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1. Introduction

In biomathematics, one of the most challenging aspects of mathematical biology is
competition modeling. Although the mathematical idea is simple [1], this type of modeling
is so difficult to carry out in any generality since there are so many ways for a population
to compete; many classical competitive models have been established to describe the
relationships between species and the outer environment, and the connections between
different species. Lotka-Volterra competitive model of two species communities is probably
the best known model of mathematical ecology. In 1934, Gause [2] found out the competitive
exclusion theory, which states that two species that compete for the exact same resources
cannot stably coexist. One of the two competitors will always have an ever so slight
advantage over the other that leads to extinction of the second competitor in the long
run. Since then the competitive model has increasingly won attention as an important and
fundament model in biomathematics. The dynamic relationship between species and their
competitors has long been one of the dominant theses in both ecology and mathematical
ecology. As a consequence, many excellent results concerned with permanence, extinction,
stability and hopf bifurcations, and existence and global stability of positive periodic
solutions of Lotka-Volterra competitive system are obtained (see [3–16]).
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Although much progress has been seen for Lotka-Volterra competitive systems, such
systems are not well studied in the sense that most results are continuous time versions
related. Many authors [17–21] have argued that the discrete-time models governed by
difference equations are more appropriate than the continuous ones when populations have a
short life expectancy, nonoverlapping generations in the real word. Discrete-time models can
provide efficient computational models of continuous models for numerical simulations. So
it is reasonable to study discrete-time competitive systems governed by difference equations.

In this paper, we will consider the dynamic behavior of a discrete-time competitive
system. Let us first introduce its continuous time version which is motivated in [22]

ẋ1(t) = x1(t)
[
r1(t) − a1(t)x1(t) −

c2(t)x2(t)
1 + x2(t)

]
,

ẋ2(t) = x2(t)
[
r2(t) − a2(t)x2(t) −

c1(t)x1(t)
1 + x1(t)

]
,

(1.1)

where x1(t), x2(t) are the population densities of two competing species; r1(t), r2(t) are the
intrinsic growth rates of species; a1(t), a2(t) are the rates of intraspecific competition of the
first and second species, respectively; c1(t), c2(t) are the rates of interspecific competition
of the first and second species, respectively. All the coefficients above are continuous and
bounded above and below by positive constants.

Following the same idea and method in [21], one can easily derive the discrete
analogue of system (1.1), which takes the form of

x1(n + 1) = x1(n) exp
[
r1(n) − a1(n)x1(n) −

c2(n)x2(n)
1 + x2(n)

]
,

x2(n + 1) = x2(n) exp
[
r2(n) − a2(n)x2(n) −

c1(n)x1(n)
1 + x1(n)

]
,

n = 0, 1, 2 . . . . (1.2)

The exponential form of system (1.2) is more biologically reasonable than that directly
derived by replacing the differential by difference in system (1.1) because this exponential
form can assure xi(n + 1) > 0 if xi(0) > 0 (i = 1, 2). Here xi(n) represent the densities of
species xi at the nth generation, ri(n) are the intrinsic growth rates of species xi at the nth
generation, ai(n) measure the intraspecific effects of the nth generation of species xi on own
population, and ci(n) stand for the interspecific effects of the nth generation of species xi on
species xj (i, j = 1, 2; i /= j).

It is well known that, compared to the continuous time systems, the discrete-time ones
are more difficult to deal with. The principle aim of this paper is to explore the permanence,
existence, and global stability of positive periodic solutions of system (1.2). To the best of our
knowledge, no work has been done for system (1.2).

For the sake of simplicity and convenience in the following discussion, the notations
below will be used through this paper:

fU = sup
n∈N

f(n), fL = inf
n∈N

f(n), (1.3)

where {f(n)} is a bounded sequence and N is the set of nonnegative integer numbers.
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For biological reasons, in system (1.2) we only consider the solution {x1(n), x2(n)}
with the initial value {x1(0), x2(0)} > 0.

