n
ξξξ + 2unηηu

n
ηηξ + 2unτξu

n
τξξ + 2unξηu

n
ξηξ + 2unτηu

n
τηξ

)
,

−Fτ = −
(

2unττu
n
τττ + 2unξξu

n
ξξτ + 2unηηu

n
ηητ + 2unτξu

n
τξτ + 2unξηu

n
ξητ + 2unτηu

n
τητ

)
,

(2.28)
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and so we have

Fηη + un−1Fξ − Fτ − 2
∂f

∂u
F − 2unττ

(
wn−1
ττ u

n
ξ + 2wn−1

τ unξτ

)

− 2unξξ
(
un−1
ξξ unξ + 2un−1

ξ unξξ

)
− 2unηη

(
un−1
ηη u

n
ξ + 2wn−1

η unξη

)

− 2unτξ
(
un−1
τξ u

n
ξ + u

n−1
τ unξξ + u

n−1
ξ unξτ

)
− 2unξη

(
un−1
ξη unξ + u

n−1
ξ unξη + u

n−1
η unξξ

)

− 2unτη
(
un−1
τη u

n
ξ + u

n−1
τ unξη + u

n−1
η unξτ

)
− 2unττ

∂2f

∂u2 (u
n
τ )

2 − 2unξξ
∂2f

∂u2

(
unξ

)2
− 2unηη

∂2f

∂u2

(
unη

)2

− 2unτξ
∂2f

∂u2
unτu

n
ξ − 2unξη

∂2f

∂u2
unηu

n
ξ − 2unτη

∂2f

∂u2
unηu

n
τ

− 2
∂f

∂u

[
(unτ )

2 +
(
unξ

)2
+
(
unη

)2
]
= 0.

(2.29)

By the introduced assumption that the first-order and second-order derivatives of un−1,
∂f/∂u, and ∂2f/∂u2 are all bounded and using Cauchy inequality, we can get from (2.29)
that

Fηη − 2αFη − un−1Fξ − Fτ + Rn
1F ≥ 0. (2.30)

By the transformation F1 = Fe−γτ , if we chose γ large enough, we are able to show that there
exist positive constants M and T such that the conditions Fμ ≤M for τ ≤ T , μ ≤ n − 1, imply
that Fn ≤M for τ ≤ T . Thus we have the following.

Theorem 2.4. Let wn be the solutions of problems (2.4)-(2.5), then the derivatives of wn up to the
second-order are uniformly bounded with respect to n in the domain (0, T] × R2 with a small positive
number T .

Now let us establish uniform convergence of wn = un in [0, T]×R2. For vn = wn −wn−1

we obtain the following equation from (2.6):

vnηη − vnτ +wn−1vnξ − v
n−1wn−1

ξ −
(
f(·, wn) − f

(
·, wn−1

))
= 0,

vn
(
0, ξ, η

)
= 0.

(2.31)

Let vn = eατvη1 . Then

vn1ηη − v
n
1τ +w

n−1vn1ξ − v
n−1
1 wn−1

ξ − αvn1 − e
−ατ

(
f(·, wn) − f

(
·, wn−1

))
= 0,

vn1ηη − v
n
1τ +w

n−1vn1ξ − v
n−1
1 wn−1

ξ

= αvn1 + e−ατ
(
f(·, wn) − f

(
·, wn−1

))
= αvn1 + e−ατ

∂f

∂w
vn1 ≥ (α − c)vn1 ,

(2.32)

where we have chosen τ ≤ T small enough such that e−ατ = 2, and 2(∂f/∂w) ≥ −c.
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If v1 attains its positive maximal value in (0, T] × R2, we can choose α large enough
such that

∣
∣
∣
∣
∣
∣

wn−1
ξ

α − c

∣
∣
∣
∣
∣
∣
< 1, (2.33)

and then at the maximal point we have

(α − c)vn1 ≤ −v
n−1
1 wn−1

ξ . (2.34)

If vn1 attains its negative minimal value in (0, T] × R2, we have

(α − c)
(
−vn1

)
≤ −vn−1

1 wn−1
ξ . (2.35)

Notice that at τ = 0, vn1 = vn = 0. By (2.34) and (2.35),

max
∣∣vn1

∣∣ ≤ qmax
∣∣∣vn−1

1

∣∣∣, q < 1, (2.36)

which means that the series v1
1+v

2
1+· · ·+v

n
1 +· · · , whose sum has the formwne−ατ , is majorized

by a geometrical progression and, therefore, is uniformly convergent. The fact that wn and
its derivatives up to the second-order are bounded implies that the first derivatives of wn are
uniformly convergent as n → ∞.

It follows from (2.6) that wn
ηη are also uniformly convergent as n → ∞.

Now, we can take w−1 = w0 = w0; then by the above discussion, we have the following
theorem.

