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1. Introduction

To unify the theory of continuous and discrete dynamic systems, in 1988, Hilger [1] first
introduced the calculus on time scales. Motivated by the paper [1], many authors have
expounded on various aspects of the theory of dynamic equations on time scales. For
example, we refer the reader to the literatures [2–7] and the references cited therein. At
the same time, a few papers [8–13] have studied the theory of dynamic inequalities on time
scales.

The main purpose of this paper is to investigate some nonlinear dynamic inequalities
on time scales, which unify and extend some integral inequalities and their corresponding
discrete analogues. Our work extends some known results of dynamic inequalities on time
scales.

Throughout this paper, a knowledge and understanding of time scales and time-scale
notation is assumed. For an excellent introduction to the calculus on time scales, we refer the
reader to monographes [6, 7].

2. Main Results

In what follows, R denotes the set of real numbers, R+ = [0,∞), Z denotes the set of integers,
N0 = {0, 1, 2, . . .} denotes the set of nonnegative integers, C(M,S) denotes the class of all
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continuous functions defined on set M with range in the set S, T is an arbitrary time scale,
Crd denotes the set of rd-continuous functions, R denotes the set of all regressive and rd-
continuous functions, and R+ = {p ∈ R : 1 + μ(t)p(t) > 0 for all t ∈ T}. We use the usual
conventions that empty sums and products are taken to be 0 and 1, respectively. Throughout
this paper, we always assume that p ≥ q > 0, p and q are real constants, and t ≥ t0, t0 ∈ T

κ.
Firstly, we introduce the following lemmas, which are useful in our main results.

Lemma 2.1. Let a ≥ 0. Then

aq/p ≤
(
q

p
Kq−p/pa +

p − q

p
Kq/p

)
for any K > 0. (2.1)

Proof. If a = 0, then we easily see that the inequality (2.1) holds. Thus we only prove that the
inequality (2.1) holds in the case of a > 0.

Letting

f(K) =
q

p
Kq−p/pa +

p − q

p
Kq/p, K > 0, (2.2)

we have

f ′(K) =
q
(
p − q

)
p2

Kq−2p/p(K − a). (2.3)

It is easy to see that

f ′(K) ≥ 0, K > a,

f ′(K) = 0, K = a,

f ′(K) ≤ 0, 0 < K < a.

(2.4)

Therefore,

f(K) ≥ f(a) = aq/p. (2.5)

The proof of Lemma 2.1 is complete.

Lemma 2.2 (see [6]). Let t0 ∈ T
κ and w : T × T

κ → R be continuous at (t, t), t ∈ T
κ with t > t0.

Assume that wΔ
1 (t, ·) is rd-continuous on [t0, σ(t)]. If, for any ε > 0, there exists a neighborhood U

of t, independent of τ ∈ [t0, σ(t)], such that

∣∣∣w(σ(t), τ) −w(s, τ) −wΔ
1 (t, τ)(σ(t) − s)

∣∣∣ ≤ ε|σ(t) − s| for all s ∈ U, (2.6)
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where wΔ
1 denotes the derivative of w with respect to the first variable, then

υ(t) :=
∫ t

t0

w(t, τ)Δτ (2.7)

implies

υΔ(t) =
∫ t

t0

wΔ
1 (t, τ)Δτ +w(σ(t), t). (2.8)

Lemma 2.3 (Comparison theorem [6]). Suppose u, b ∈ Crd, a ∈ R+. Then

uΔ(t) ≤ a(t)u(t) + b(t) for all t ∈ T
κ (2.9)

implies

u(t) ≤ u(t0)ea(t, t0) +
∫ t

t0

ea(t, σ(τ))b(τ)Δτ for all t ∈ T
κ. (2.10)

Next, we establish our main results.

