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1. Introduction

As well known, in the investigation of qualitative behaviors of solutions, stability,
convergence, boundedness, oscillation, and so forth of solutions are very important problems
in theory and applications of differential equations. For example, in applied sciences, some
practical problems concerning mechanics, the engineering technique fields, economy, control
theory, physics, chemistry, biology, medicine, atomic energy, information theory, and so forth
are associated with certain higher-order linear or nonlinear differential equations. Ever since
Lyapunov [1] proposed his famous theory on the stability of motion, For some papers
published on the qualitative behaviors of solutions of nonlinear second-and third-order
differential equations, the readers can referee to the papers of Afuwape and Omeike [2, 3],
Ezeilo [4, 5], Meng [6], Tejumola [7, 8], Tunç [9–11], Omeike [12], and the references listed
in these papers as well as one can refer to the books of Reissig et al. [13, 14]. The motivation
for the present work has been inspired basically by the paper of Afuwape and Omeike [2]
and the papers listed above. Our aim here is to extend the results established by Afuwape
and Omeike [2] to nonlinear differential equation (1.4) for the convergence of all solutions of
this equation. In 2008, Afuwape and Omeike [2] considered third-order nonlinear differential
equations of the form

...
x + aẍ + g(ẋ) + h(x) = p(t, x, ẋ, ẍ), (1.1)
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and by introducing a Lyapunov function they discussed the convergence of solutions for
this equation. During establishment of the results, Afuwape and Omeike [2] defined the
following relations with respect to the functions g and h:

0 < b ≤ g
(
y2
) − g

(
y1
)

y2 − y1
≤ b0 < ∞, (1.2)

for any pair of constants y2, y1 (y2 /=y1) and

0 < δ ≤ h(x2) − h(x1)
x2 − x1

≤ kab, (1.3)

for any pair of constants x2, x1 (x2 /=x1), where k < 1 is a positive constant.
In this paper, we consider nonlinear differential equation of the form

...
x + f(ẍ) + g(ẋ) + h(x) = p(t, x, ẋ, ẍ), (1.4)

where the functions f, g, h, and p are continuous in their respective arguments, with the
functions f , g, and h are not necessarily differentiable. In addition to (1.2) and (1.3) we
assume that

0 < a ≤ f(z2) − f(z1)
z2 − z1

≤ a0 < ∞, (1.5)

for any pair of constants z2, z1 (z2 /= z1).
By convergence of solutions we mean, any two solutions x1(t), x2(t) of (1.4) are said

to converge to each other if

x2(t) − x1(t) −→ 0, ẋ2(t) − ẋ1(t) −→ 0, ẍ2(t) − ẍ1(t) −→ 0 (1.6)

as t → ∞.

2. Main Results

The following results are established.

Theorem 2.1. Suppose that f(0) = g(0) = h(0), and that

(i) there are constants a > 0, a0 > 0 such that f(z) satisfies inequalities (1.5),

(ii) there are constants b > 0, b0 > 0 such that g(y) satisfies inequalities (1.2),

(iii) there are constants δ > 0, k < 1 such that for any ξ, η (η /= 0), the incrementary ratio for h
satisfies

(
h
(
ξ + η

) − h(ξ)
)

η
lies in I0 (2.1)

with I0 = [δ, kab],
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(iv) there is a continuous function φ(t) such that

∣
∣p
(
t, x2, y2, z2

) − p
(
t, x1, y1, z1

)∣∣ ≤ φ(t)
{|x2 − x1| +

∣
∣y2 − y1

∣
∣ + |z2 − z1|

}
(2.2)

holds for arbitrary t, x1, y1, z1, x2, y2, z2, and satisfies

∫ t

0
φν(τ)dτ ≤ D1t (2.3)

for some constant D1 > 0, where ν is a constant in the range 1 ≤ ν ≤ 2.
Then all solutions of (1.4) converge.

A very important step in the proof of Theorem 2.1 will be to give estimate for any two
solutions of (1.4). This in itself, being of independent interest, is giving as follows.

Theorem 2.2. Let x1(t), x2(t) be any two solutions of (1.4). Suppose that all the conditions of
Theorem 2.1 are satisfied, then for each fixed ν, in the range 1 ≤ ν ≤ 2, there exist constants D2, D3,
and D4 such that for t2 ≥ t1,

S(t2) ≤ D2S(t1) exp

{

−D3(t2 − t1) +D4

∫ t2

t1

φν(τ)dτ

}

, (2.4)

where

S(t) =
{
[x2(t) − x1(t)]2 + [ẋ2(t) − ẋ1(t)]2 + [ẍ2(t) − ẍ1(t)]2

}
. (2.5)

We have the following corollaries when x1(t) = 0 and t1 = 0.