The organization of this paper is as follows. In the next section, we establish the
permanence of system (1.2). In Section 3, we obtain sufficient conditions which ensure
the existence and global stability of positive periodic solutions of system (1.2). Numerical
simulations are present to illustrate the feasibility of our main results in final section.

2. Permanence

In this section, we will establish sufficient conditions for the permanence of system (1.2).

Definition 2.1. System (1.2) is said to be permanent if there exist positive constants mi and Mi

such that each positive solution {x1(n), x2(n)} of system (1.2) satisfies

mi ≤ lim inf
n→+∞

xi(n) ≤ lim sup
n→+∞

xi(n) ≤Mi, i = 1, 2. (2.1)

Proposition 2.2. Any positive solution {x1(n), x2(n)} of system (1.2) satisfies

lim sup
n→+∞

xi(n) ≤Mi
def
=

[
exp

(
rUi − 1

)]
aLi

, i = 1, 2. (2.2)

Proof. To prove Proposition 2.2, we consider Case 1 and Case 2.

Case 1. Assume that there exists an n0 ∈ N such that x1(n0+1) ≥ x1(n0), from the first equation
of system (1.2), it follows that

r1(n0) − a1(n0)x1(n0) −
c2(n0)x2(n0)

1 + x2(n0)
≥ 0, (2.3)

which implies,

x1(n0) ≤
r1(n0)
a1(n0)

≤
rU1
aL1
. (2.4)

Then

x1(n0 + 1) = x1(n0) exp
[
r1(n0) − a1(n0)x1(n0) −

c2(n0)x2(n0)
1 + x2(n0)

]

≤ x1(n0) exp
[
rU1 − a

L
1x1(n0)

]

≤
[
exp

(
rU1 − 1

)]
aL1

def= M1,

(2.5)
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where we use the fact that maxx∈R[x exp(a − bx)] = [exp(a − 1)]/b for a, b > 0, and R is the
set of all real numbers. Hence x1(n0) ≤M1.

We claim that x1(n) ≤ M1 for all n ≥ n0. By way of contradiction, assume that there
exists a p0 > n0 such that x1(p0) > M1, then p0 ≥ n0 + 2. Let

p̂0 = min
{
p0 : p0 ≥ n0 + 2, x1

(
p0
)
> M1

}
, (2.6)

that is, x1(p̂0) > M1 and p̂0 ≥ n0 + 2, then x1(p̂0) > M1 ≥ x1(p̂0 − 1). It is easy to obtain that
x1(p̂0) ≤ M1 from the above argument, which is a contradiction. Therefore, x1(n) ≤ M1 for
all n ≥ n0, then lim supn→+∞x1(n) ≤M1. This proves the claim.

Case 2. Suppose that x1(n + 1) < x1(n) for all n ∈ N. In particular, limn→+∞x1(n) exists,
denoted by x1, we will prove x1 ≤ rU1 /a

L
1 by way of contradiction as follows. Assume that

x1 > r
U
1 /a

L
1 , taking limit in the first equation of system (1.2), which leads to

lim
n→+∞

[
r1(n) − a1(n)x1(n) −

c2(n)x2(n)
1 + x2(n)

]
= 0, (2.7)

however,

lim
n→+∞

[
r1(n) − a1(n)x1(n) −

c2(n)x2(n)
1 + x2(n)

]
≤ lim

n→+∞
[r1(n) − a1(n)x1(n)]

≤ rU1 − a
L
1x1

< 0,

(2.8)

which is a contradiction. This proves the claim. By the fact that minx∈R+{[exp(x − 1)]/x} = 1,

we obtain that x1 ≤ rU1 /a
L
1 ≤ r

U
1 /a

L
1 · exp(rU1 − 1)/rU1

def= M1. Therefore,

lim sup
n→+∞

x1(n) ≤M1 =

[
exp

(
rU1 − 1

)]
aL1

. (2.9)

Analogously,

lim sup
n→+∞

x2(n) ≤M2 =

[
exp

(
rU2 − 1

)]
aL2

. (2.10)

This completes the proof of Proposition 2.2.