Theorem 2.4. Assume that u, a, b, g, h ∈ Crd, and u(t), a(t), b(t), g(t) and h(t) are nonnegative.
Then

up(t) ≤ a(t) + b(t)
∫ t

t0

[
g(τ)uq(τ) + h(τ)

]
Δτ for all t ∈ T

κ (E1)

implies

u(t) ≤
{
a(t) + b(t)

∫ t

t0

eB(t, σ(τ))F(τ)Δτ

}1/p

for any K > 0, t ∈ T
κ, (2.11)

where

F(t) = g(t)

(
p − q

p
Kq/p +

qa(t)
pK(p−q)/p

)
+ h(t), (2.12)

and also

B(t) =
qb(t)g(t)
pK(p−q)/p for all t ∈ T

κ. (2.13)

Proof. Obviously, if t = t0, then the inequality (2.11) holds. Therefore, in the next proof, we
always assume that t > t0, t ∈ T

κ.
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Define a function z(t) by

z(t) =
∫ t

t0

[
g(τ)uq(τ) + h(τ)

]
Δτ. (2.14)

Then (E1) can be restated as

up(t) ≤ a(t) + b(t)z(t). (2.15)

Using Lemma 2.1, from (2.15), for any K > 0, we easily obtain

uq(t) ≤ (a(t) + b(t)z(t))q/p

≤ p − q

p
Kq/p +

qa(t)
pK(p−q)/p +

qb(t)z(t)
pK(p−q)/p .

(2.16)

It follows from (2.14) and (2.16) that

zΔ(t) ≤ g(t)

(
p − q

p
Kq/p +

qa(t)
pK(p−q)/p +

qb(t)z(t)
pK(p−q)/p

)
+ h(t)

= F(t) + B(t)z(t),

(2.17)

where F(t) and B(t) are defined as in (2.12) and (2.13), respectively. Using Lemma 2.3 and
noting z(t0) = 0, from (2.17)we have

z(t) ≤
∫ t

t0

eB(t, σ(τ))F(τ)Δτ, for any K > 0, t ∈ T
κ. (2.18)

Therefore, the desired inequality (2.11) follows from (2.15) and (2.18). This completes
the proof of Theorem 2.4.

Remark 2.5. By letting p = q = 1 in Theorem 2.4, it is easy to observe that the bound obtained
in (2.11) reduces to the bound obtained in [9, Theorem 3.1].

As a particular case of Theorem 2.4, we immediately obtain the following result.

Corollary 2.6. Assume that u, g ∈ Crd, and u(t) and g(t) are nonnegative. If α > 0 is a constant,
then

up(t) ≤ α +
∫ t

t0

g(τ)uq(τ)Δτ for all t ∈ T
κ (E′1)
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implies

u(t) ≤
{
α +

∫ t

t0

eB̂(t, σ(τ))F̂(τ)Δτ

}1/p

for any K > 0, t ∈ T
κ, (2.19)

where

F̂(t) = g(t)

(
p − q

p
Kq/p +

qα

pK(p−q)/p

)
, (2.20)

B̂(t) =
qg(t)

pK(p−q)/p for all t ∈ T
κ. (2.21)

Remark 2.7. The result of Theorem 2.4 holds for an arbitrary time scale. Therefore, using
Theorem 2.4, we immediately obtain many results for some peculiar time scales. For example,
letting T = R and T = Z, respectively, we have the following two results.

Corollary 2.8. Let T = R and assume that u(t), a(t), b(t), g(t), h(t) ∈ C(R+,R+). Then the
inequality

up(t) ≤ a(t) + b(t)
∫ t

0

[
g(s)uq(s) + h(s)

]
ds, t ∈ R+ (2.22)

implies

u(t) ≤
[
a(t) + b(t)

∫ t

0
F(θ) exp

(∫ t

θ

B(s)ds

)
dθ

]1/p

for any K > 0, t ∈ R+, (2.23)

where F(t) and B(t) are defined as in Theorem 2.4.

Corollary 2.9. Let T = Z and assume that u(t), a(t), b(t), g(t), and h(t) are nonnegative functions
defined for t ∈ N0. Then the inequality

up(t) ≤ a(t) + b(t)
t−1∑
s=0

[
g(s)uq(s) + h(s)

]
, t ∈ N0 (2.24)

implies

u(t) ≤
[
a(t) + b(t)

t−1∑
θ=0

F(θ)
t−1∏

s=θ+1

(1 + B(s))

]1/p

for any K > 0, t ∈ N0, (2.25)

where F(t) and B(t) are defined as in Theorem 2.4.
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Investigating the proof procedure of Theorem 2.4 carefully, we can obtain the
following result.