Theorem 2.5. Suppose that V (0, ξ, η) ≤ w0 ≤ V1(0, ξ, η) and f satisfies (2.9) and is suitable smooth,
then there exists a small positive number T such that the Cauchy problem (2.4) has a classical solution.

By the way, it is easy to prove the uniqueness of the solution for the Cauchy problem
(2.4), and we omit the details here.

3. Computational Examples

In this section, a numerical simulate is made for the equations by differential method.
Numerical computation of these examples shows that the strong solutions for the
corresponding Cauchy problem of (1.1)-(1.2) will blow-up in finite time.

Let Ω = [0, Lx] × [0, Ly] and u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, but u(x, y, 0) = 0, (x, y) ∈
R2/Ω. Then instead of studying the Cauchy Problem (1.1)-(1.2), we can study the following
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Figure 1: f(·, u) = u.
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Figure 2: f(·, u) = sinu.

initial boundary problem:

∂xxu + u∂yu − ∂tu = f(·, u),
(
x, y, t

)
∈ Ω × (0, T],

u
(
x, y, 0

)
= u0

(
x, y

)
,

(
x, y

)
∈ Ω,

u|∂Ω = 0.

(3.1)
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Figure 3: The numerical results in (a) at t = 0 and in (b) at t = 0.046 when f(·, u) = u2.

If f(·, 0) = 0, it is clear that if u(x, y, t) is a classical solution of (3.1), then u(x, y, t) is a strong
solution of the Cauchy problem (1.1)-(1.2).

To dissect domain Ω, suppose that Lx = Ly = 2π and hx = 2π/N, hy = 2π/M stands
for the space step-length in the axis x and axis y, and k = T/J stands for the time step-length.
Let Ωh = {(ihx, jhy) | 0 ≤ i ≤ N; 0 ≤ j ≤M} and define unij = u(ihx, jhy, nk). The differential
scheme of the original equation is (to ensure numerical stability, here we apply arithmetic
averages in order to avoid “oscillation” and “shifting” of the numerical solution)

uni+1,j − 2uni,j + u
n
i−1,j

h2
x

+
uni+1,j + u

n
i,j + u

n
i−1,j + u

n
i,j+1 + u

n
i,j + u

n
i,j−1

6

uni,j+1 − u
n
i,j−1

2hy

−
un+1
i,j − (1/4)

(
uni−1,j + u

n
i+1,j + u

n
i,j+1 + u

n
i,j−1

)

k

= f

(

ihx, jhy, nk,
uni+1,j + u

n
i,j + u

n
i−1,j + u

n
i,j+1 + u

n
i,j + u

n
i,j−1

6

)

,

un|∂Ωh = 0, (n = 1, 2, . . .), u0
i,j = u0

(
ihx, jhy

)
.

(3.2)
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Figure 4: f(·, u) = u.

So we get the following explicit formula:

un+1
i,j =

1
4

(
uni−1,j + u

n
i+1,j + u

n
i,j+1 + u

n
i,j−1

)
+
k

h2
x

(
uni+1,j − 2uni,j + u

n
i−1,j

)

+
k

12hy

(
uni+1,j + 2uni,j + u

n
i−1,j + u

n
i,j+1 + u

n
i,j−1

)(
uni,j+1 − u

n
i,j−1

)

− kf
(

ihx, jhy, nk,
uni+1,j + 2uni,j + u

n
i−1,j + u

n
i,j+1 + u

n
i,j−1

6

)

.

(3.3)

Experiment 1. Suppose Ω = [0, 2π]× [0, 2π], hx = hy = 2π/40, k = 0.001, u0(x, y) = sinx siny
which itself does not satisfy (1.1); we get the graphs (see Figures 1–3) where u(x, y, t) changes
according to the changes of t when different functions are given to f(·, u).

Figure 1 shows that when f(·, u) = u, at t = 0.04, the numerical solutions become
oscillatory; at t = 0.042, the bifurcation of solutions occurs; when t > 0.042, the solutions
will blow-up. Similarly Figure 2 shows that when f(·, u) = sinu, at t = 0.6, the bifurcation
of solutions occurs; when t > 0.6, the solutions will blow-up. Figure 3 is the spatiotemporal
graphs of solutions when f(·, u) = u2 at t = 0 (initial value) and t = 0.0046. When t > 0.0046,
the solutions will blow-up.

Experiment 2. The initial value is unknown in the general situation; so we use random
numbers ([−0.01, 0.01]) as the initial value and draw graphs (see Figures 4 and 5) where
u(x, y, t) changes as t changes when different functions are given to f(·, u).

Figures 4 and 5 show that even though the initial value is sufficiently small, the blow-
up will appear in finite time for the different functions.
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Figure 5: f(·, u) = 1 − sinu.

The numerical result shows that there is a locality solution of the equation. When t
becomes larger, the bifurcation of solutions occurs in finite time and blow-up appears. For
this problem, it is essential to have a further research.
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