Proposition 2.3. Suppose that system (1.2) satisfies the following assumptions:

rL1 > cU2 , rL2 > cU1 . (2.11)
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Then any positive solution {x1(n), x2(n)} of system (1.2) satisfies

lim inf
n→+∞

xi(n) ≥ mi
def
=
rLi − c

U
j

aUi
exp

(
rLi − a

U
i Mi − cUj

)
, i /= j; i, j = 1, 2. (2.12)

Proof. By Proposition 2.2, since lim supn→+∞x1(n) ≤ M1 for each ε > 0, then there exists an
n∗ ∈ N such that x1(n) ≤ M1 + ε for n ≥ n∗. In order to prove Proposition 2.3, there are two
cases to be considered as follows.

Case 1. Assume that there exists an n0 ≥ n∗ such that x1(n0 + 1) ≤ x1(n0), by the first equation
of system (1.2), it derives that

x1(n0 + 1) = x1(n0) exp
[
r1(n0) − a1(n0)x1(n0) −

c2(n0)x2(n0)
1 + x2(n0)

]

≥ x1(n0) exp
[
rL1 − a

U
1 x(n0) − cU2

]
,

(2.13)

therefore,

rL1 − a
U
1 x(n0) − cU2 ≤ 0. (2.14)

It follows from the inequality (2.11) that

x1(n0) ≥
(
rL1 − c

U
2

)
aU1

> 0. (2.15)

By (2.13) and (2.15) we have

x1(n0 + 1) = x1(n0) exp
[
r1(n0) − a1(n0)x1(n0) −

c2(n0)x2(n0)
1 + x2(n0)

]

≥
rL1 − c

U
2

aU1
exp

[
rL1 − a

U
1 (M1 + ε) − cU2

]

> 0.

(2.16)

Hence x1(n0) ≥ xε1, where xε1
def= ((rL1 − c

U
2 )/a

U
1 ) exp[rL1 − a

U
1 (M1 + ε) − cU2 ].

In the following we will prove x1(n) ≥ xε1 for all n ≥ n0. By way of contradiction,
assume that there exists a p0 > n0 such that x1(p0) < xε1, then p0 ≥ n0 + 2. Let

p̃0 = min
{
p0 : p0 ≥ n0 + 2, x1

(
p0
)
< xε1

}
, (2.17)
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that is, x1(p̃0) < xε1 and p̃0 ≥ n0+2, then x1(p̃0) < xε1 ≤ x1(p̃0−1), the above argument produces
that x1(p̃0) ≥ xε1, which is a contradiction. Therefore, x1(n) ≥ xε1 for all n ≥ n0, since ε can be
sufficiently small, it gives that

x1(n) ≥
rL1 − c

U
2

aU1
exp

(
rL1 − a

U
1 M1 − cU2

)
def= m1 > 0, (2.18)

then lim infn→+∞x1(n) ≥ m1. This proves the claim.

Case 2. Assume that x1(n+1) > x1(n) for a sufficiently large n ≥ n∗. In this case, limn→+∞x1(n)
exists, denoted by x1. For the sake of proving x1 ≥ (rL1 − c

U
2 )/a

U
1 , by way of contradiction,

assume that x1 < (rL1 − c
U
2 )/a

U
1 , taking limit in the first equation of system (1.2), it follows

that

lim
n→+∞

[
r1(n) − a1(n)x1(n) −

c2(n)x2(n)
1 + x2(n)

]
= 0, (2.19)

however,

lim
n→+∞

[
r1(n) − a1(n)x1(n) −

c2(n)x2(n)
1 + x2(n)

]
≥ lim

n→+∞
[r1(n) − a1(n)x1(n) − c2(n)]