Theorem 2.10. Assume that u, a, b, gi, h ∈ Crd, and u(t), a(t), b(t), gi(t), and h(t) are nonnegative,
i = 1, 2, . . . , n. If there exists a series of positive real numbers q1, q2, . . . , qn such that p ≥ qi > 0, i =
1, 2, . . . , n, then

up(t) ≤ a(t) + b(t)
∫ t

t0

[
n∑
i=1

gi(τ)uqi(τ) + h(τ)

]
Δτ for all t ∈ T

κ (E′′1)

implies

u(t) ≤
{
a(t) + b(t)

∫ t

t0

eB∗(t, σ(τ))F∗(τ)Δτ

}1/p

for any K > 0, t ∈ T
κ, (2.26)

where

F∗(t) =
n∑
i=1

gi(t)

(
p − qi
p

Kqi/p +
qia(t)

pK(p−qi)/p

)
+ h(t), (2.27)

B∗(t) =
n∑
i=1

qib(t)gi(t)
pK(p−qi)/p for all t ∈ T

κ. (2.28)

Theorem 2.11. Assume that u, a, b, f, g,m ∈ Crd, u(t), a(t), b(t), f(t), g(t), and m(t) are
nonnegative, and w(t, s) is defined as in Lemma 2.2 such that w(t, s) ≥ 0 and wΔ

1 (t, s) ≥ 0 for
t, s ∈ T with s ≤ t. If, for any ε > 0, there exists a neighborhood U of t, independent of τ ∈ [t0, σ(t)],
such that for all s ∈ U,

∣∣∣[w(σ(t), τ) −w(s, τ) −wΔ
1 (t, τ)(σ(t) − s)

][
f(τ)up(τ) + g(τ)uq(τ) +m(τ)

]∣∣∣ ≤ ε|σ(t) − s|,
(2.29)

then

up(t) ≤ a(t) + b(t)
∫ t

t0

w(t, τ)
[
f(τ)up(τ) + g(τ)uq(τ) +m(τ)

]
Δτ, t ∈ T

κ (E2)

implies

u(t) ≤
{
a(t) + b(t)

∫ t

t0

eA(t, σ(τ))G(τ)Δ(τ)

}1/p

for any K > 0, t ∈ T
κ, (2.30)
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where

A(t) = w(σ(t), t)b(t)

(
f(t) +

qg(t)
pK(p−q)/p

)
+
∫ t

t0

wΔ
1 (t, τ)b(τ)

(
f(τ) +

qg(τ)
pK(p−q)/p

)
Δτ, (2.31)

and also

G(t) = w(σ(t), t)

[
a(t)f(t) + g(t)

((
p − q

)
Kq/p

p
+

qa(t)
pK(p−q)/p

)
+m(t)

]

+
∫ t

t0

wΔ
1 (t, τ)

[
a(τ)f(τ) + g(τ)

((
p − q

)
Kq/p

p
+

qa(τ)
pK(p−q)/p

)
+m(τ)

]
Δτ.

(2.32)

Proof. Define a function z(t) by

z(t) =
∫ t

t0

k(t, τ)Δτ for all t ∈ T
κ, (2.33)

where

k(t, τ) = w(t, τ)
[
f(τ)up(τ) + g(τ)uq(τ) +m(τ)

]
. (2.34)

Then z(t0) = 0. As in the proof of Theorem 2.4, we easily obtain (2.15) and (2.16).
It follows from (2.34) that

k(σ(t), t) = w(σ(t), t)
[
f(τ)up(τ) + g(τ)uq(τ) +m(τ)

]
, (2.35)

and also

kΔ
1 (t, τ) = wΔ

1 (t, τ)
[
f(τ)up(τ) + g(τ)uq(τ) +m(τ)

]
. (2.36)
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Therefore, noting the condition (2.29), using Lemma 2.2 and combining (2.33)–(2.36), (2.15),
and (2.16), we have

zΔ(t) = k(σ(t), t) +
∫ t

t0

kΔ
1 (t, τ)Δτ

= w(σ(t), t)
[
f(t)up(t) + g(t)uq(t) +m(t)

]

+
∫ t

t0

wΔ
1 (t, τ)

[
f(τ)up(τ) + g(τ)uq(τ) +m(τ)