Corollary 2.3. Suppose that p = 0 in (1.4) and suppose further that conditions (i), (ii), and (iii) of
Theorem 2.1 hold, then the trivial solution of (1.4) is exponentially stable in the large.

Also, if we put ξ = 0 in (2.1) with η (η /= 0) arbitrary, we get the following.

Corollary 2.4. If p /= 0 and hypotheses (i), (ii), and (iii) of Theorem 2.1 hold for arbitrary η(η /= 0) ,
and ξ = 0, then there exists a constant D5 > 0 such that every solution x(t) of (1.4) satisfies

|x(t)| ≤ D5, |ẋ(t)| ≤ D5, |ẍ(t)| ≤ D5. (2.6)

3. Preliminary Results

On setting ẋ = y, ẏ = z, (1.4) can be replaced by an equivalent system

ẋ = y, ẏ = z, ż = −f(z) − g
(
y
) − h(x) + p

(
t, x, y, z

)
. (3.1)
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Let (xi(t), yi(t), zi(t)), i = 1, 2, be any two solutions of (3.1) such that

a ≤ f(z2) − f(z1)
z2 − z1

≤ a0 (z2 /= z1),

b ≤ g
(
y2
) − g

(
y1
)

y2 − y1
≤ b0

(
y2 /=y1

)
,

δ ≤ h(x2) − h(x1)
x2 − x1

≤ kab (x2 /=x1),

(3.2)

where a0, a, b0, b, δ, and k are finite constants, and k will be determined later.
Our investigation rests mainly on the properties of the function, W = W(x2 − x1, y2 −

y1, z2 − z1) defined by

2W = β
(
1 − β

)
b2(x2 − x1)2 + βb

(
y2 − y1

)2 + αba−1(y2 − y1
)2

+ αa−1(z2 − z1)2 +
{
(z2 − z1) + a

(
y2 − y1

)
+
(
1 − β

)
b(x2 − x1)

}2
,

(3.3)

where 0 < β < 1 and α > 0 are constants.
Following the argument used in [5], we can easily verify the following for W.

Lemma 3.1. (i) W(0, 0, 0) = 0.
(ii) There exist finite positive constants D6, D7 such that

D6

{
(x2 − x1)2 +

(
y2 − y1

)2 + (z2 − z1)2
}
≤ W ≤ D7

{
(x2 − x1)2 +

(
y2 − y1

)2 + (z2 − z1)2
}
,

(3.4)

where

D6 =
1
2
min

{
β
(
1 − β

)
b2, b

(
β + αa−1

)
, αa−1

}
, (3.5)

and using the inequality |x||y| ≤ (1/2)(x2 + y2),

D7 =
1
2
max

{
b
(
1 − β

)
(1 + b + a), b

(
β + αa−1) + a

(
1 + a + b

(
1 − β

))
, 1 + αa−1 + a + b

(
1 − β

)}
.

(3.6)

If we define the function W(t) by

W
(
x2(t) − x1(t), y2(t) − y1(t), z2(t) − z1(t)

)
(3.7)

and using the fact that the solutions (xi, yi, zi), i = 1, 2, satisfy (3.1), then S(t) as defined in
(2.5) becomes

S(t) =
{
[x2(t) − x1(t)]2 +

[
y2(t) − y1(t)

]2 + [z2(t) − z1(t)]2
}
. (3.8)
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Lemma 3.2. Assume that the conditions (i), (ii), and (iii) of Theorem 2.1 are satisfied. Then, there
exist positive finite constants D8 and D9 such that

dW

dt
≤ −2D8S +D9S

1/2|θ|, (3.9)

where θ = p(t, x2, y2, z2) − p(t, x1, y1, z1).

Proof of Lemma 3.2

Differentiating the function W in (3.3) along the system (3.1)we obtain

Ẇ =
dW

dt
= −W1 −W2 −W3 −W4 −W5 −W6 −W7 +W8, (3.10)

in which

W1 =
{
γ1b

(
1 − β

)
H(x2, x1)(x2 − x1)2 + η1a

[
G
(
y2, y1

) − b
(
1 − β

)](
y2 − y1

)2

+ ξ1αa
−1F(z2, z1)(z2 − z1)2 + (F(z2, z1) − a)(z2 − z1)2

}
,

W2 =
{
γ2b

(
1 − β

)
H(x2, x1)(x2 − x1)2 + ξ2αa

−1F(z2, z1)(z2 − z1)2

+
(
1 + αa−1

)
(x2 − x1)(z2 − z1)H(x2, x1)