≥ rL1 − a
U
1 x1 − c

U
2

> 0,

(2.20)

which is a contradiction. It implies that x1 ≥ (rL1 − c
U
2 )/a

U
1 . By the fact that minx∈R+{[exp(x −

1)]/x} = 1, we obtain thatM1 = [exp(rU1 −1)]/aL1 ≥ r
U
1 /a

L
1 ≥ r

L
1 /a

U
1 . Thus x1 > (rL1 −c

U
1 )/a

U
1 ≥

xε1. Therefore, lim infn→+∞x1(n) ≥ xε1. Since ε can be sufficiently small, we have

lim inf
n→+∞

x1(n) ≥ m1
def=

rL1 − c
U
2

aU1
exp

(
rL1 − a

U
1 M1 − cU2

)
> 0. (2.21)

Analogously, by the second inequality in (2.11), we can obtain that

lim inf
n→+∞

x2(n) ≥ m2
def=

rL2 − c
U
1

aU2
exp

(
rL2 − a

U
2 M2 − cU1

)
> 0. (2.22)

This completes the proof of Proposition 2.3.

Now, we are in a position to state Theorem 2.4 whose proof is a direct consequence of
Propositions 2.2 and 2.3.

Theorem 2.4. If the inequalities in (2.11) hold, then system (1.2) is permanent.
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3. Existence and Global Stability of Positive Periodic Solutions

In this section, we suppose system (1.2) is a periodic system, and then we investigate the
existence and global stability of positive periodic solutions of such system. To do this, assume
that all the coefficients of system (1.2) are ω-periodic, in other words,

ri(n +ω) = ri(n), ai(n +ω) = ai(n), ci(n +ω) = ci(n), i = 1, 2. (3.1)

Theorem 3.1. If the inequalities in (2.11) hold, then system (1.2) has at least one strictly positive
ω-periodic solution, denoted by {x∗1(n), x

∗
2(n)}.

Proof. We know that K = [m1,M1] × [m2,M2] is an invariant set of system (1.2) from
Propositions 2.2 and 2.3. Define the continuous mapping F on K

F
{
x∗1(0), x

∗
2(0)

}
=
{
x∗1(ω), x

∗
2(ω)

}
, for

{
x∗1(0), x

∗
2(0)

}
∈ K. (3.2)

Obviously, F depends continuously on {x∗1(0), x
∗
2(0)}, then F is continuous and maps the

compact set K = [m1,M1] × [m2,M2] into itself. Therefore, F has a fixed point {x∗1, x
∗
2}. It

is easy to see that the solution {x∗1(n), x
∗
2(n)} which passes through {x∗1, x

∗
2} is an ω-periodic

solution of system (1.2). The proof is complete.

Next, we derive sufficient conditions which guarantee that the positive periodic
solution of system (1.2) is globally stable. We first give the definition of global stability.

Definition 3.2. A positive periodic solution {x∗1(n), x
∗
2(n)} of system (1.2) is globally stable if

each other solution {x1(n), x2(n)} of system (1.2) with positive initial value defined for all
n > 0 satisfies

lim
n→+∞

∣∣x1(n) − x∗1(n)
∣∣ = 0, lim

n→+∞

∣∣x2(n) − x∗2(n)
∣∣ = 0. (3.3)

Now, we give the main result in this section.

Theorem 3.3. In addition to (2.11), assume further that the following assumptions

λ1
def
= max

{∣∣∣1 − aL1m1

∣∣∣, ∣∣∣1 − aU1 M1

∣∣∣} + cU2 < 1, (3.4)

λ2
def
= max

{∣∣∣1 − aL2m2

∣∣∣, ∣∣∣1 − aU2 M2

∣∣∣} + cU1 < 1 (3.5)

hold. Then the positive periodic solution of system (1.2) is globally stable.
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Figure 1: Permanence of system (1.2) with initial value (0.25, 0.01). (a) Time series of x1 for n ∈ [0, 50]. (b)
Time series of x2 for n ∈ [0, 50].