]
Δτ

≤ w(σ(t), t)

[
a(t)f(t) + g(t)

((
p − q

)
Kq/p

p
+

qa(t)
pK(p−q)/p

)
+m(t)

+b(t)

(
f(t) +

qg(t)
pK(p−q)/p

)
z(t)

]

+
∫ t

t0

wΔ
1 (t, τ)

[
a(τ)f(τ) + g(τ)

((
p − q

)
Kq/p

p
+

qa(τ)
pK(p−q)/p

)
+m(τ)

+b(τ)

(
f(τ) +

qg(τ)
pK(p−q)/p

)
z(τ)

]
Δτ

≤
[
w(σ(t), t)b(t)

(
f(t) +

qg(t)
pK(p−q)/p

)
+
∫ t

t0

wΔ
1 (t, τ)b(τ)

(
f(τ) +

qg(τ)
pK(p−q)/p

)
Δτ

]
z(t)

+w(σ(t), t)

[
a(t)f(t) + g(t)

((
p − q

)
Kq/p

p
+

qa(t)
pK(p−q)/p

)
+m(t)

]

+
∫ t

t0

wΔ
1 (t, τ)

[
a(τ)f(τ) + g(τ)

((
p − q

)
Kq/p

p
+

qa(τ)
pK(p−q)/p

)
+m(τ)

]
Δτ

= A(t)z(t) +G(t) for all t ∈ T
κ,

(2.37)

where A(t) and G(t) are defined as in (2.31) and (2.32), respectively. Therefore, using
Lemma 2.3 and noting z(t0) = 0, we get

z(t) ≤
∫ t

t0

eA(t, σ(τ))G(τ)Δτ for all t ∈ T
κ. (2.38)

It is easy to see that the desired inequality (2.30) follows from (2.15) and (2.38). This
completes the proof of Theorem 2.11.

Remark 2.12. Letting p = q = 1, f(t) = 0 in Theorem 2.11, we easily obtain [9, Theorem 3.10].

The following two corollaries are easily established by using Theorem 2.11.
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Corollary 2.13. Let T = R and assume that u(t), a(t), b(t), f(t), g(t), m(t) ∈ C(R+,R+). If w(t, s)
and its partial derivative (∂/∂t)w(t, s) are real-valued nonnegative continuous functions for t, s ∈ R+

with s ≤ t, then the inequality

up(t) ≤ a(t) + b(t)
∫ t

0
w(t, s)

[
f(s)up(s) + g(s)uq(s) +m(s)

]
ds, t ∈ R+ (2.39)

implies

u(t) ≤
{
a(t) + b(t)

∫ t

0
G(s) exp

(∫ t

s

A(τ)dτ

)
ds

}1/p

for any K > 0, t ∈ R+, (2.40)

where

A(t) = w(t, t)b(t)

(
f(t) +

qg(t)
pK(p−q)/p

)
+
∫ t

0

∂

∂t
w(t, s)b(s)

(
f(s) +

qg(s)
pK(p−q)/p

)
ds, (2.41)

and also

G(t) = w(t, t)

[
a(t)f(t) + g(t)

((
p − q

)
Kq/p

p
+

qa(t)
pK(p−q)/p

)
+m(t)

]

+
∫ t

0

∂

∂t
w(t, s)

[
a(s)f(s) + g(s)

((
p − q

)
Kq/p

p
+

qa(s)
pK(p−q)/p

)
+m(s)

]
ds.

(2.42)

Remark 2.14. Letting p = q = 1, f(t) = 0 in Corollary 2.13, we easily obtain [14, Theorem 1.4.3].