}
,

W3 =
{
γ3b

(
1 − β

)
H(x2, x1)(x2 − x1)2 + η2a

[
G
(
y2, y1

) − b
(
1 − β

)](
y2 − y1

)2

+ a(x2 − x1)
(
y2 − y1

)
H(x2, x1)

}
,

W4 =
{
γ4b

(
1 − β

)
H(x2, x1)(x2 − x1)2 + ξ3αa

−1F(z2, z1)(z2 − z1)2

+ b
(
1 − β

)
(x2 − x1)(z2 − z1)[F(z2, z1) − a]

}
,

W5 =
{
γ5b

(
1 − β

)
H(x2, x1)(x2 − x1)2 + η3a

[
G
(
y2, y1

) − b
(
1 − β

)](
y2 − y1

)2

+ b
(
1 − β

)
(x2 − x1)

(
y2 − y1

)[
G
(
y2, y1

) − b
]}
,

W6 =
{
ξ4αa

−1F(z2, z1)(z2 − z1)2 + η4a
[
G
(
y2, y1

) − b
(
1 − β

)](
y2 − y1

)2

+
(
1 + αa−1

)(
y2 − y1

)
(z2 − z1)

[
G
(
y2, y1

) − b
]}

,

W7 =
{
ξ5αa

−1F(z2, z1)(z2 − z1)2 + η5a
[
G
(
y2, y1

) − b
(
1 − β

)](
y2 − y1

)2

+ a
(
y2 − y1

)
(z2 − z1)[F(z2, z1) − a]

}
,

W8 =
{
b
(
1 − β

)
(x2 − x1) + a

(
y2 − y1

)
+
(
1 + αa−1

)
(z2 − z1)

}
θ(t),

(3.11)
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with

F(z2, z1) =
f(z2) − f(z1)

z2 − z1
(z2 /= z1),

G
(
y2, y1

)
=

g
(
y2
) − g

(
y1
)

y2 − y1

(
y2 /=y1

)
,

H(x2, x1) =
h(x2) − h(x1)

x2 − x1
(x2 /=x1),

(3.12)

and ξi, ηi, and γi, (i = 1, 2, 3, 4, 5) are strictly positive constants such that

5∑

i=1

ξi = 1,
5∑

i=1

ηi = 1,
5∑

i=1

γi = 1. (3.13)

Also, let us denote F(z2, z1), G(y2, y1), andH(x2, x1) simply by F,G, andH, respectively. For
strictly positive constants k1, k2, k3, k4, k5, and k6 conveniently chosen later, we get

(
1 + αa−1

)
(x2 − x1)(z2 − z1)H

=
{
k1
(
1 + αa−1

)1/2
H1/2(x2 − x1) +

1
2
k−1
1

(
1 + αa−1

)1/2
H1/2(z2 − z1)

}2

− k2
1

(
1 + αa−1

)
H(x2 − x1)2 − 1

4
k−2
1

(
1 + αa−1

)
H(z2 − z1)2,

a(x2 − x1)
(
y2 − y1

)
H

=
{
k2a

1/2H1/2(x2 − x1) +
1
2
k−1
2 a1/2H1/2(y2 − y1

)
}2

− k2
2aH(x2 − x1)2 − 1

4
k−2
2 aH

(
y2 − y1

)2
,

b
(
1 − β

)
(x2 − x1)(z2 − z1)[F − a]

=
{
1
2
k−1
3 b1/2(1 − β)1/2[F − a]1/2(x2 − x1) + k3b

1/2(1 − β
)1/2[F − a]1/2(z2 − z1)

}2

− 1
4
k−2
3 b

(
1 − β

)
[F − a](x2 − x1)2 − k2

3b
(
1 − β

)
[F − a](z2 − z1)2,

b
(
1 − β

)
(x2 − x1)

(
y2 − y1

)
[G − b]

=
{
k4b

1/2(1 − β
)1/2[G − b]1/2(x2 − x1) +

1
2
k−1
4 b1/2

(
1 − β

)1/2[G − b]1/2
(
y2 − y1

)
}2

− k2
4b
(
1 − β

)
[G − b](x2 − x1)2 − 1

4
k−2
4 b

(
1 − β

)
[G − b]

(
y2 − y1

)2
,
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(
1 + αa−1

)(
y2 − y1

)
(z2 − z1)[G − b]

=
{
k5
(
1 + αa−1

)1/2
[G − b]1/2

(
y2 − y1

)
+
1
2
k−1
5

(
1 + αa−1

)1/2
[G − b]1/2(z2 − z1)

}2

− k2
5

(
1 + αa−1

)
[G − b]