Proof. Let {x∗1(n), x
∗
2(n)} be a positive periodic solution of system (1.2). We make the change

of variables x1(n) = x∗1(n) expu(n) and x2(n) = x∗2(n) expv(n), then system (1.2) is rewritten
as

u(n + 1) − u(n) = a1(n)x∗1(n)
[
1 − expu(n)

]
+ c2(n)

{
1

1 + x∗2(n) exp[v(n)]
− 1

1 + x∗2(n)

}
,

v(n + 1) − v(n) = a2(n)x∗2(n)
[
1 − expv(n)

]
+ c1(n)

{
1

1 + x∗1(n) exp[u(n)]
− 1

1 + x∗1(n)

}
.

(3.6)

By the mean-value theorem, it derives that

u(n + 1) = u(n)
{

1 − a1(n)x∗1(n) exp[θ1u(n)]
}
− c2(n)v(n)

x∗2(n) exp[θ2v(n)]{
1 + x∗2(n) exp[θ2v(n)]

}2
,

v(n + 1) = v(n)
{

1 − a2(n)x∗2(n) exp[θ3v(n)]
}
− c1(n)u(n)

x∗1(n) exp[θ4u(n)]{
1 + x∗1(n) exp[θ4u(n)]

}2
,

(3.7)

where the constants θ1, θ2, θ3, θ4 ∈ (0, 1).
Now, by (3.4) and (3.5), we choose the constant ε sufficiently small such that

λε1 = max
{∣∣∣1 − aL1 (m1 − ε)

∣∣∣, ∣∣∣1 − aU1 (M1 + ε)
∣∣∣} + cU2 < 1,

λε2 = max
{∣∣∣1 − aL2 (m2 − ε)

∣∣∣, ∣∣∣1 − aU2 (M2 + ε)
∣∣∣} + cU1 < 1.

(3.8)
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In view of Propositions 2.2 and 2.3, there exists an n0 ∈N such that n ≥ n0, we have

0 < m1 − ε ≤ x∗1(n) ≤M1 + ε, 0 < m1 − ε ≤ x1(n) ≤M1 + ε,

0 < m2 − ε ≤ x∗2(n) ≤M2 + ε, 0 < m2 − ε ≤ x2(n) ≤M2 + ε.
(3.9)

Since θ1, θ2, θ3, θ4 ∈ (0, 1), both x∗1(n) exp[θ1u(n)] and x∗1(n) exp[θ4u(n)] are between x1(n)
and x∗1(n). Meanwhile, both x∗2(n) exp[θ2v(n)] and x∗2(n) exp[θ3v(n)] are between x2(n) and
x∗2(n). From the first equation of system (3.7), it follows that

|u(n + 1)| ≤ |u(n)|
∣∣1 − a1(n)x∗1(n) exp[θ1u(n)]

∣∣ +
∣∣∣∣c2(n)v(n)

x∗2(n) exp[θ2v(n)]
1 + x∗2(n) exp[θ2v(n)]

∣∣∣∣
≤ max

{∣∣∣1 − aL1 (m1 − ε)
∣∣∣, ∣∣∣1 − aU1 (M1 + ε)

∣∣∣}|u(n)| + max{|c2(n)v(n)|}

≤ max
{∣∣∣1 − aL1 (m1 − ε)

∣∣∣, ∣∣∣1 − aU1 (M1 + ε)
∣∣∣}|u(n)| + cU2 |v(n)|

≤ λε1 max{|u(n)|, |v(n)|}.

(3.10)

Similarly, it follows from (3.5) that

|v(n + 1)| ≤ λε2 max{|u(n)|, |v(n)|}. (3.11)

Denote λε = max{λε1, λ
ε
2}, then λε < 1. Therefore, when n ≥ n0,

max{|u(n + 1)|, |v(n + 1)|} ≤ λε max{|u(n)|, |v(n)|} ≤ (λε)n−n0 max{|u(n0)|, |v(n0)|}, (3.12)

as a consequence, limn→+∞|x1(n) − x∗1(n)| = 0, limn→+∞|x2(n) − x∗2(n)| = 0. By using
Definition 3.2, it follows that the positive periodic solution {x∗1(n), x

∗
2(n)} of system (1.2) is

globally stable. This completes the proof.