Corollary 2.15. Let T = Z and assume that u(t), a(t), b(t), f(t), g(t) and m(t) are nonnegative
functions defined for t ∈ N0. If w(t, s) and Δ1w(t, s) are real-valued nonnegative functions for t, s ∈
N0 with s ≤ t, then the inequality

up(t) ≤ a(t) + b(t)
t−1∑
s=0

w(t, s)
[
f(s)up(s) + g(s)uq(s) +m(s)

]
, t ∈ N0, (2.43)

implies

u(t) ≤
{
a(t) + b(t)

t−1∑
s=0

G̃(s)
t−1∏

τ=s+1

(
1 + Ã(τ)

)}1/p

for any K > 0, t ∈ N0, (2.44)
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where Δ1w(t, s) = w(t + 1, s) −w(t, s) for t, s ∈ N0 with s ≤ t,

Ã(t) = w(t + 1, t)b(t)

(
f(t) +

qg(t)
pK(p−q)/p

)
+

t−1∑
s=0

Δ1w(t, s)b(s)

(
f(s) +

qg(s)
pK(p−q)/p

)
, (2.45)

G̃(t) = w(t + 1, t)

[
a(t)f(t) + g(t)

((
p − q

)
Kq/p

p
+

qa(t)
pK(p−q)/p

)
+m(t)

]

+
t−1∑
s=0

Δ1w(t, s)

[
a(s)f(s) + g(s)

((
p − q

)
Kq/p

p
+

qa(s)
pK(p−q)/p

)
+m(s)

]
.

(2.46)

Remark 2.16. By letting p = q = 1, f(t) = 0 in Corollary 2.15, it is very easy to obtain [15,
Theorem 1.3.4].

Corollary 2.17. Suppose that u(t), a(t), and w(t, s) are defined as in Theorem 2.11, and let a(t) be
nondecreasing for all t ∈ T

κ. If, for any ε > 0, there exists a neighborhood Uof t, independent of
τ ∈ [t0, σ(t)], such that for all s ∈ U,

∣∣∣uq(τ)
[
w(σ(t), τ) −w(s, τ) −wΔ

1 (t, τ)(σ(t) − s)
]∣∣∣ ≤ ε|σ(t) − s|, (2.47)

then

up(t) ≤ a(t) +
∫ t

t0

w(t, τ)uq(τ)Δτ for all t ∈ T
κ (E′2)

implies

u(t) ≤
{
1
q

[(
K
(
p − q

)
+ qa(t)

)
e
Ã
(t, t0) −K

(
p − q

)]}1/p

for any K > 0, t ∈ T
κ, (2.48)

where

Ã(t) =
q

pK(p−q)/p

(
w(σ(t), t) +

∫ t

t0

wΔ
1 (t, τ)Δτ

)
. (2.49)

Proof. Letting b(t) = 1, f(t) = 0, g(t) = 1, and m(t) = 0 in Theorem 2.11, we obtain

A(t) =
q

pK(p−q)/p

(
w(σ(t), t) +

∫ t

t0

wΔ
1 (t, τ)Δτ

)
:= Ã(t), (2.50)



Discrete Dynamics in Nature and Society 11

and also

G(t) =
1

pK(p−q)/p

{
w(σ(t), t)

[
K
(
p − q

)
+ qa(t)

]
+
∫ t

t0

wΔ
1 (t, τ)

[
K
(
p − q

)
+ qa(τ)

]
Δτ

}

≤ K
(
p − q

)
+ qa(t)

pK(p−q)/p

{
w(σ(t), t) +

∫ t

t0

wΔ
1 (t, τ)Δτ

}

=
1
q

[
K
(
p − q

)
+ qa(t)

]
Ã(t) for any K > 0, t ∈ T

κ,

(2.51)

where the inequality holds because a(t) is nondecreasing for all t ∈ T
κ. Therefore, using

Theorem 2.11 and noting (2.50) and (2.51), we easily have

u(t) ≤
{
a(t) +

∫ t

t0

eA(t, σ(τ))G(τ)Δτ

}1/p

≤
{
a(t) +

1
q

∫ t

t0

e
Ã
(t, σ(τ))

[
K
(
p − q

)
+ qa(τ)

]
Ã(τ)Δτ

}1/p

≤
{
a(t) +

1
q

[
K
(
p − q

)
+ qa(t)

]∫ t

t0

e
Ã
(t, σ(τ))Ã(τ)Δτ

}1/p

=
{
a(t) +

1
q

[
K
(
p − q

)
+ qa(t)

]
,
[
e
Ã
(t, t0) − e

Ã
(t, t)

]}1/p

=
{
1
q

[(
K
(
p − q

)
+ qa(t)

)
e
Ã
(t, t0) −K

(
p − q

)]}1/p

for any K > 0, t ∈ T
κ.

