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1. Introduction

In the last decade, the study of delayed differential equations that arose in business cycles
has received much attention. The first model of business cycles can be traced back to Kaldor
[1] who used a system of ordinary differential equations to study business cycles in 1940
by proposing nonlinear investment and saving functions so that the system may have cyclic
behaviors or limit cycles, which are important from the point of view of economics. Kalecki
[2] introduced the idea that there is a time delay for investment before a business decision.
Krawiec and Szydłowski [3–5] incorporated the idea of Kalecki into the model of Kaldor by
proposing the following Kaldor-Kalecki model of business cycles:

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],

dK(t)
dt

= I(Y (t − τ), K(t)) − qK(t),

(1.1)

where Y is the gross product, K is the capital stock, α > 0 is the adjustment coefficient in
the goods market, q ∈ (0, 1) is the depreciation rate of capital stock, I(Y,K) and S(Y,K)
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are investment and saving functions, and τ ≥ 0 is a time lag representing delay for the
investment due to the past investment decision. This model has been studied extensively
by many authors; see [6–11]. Several authors also discussed similar models [12–14] and
established the existence of limit cycles.

Considering that past investment decisions [6] also influence the change in the capital
stock, Kaddar and Talibi Alaoui [15] extended the model (1.1) by imposing delays in both
the gross product and capital stock. Thus adding the same delay to the capital stock K in
the investment function I(Y,K) of the second equation of Sys. (1.1) leads to the following
Kaldor-Kalecki model of business cycles:

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],

dK(t)
dt

= I(Y (t − τ), K(t − τ)) − qK(t).

(1.2)

As in [3]; also see [10, 16, 17], using the following saving and investment functions S
and I, respectively,

S(Y,K) = γY, I(Y,K) = I(Y ) − βK, (1.3)

where β > 0 and γ ∈ (0, 1) are constants, we obtain the following system:

dY (t)
dt

= α
[
I(Y (t)) − βK(t) − γY (t)

]
,

dK(t)
dt

= I(Y (t − τ)) − βK(t − τ) − qK(t).

(1.4)

Kaddar and Talibi Alaoui [15] studied the characteristic equation of the linear part of Sys.
(1.4) at an equilibrium point and used the delay τ as a bifurcation parameter to show that the
Hopf bifurcation may occur under some conditions as τ passes some critical values. However,
they did not obtain the stability of the bifurcating limit cycles and the direction of the Hopf
bifurcation. Wang and Wu [18] further studied Sys. (1.4) and gave a more detailed discussion
of the distribution of the eigenvalues of the characteristic equation which has a pair of purely
imaginary roots. They derived the normal forms on the center manifold for sys. (1.4) to give
the direction of the Hopf bifurcation and the stability of the bifurcating limit cycles for some
critical values of τ .

However, under certain conditions, the characteristic equation of the linear part of
Sys. (1.4) may have a simple-zero root, a double-zero root, or a simple zero root and a pair of
purely imaginary roots. In this paper, simple-zero (fold) and double-zero (Bogdanov-Takens)
singularities for Sys. (1.4) and their corresponding dynamical behaviors are investigated by
using k and τ as bifurcation parameters (where k is defined in Section 2). The discussion of
zero-Hopf singularity will be addressed in a coming paper.

The rest of this manuscript is organized as follows. In Section 2, a detailed presentation
is given for the distribution of eigenvalues of the linear part of Sys. (1.4) at an equilibrium
point in the (k, τ)-parameter space. In Section 3, the theory of center manifold reduction for
general delayed differential equations (DDEs) is briefly introduced. In Sections 4 and 5, center
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manifold reduction is performed for Sys. (1.4); and hence, the normal forms for simple-zero
and double-zero singularities are obtained on the center manifold, respectively. In Section 6,
the normal forms for the double-zero singularity are used to predict the bifurcation diagrams
such as Hopf, homoclinic, and double limit cycle bifurcations for the original Sys. of (1.4).
Finally in Section 7, some numerical simulations are presented to confirm the theoretical
results.

2. Distribution of Eigenvalues

Throughout the rest of this paper, we assume that

α, β > 0, q, γ ∈ (0, 1), and I(s) is a nonlinear C4 function, (2.1)

and that (Y ∗, K∗) is an equilibrium point of Sys. (1.4). Let I∗ = I(Y ∗), u1 = Y −Y ∗, u2 = K−K∗,
and i(s) = I(s + Y ∗) − I∗. Then Sys. (1.4) can be transformed as

du1(t)
dt

= α
[
i(u1(t)) − βu2(t) − γu1(t)

]
,

du2(t)
dt

= i(u1(t − τ)) − βu2(t − τ) − qu2(t).

(2.2)

Let the Taylor expansion of i at 0 be

i(u) = ku + i(2)u2 + i(3)u3 +O
(
|u|4
)
, (2.3)

where

k = i′(0) = I ′(Y ∗), i(2) =
1
2
i′′(0) =

1
2
I ′′(Y ∗), i(3) =

1
3!
i′′′(0) =

1
3!
I ′′′(Y ∗). (2.4)

The linear part of Sys. (2.2) at (0, 0) is

du1(t)
dt

= α
[(
k − γ

)
u1(t) − βu2(t)

]
,

du2(t)
dt

= ku1(t − τ) − βu2(t − τ) − qu2(t),

(2.5)

and the corresponding characteristic equation is

Δ(λ) ≡ λ2 +Aλ + B +
(
βλ + C

)
e−λτ = 0, (2.6)

where

A = q − α
(
k − γ

)
, B = −αq

(
k − γ

)
, C = αβγ. (2.7)
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For τ = 0, (2.6) becomes

λ2 +
(
A + β

)
λ + B + C = 0. (2.8)

Define

k∗ =
βγ

q
+ γ, k∗∗ =

q + β
α

+ γ. (2.9)

Theorem 2.1. Let τ = 0. If k < min{k∗, k∗∗}, then all roots of (2.8) have negative real parts, and
hence (Y ∗, K∗) is asymptotically stable. If k > min{k∗, k∗∗}, then (2.8) has a positive root and a
negative root, and hence, (Y ∗, K∗) is unstable.