Remark 3.4. Theorem 3.3 shows that {x∗1(n), x
∗
2(n)} is the global attractor of all positive

solutions of system (1.2), then {x∗1(n), x
∗
2(n)} is the unique positive periodic solution of

system (1.2).

4. Example and Numerical Simulation

In this paper, we have investigated the permanence and global stability of positive periodic
solutions of a discrete competitive system. Each species is not isolated from its living
environment, but competes with the other for the same resource. Sufficient conditions which
guarantee the permanence, existence and global stability of positive periodic solutions are
established, respectively. The theoretical results are confirmed by the following examples and
their numerical results.
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Figure 2: (a) Time series of x∗1 with x∗1(0) = 0.09 for n ∈ [0, 50]. (b) Time series of x1 with x1(0) = 0.08 for
n ∈ [0, 50]. (c) Time series of x∗1 and x1 for n ∈ [0, 50] in the same coordinate system.

To verify the sufficient conditions for permanence of system (1.2), we assume that
r1(n) = 0.46 + 0.01 sinπn, r2(n) = 0.88 − 0.02 sinπn, a1(n) = 0.75 + 0.01 cosπn, a2(n) = 0.52 +
0.01 sinπn, c1(n) = 0.28 + 0.02 sinπn, c2(n) = 0.13 − 0.01 sinπn, and the initial condition
(x1(0), x2(0)) = (0.25, 0.01). Clearly, (2.11) in Theorem 2.4 are satisfied, and hence system
(1.2) is permanent (see Figure 1).

Now, we further verify the sufficient conditions for the existence and global stability
of positive periodic solutions of periodic system (1.2). Let us assume that all the coefficients
of system (1.2) are periodic and listed in Table 1.

Besides, we choose the positive periodic solution with initial values (0.09, 0.01),
denoted by (x∗1, x

∗
2), and the positive solution with initial value (0.08, 0.02) denoted by (x1, x2).

By Theorem 3.3, a simple calculation shows that the assumptions in (3.4) and (3.5) hold.
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Figure 3: (a) Time series of x∗2 with x∗2(0) = 0.01 for n ∈ [0, 50]. (b) Time series of x2 with x2(0) = 0.02 for
n ∈ [0, 50]. (c) Time series of x∗2 and x2 for n ∈ [0, 50] in the same coordinate system.

Table 1: The coefficient values when n is under different conditions.

n r1(n) r2(n) a1(n) a2(n) c1(n) c2(n)
Odd number 0.76 1.58 1.25 1.80 0.03 0.02
Even number 1.26 0.98 1.65 1.98 0.02 0.01

So from Theorem 3.3 we know that periodic system (1.2) has a positive 2-periodic solution
which is globally stable. From Figures 2(a), 2(b), and 2(c), we see that x1 with x1(0) = 0.08
will tend to x∗1 with x∗1(0) = 0.09. Similarly, from Figures 3(a), 3(b), and 3(c), we see that x2

with x2(0) = 0.02 will tend to x∗2 with x∗2(0) = 0.01. Furthermore, Figures 4(a) and 4(b) show
the phase portrait of periodic system (1.2) with (x∗1(0), x

∗
2(0)) = (0.09, 0.01) for n ∈ [0, 50]
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Figure 4: (a) Phase portrait of x∗1 and x∗2 with initial value (0.09, 0.01) for n ∈ [0, 50]. (b) Phase portrait of x1
and x2 with initial value (0.08, 0.02) for n ∈ [0, 50]. (c) Phase portraits of x∗1, x

∗
2 and x1, x2 for n ∈ [30, 50]

in the same coordinate system.

and (x1(0), x2(0)) = (0.08, 0.02) for n ∈ [0, 50], respectively. From Figure 4(c), we can see that
periodic system (1.2) has a positive 2-periodic solution which is globally stable.
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