(
y2 − y1

)2 − 1
4
k−2
5

(
1 + αa−1

)
[G − b](z2 − z1)2,

a
(
y2 − y1

)
(z2 − z1)[F − a]

=
{
1
2
k−1
6 a1/2[F − a]1/2

(
y2 − y1

)
+ k6a

1/2[F − a]1/2(z2 − z1)
}2

− 1
4
k−2
6 a[F − a]

(
y2 − y1

)2 − k2
6a[F − a](z2 − z1)2

(3.14)

Thus,

W2 =
{
k1
(
1 + αa−1

)1/2
H1/2(x2 − x1) +

1
2
k−1
1

(
1 + αa−1

)1/2
H1/2(z2 − z1)

}2

+
{
γ2b

(
1 − β

)
H − k2

1

(
1 + αa−1

)
H
}
(x2 − x1)2

+
{
ξ2αa

−1F − 1
4
k−2
1

(
1 + αa−1

)
H

}
(z2 − z1)2,

W3 =
{
k2a

1/2H1/2(x2 − x1) +
1
2
k−1
2 a1/2H1/2(y2 − y1)

}2

+
{
γ3b

(
1 − β

)
H − k2

2aH
}
(x2 − x1)2

+
{
η2a

[
G − b

(
1 − β

)] − 1
4
k−2
2 aH

}
(
y2 − y1

)2
,

W4 =
{
1
2
k−1
3 b1/2

(
1 − β

)1/2[F − a]1/2(x2 − x1) + k3b
1/2(1 − β

)1/2[F − a]1/2(z2 − z1)
}2

+
{
γ4b

(
1 − β

)
H − 1

4
k−2
3 b

(
1 − β

)
[F − a]

}
(x2 − x1)2

+
{
ξ3αa

−1F − k2
3b
(
1 − β

)
[F − a]

}
(z2 − z1)2,

W5 =
{
k4b

1/2(1 − β)1/2[G − b]1/2(x2 − x1) +
1
2
k−1
4 b1/2(1 − β)1/2[G − b]1/2(y2 − y1)

}2

+
{
γ5b

(
1 − β

)
H − k2

4b
(
1 − β

)
[G − b]

}
(x2 − x1)2

+
{
η3a

[
G − b

(
1 − β

)] − 1
4
k−2
4 b

(
1 − β

)
[G − b]

}
(
y2 − y1

)2
,
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W6 =
{
k5
(
1 + αa−1

)1/2
[G − b]1/2(y2 − y1) +

1
2
k−1
5

(
1 + αa−1

)1/2
[G − b]1/2(z2 − z1)

}2

+
{
η4a

[
G − b

(
1 − β

)] − k2
5

(
1 + αa−1

)
[G − b]

}(
y2 − y1

)2

+
{
ξ4αa

−1F − 1
4
k−2
5

(
1 + αa−1

)
[G − b]

}
(z2 − z1)2,

W7 =
{
1
2
k−1
6 a1/2[F − a]1/2(y2 − y1) + k6a

1/2[F − a]1/2(z2 − z1)
}2

+
{
η5a

[
G − b

(
1 − β

)] − 1
4
k−2
6 a[F − a]

}
(
y2 − y1

)2

+
{
ξ5αa

−1F − k2
6a[F − a]

}
(z2 − z1)2.

(3.15)

Moreover, in view of (3.2), we obtain for all xi, zi(i = 1, 2) in R,

W2 ≥ 0, (3.16)

if

k2
1 ≤

γ2
(
1 − β

)
ab

(α + a)
with H ≤ 4ξ2γ2α

(
1 − β

)
a2b

(α + a)2
, (3.17)

and for all xi, yi (i = 1, 2) in R,

W3 ≥ 0, (3.18)

if

k2
2 ≤

γ3
(
1 − β

)
b

a
with H ≤ 4η2γ3β

(
1 − β

)
b2

a
. (3.19)

Combining all the inequalities in (3.16) and (3.18), we have for all xi, yi, zi(i = 1, 2 ) in R,

W2 ≥ 0, W3 ≥ 0, (3.20)

if

H ≤ kab with k = min

{
4ξ2γ2α

(
1 − β

)
a

(α + a)2
,
4η2γ3β

(
1 − β

)
b

a2

}

< 1. (3.21)

Also, for all xi, zi(i = 1, 2)in R,

W4 ≥ 0, (3.22)
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if

a0 − a

4γ4δ
≤ k2

3 ≤
ξ3α(

1 − β
)
b(a0 − a)

, (3.23)

for all xi, yi(i = 1, 2) in R,

W5 ≥ 0, (3.24)

if

(
1 − β

)
(b0 − b)