(2.52)

The proof of Corollary 2.17 is complete.

Remark 2.18. In Corollary 2.17, letting w(t, s) = w(s), p = q = 1, we immediately obtain [12,
Theorem 3.1].

From the proof procedure of Theorem 2.11, we can obtain the following result.

Theorem 2.19. Assume that u, a, b, f, gi,m ∈ Crd, u(t), a(t), b(t), f(t), gi(t), and m(t) are
nonnegative, i = 1, 2, . . . , n, and there exists a series of positive real numbers q1, q2, . . . , qn such that
p ≥ qi > 0, i = 1, 2, . . . , n. Let w(t, s) be defined as in Lemma 2.2 such that w(t, s) ≥ 0 and
wΔ

1 (t, s) ≥ 0 for t, s ∈ T with s ≤ t. If, for any ε > 0, there exists a neighborhood U of t, independent
of τ ∈ [t0, σ(t)], such that for all s ∈ U,

∣∣∣∣∣
[
w(σ(t), τ) −w(s, τ) −wΔ

1 (t, τ)(σ(t) − s)
][

f(τ)up(τ) +
n∑
i=1

gi(τ)uqi(τ) +m(τ)

]∣∣∣∣∣ ≤ ε|σ(t) − s|,

(2.53)
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then

up(t) ≤ a(t) + b(t)
∫ t

t0

w(t, τ)

[
f(τ)up(τ) +

n∑
i=1

gi(τ)uqi(τ) +m(τ)

]
Δτ, t ∈ T

κ (E′′2)

implies

u(t) ≤
{
a(t) + b(t)

∫ t

t0

eA∗(t, σ(τ))G∗(τ)Δ(τ)

}1/p

for any K > 0, t ∈ T
κ, (2.54)

where

A∗(t) = w(σ(t), t)b(t)

(
f(t) +

n∑
i=1

qigi(t)
pK(p−qi)/p

)

+
∫ t

t0

wΔ
1 (t, τ)b(τ)

(
f(τ) +

n∑
i=1

qigi(τ)
pK(p−qi)/p

)
Δτ,

(2.55)

G∗(t) = w(σ(t), t)

[
a(t)f(t) +

n∑
i=1

gi(t)

((
p − qi

)
Kqi/p

p
+

qia(t)
pK(p−qi)/p

)
+m(t)

]

+
∫ t

t0

wΔ
1 (t, τ)

[
a(τ)f(τ) +

n∑
i=1

gi(τ)

((
p − qi

)
Kqi/p

p
+

qia(τ)
pK(p−qi)/p

)
+m(τ)

]
Δτ.

(2.56)

Remark 2.20. Using our main results, we can obtain many dynamic inequalities for some
peculiar time scales. Due to limited space, their statements are omitted here.

3. An Application

In this section, we present an application of Corollary 2.6 to obtain the explicit estimates on
the solutions of a dynamic equation on time scales.

Example 3.1. Consider the dynamic equation

(up(t))Δ = H(t, u(t)), u(t0) = C, t ∈ T
κ, (3.1)

where p and C are constants, p > 0, and H : T
κ × R → R is a continuous function.

Assume that

|H(t, u(t))| ≤ g(t)|uq(t)|, (3.2)
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where g(t) ∈ Crd, g(t) is nonnegative, and 0 < q ≤ p is a constant. If u(t) is a solution of (3.1),
then

|u(t)| ≤
{
|C|p +

∫ t

t0

eB̂(t, σ(τ))J(τ)Δτ

}1/p

for any K > 0, t ∈ T
κ, (3.3)

where B̂(t) is defined as in (2.21), and

J(t) = g(t)

(
p − q

p
Kq/p +

q|C|p
pK(p−q)/p

)
for all t ∈ T

κ. (3.4)

In fact, the solution u(t) of (3.1) satisfies the following equivalent equation:

up(t) = Cp +
∫ t

t0

H(τ, u(τ))Δτ, t ∈ T
κ. (3.5)

Using the assumption (3.2), we have

|u(t)|p ≤ |C|p +
∫ t

t0

g(τ)|u(τ)|qΔτ, t ∈ T
κ. (3.6)

Now a suitable application of Corollary 2.6 to (3.6) yields (3.3).
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