4βaη3
≤ k2

4 ≤
δγ5

(b0 − b)
, (3.25)

for all yi, zi(i = 1, 2) in R,

W6 ≥ 0, (3.26)

if

(α + a)(b0 − b)
4ξ4αa

≤ k2
5 ≤

η4βba
2

(α + a)(b0 − b)
, (3.27)

and for all yi, zi(i = 1, 2) in R,

W7 ≥ 0, (3.28)

if

a0 − a

4η5βb
≤ k2

6 ≤
ξ5α

a(a0 − a)
. (3.29)

Further

W1 ≥ 2D10

{
(x2 − x1)2 +

(
y2 − y1

)2 + (z2 − z1)2
}
, (3.30)

where 2D10 = min{γ1bδ(1 − β), η1abβ, ξ1α}, on the other hand

W8 ≤ D11

{
(x2 − x1)2 +

(
y2 − y1

)2 + (z2 − z1)2
}1/2

|θ(t)|, (3.31)

where D11 = 2max{b(1 − β), a, (1 + αa−1)}.
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Bringing together the estimates just obtained for W1,W2,W3,W4,W5,W6,W7, and W8

in (3.10) and using (3.8), we have

dW

dt
≤ −2D10S(t) +D11S

1/2(t)|θ(t)|. (3.32)

This completes the proof of Lemma 3.2.

4. Proof of Theorem 2.2

This follows directly from [5], on using inequality (3.32). Let ν be any constant in the range
1 ≤ ν ≤ 2. Set 2μ = 2 − ν, so that 0 ≤ μ ≤ 1/2. We rewrite (3.32) in the form

dW

dt
+D10S ≤ −D10S +D11S

1/2|θ| = D11S
μW∗, (4.1)

where

W∗ =
(
|θ| −D12S

1/2
)
S1/2−μ, (4.2)

with D12 = D10D
−1
11 , considering the two cases

(i) |θ| < D12S
1/2 and

(ii) |θ| ≥ D12S
1/2

separately. If |θ| < D12S
1/2, then W∗ < 0. On the other hand, if |θ| ≥ D12S

1/2, then the
definition of W∗ in (4.2) gives at least

W∗ ≤ S(1/2−μ)|θ| (4.3)

and also S1/2 ≤ |θ|/D12. This implies that

S1/2(1−2μ) ≤
[ |θ|
D12

](1−2μ)
. (4.4)

Therefore

S1/2(1−2μ)|θ| ≤
[ |θ|
D12

](1−2μ)
× |θ|, (4.5)

from which together withW∗, we obtain

W∗ ≤ D13|θ|2(1−μ), (4.6)
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where D13 = D
(2μ−1)
12 . Again due to (4.1) and using the estimate on W∗ for W∗, we have

dW

dt
+D10S ≤ D11D13S

μ|θ|2(1−μ)

≤ D14S
μφ2(1−μ)S(1−μ),

(4.7)

where D14 = 31−μD11D13, which follows from

|θ| = ∣
∣p
(
t, x2, y2, z2

) − p
(
t, x1, y1, z1

)∣∣

≤ φ(t)
{|x2 − x1| +

∣
∣y2 − y1

∣
∣ + |z2 − z1|

}
.

(4.8)

In view of the fact that ν = 2(1 − μ),we obtain

dW

dt
≤ −D10S +D14φ

νS, (4.9)

and on using inequality (3.4), we have

dW

dt
+
(
D15 −D16φ

ν(t)
)
W ≤ 0 (4.10)

for some positive constantsD15 andD16. On integrating (4.10) from t1 to t2 (t2 ≥ t1), we have

W(t2) ≤ W(t1)exp

{

−D15(t2 − t1) +D16

∫ t2

t2

φν(τ)dτ

}

. (4.11)

Again, using Lemma 3.1, we obtain (2.4), with D2 = D7D
−1
6 , D3 = D15, and D4 = D16. This

completes the proof of Theorem 2.2.

5. Proof of Theorem 2.1

This follows from the estimate (2.4) and the condition (2.3) on φ(t). Choose D1 = D3D
−1
4 in

(2.3). From the estimate (2.4), if

∫ t2

t1

φν(τ)dτ ≤ D3D
−1
4 (t2 − t1), (5.1)

then the exponential index remains negative for all t2 − t1 ≥ 0. Then, as t = (t2 − t1) → ∞, we
have S(t) → 0, and this gives

x2 − x1 −→ 0, y2 − y1 −→ 0, z2 − z1 −→ 0, (5.2)

as t → ∞. This completes the proof of Theorem 2.1.
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