Now assume τ > 0. Clearly Δ(0) = 0 if and only if k = k∗. Next we always assume that
k = k∗. It is easy to attain

Δ′(λ) = 2λ + q −
αβγ

q
+ βe−λτ −

(
βλ + C

)
τe−λτ ,

Δ′′(λ) = 2 − 2βτe−λτ + βτ2λe−λτ + Cτ2e−λτ .

(2.10)

Define τ∗ = (q2 + qβ − αβγ)/αβγq. Then we have that,

Δ′(0) =
αβγ

q
(τ∗ − τ), Δ′′(0)

∣∣
τ=τ∗ =

q4 − β2q2 + α2β2γ2

αβγq2
. (2.11)

Define

f(x) = x2 + βx − αβγ, g(x) = x2 − β2x + α2β2γ2. (2.12)

Hence if f(q) ≤ 0, τ∗ ≤ 0, and hence Δ′(0) < 0, and if f(q) > 0, τ∗ > 0, and hence Δ′(0) = 0
if and only if τ = τ∗. Also Δ′′(0)|τ=τ∗ /= 0 if and only if g(q2)/= 0. Thus we obtain the following
result.

Lemma 2.2. Suppose that k = k∗. Then the following are considered.

(i) If τ∗ ≤ 0, then (2.6) has a simple root 0 for all τ > 0.

(ii) Let τ∗ > 0. Then the following are given.

(a) Equation (2.6) has a simple root 0 if and only if τ /= τ∗,

(b) Equation (2.6) has a double root 0 if and only if τ = τ∗ and g(q2)/= 0.
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Let ωi (ω > 0) be a purely imaginary root of (2.6). After plugging it into (2.6) and
separating the real and imaginary parts, we have that

ω2 + αβγ = αβγ cos(ωτ) + βω sin(ωτ),

q2 − αβγ
q

ω = αβγ sin(ωτ) − βω cos(ωτ).
(2.13)

Adding squares of two equations yields

ω2 +
g
(
q2)

q2
= 0. (2.14)

Then (2.14) has a nonzero solution if and only if g(q2) < 0 and does not have a nonzero
solution if and only if g(q2) ≥ 0. If g(q2) < 0, from (2.14), we solve ω as follows:

ω = ω0 ≡
1
q

√
−g
(
q2
)
, (2.15)

and from (2.13), we solve cos(ω0τ), sin(ω0τ) as:

cos(ω0τ) =
−q2ω2

0 + αβγω
2
0 + qαγ

(
αβγ +ω2

0

)

qβ
(
α2γ2 +ω2

0

) ≡ a,

sin(ω0τ) =
q2αγω0 − α2βγ2ω0 + qαβγω0 + qω3

0

qβ
(
α2γ2 +ω2

0

) ≡ b.

(2.16)

Define

δ =

⎧
⎨

⎩

arccosa, if b ≥ 0,

2π − arccosa, if b < 0.
(2.17)

From (2.16), we obtain

τ = τj ≡
1
ω0

(
δ + 2jπ

)
, j = 0, 1, 2, . . . . (2.18)

Clearly if β > 2αγ , then g(x) = 0 has two positive roots, and if β ≤ 2αγ , then g(x) ≥ 0.
Now, under k = k∗, we impose the following conditions:

(H1) β ≤ 2αγ , τ∗ ≤ 0,

(H2) β ≤ 2αγ , τ∗ > 0, τ /= τ∗,

(H3) β ≤ 2αγ , τ∗ > 0, τ = τ∗,

(H4) β > 2αγ , τ∗ > 0, τ /= τ∗, g(q2) ≥ 0,
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(H5) β > 2αγ , τ∗ > 0, τ /= τ∗, g(q2) < 0,

(H6) β > 2αγ , τ∗ > 0, τ = τ∗, g(q2) ≥ 0,

(H7) β > 2αγ , τ∗ > 0, τ = τ∗, g(q2) < 0.

Based on Lemma 2.2, we have the following result.

Lemma 2.3. Suppose that k = k∗ and 0 < q < 1. Then the following are obtained.

(i) Under one of the conditions (H1), (H2), and (H4), (2.6) has a simple zero root and does not
have other roots in the imaginary axis.

(ii) Under the condition (H5), (2.6) has a simple zero root and a pair of purely imaginary roots
±ω0i in the imaginary axis if τ = τj , j = 0, 1, 2, . . . .

(iii) Under one of the conditions (H3) and (H6), then (2.6) has a double root 0 and does not have
other roots in the imaginary axis.

(iv) Under the condition (H7), (2.6) has a double zero root and a pair of purely imaginary roots
±ω0i in the imaginary axis if τ∗ = τj for some j.

Now we use the roots of f(x) = 0, g(x) = 0 to give a more detailed discussion for the
roots of (2.6). Define

q0 =
1
2

(
−β +

√
β2 + 4αβγ

)
,

q1 =
1
2

(
β2 −
√
β4 − 4α2β2γ2

)
,

q2 =
1
2

(
β2 +
√
β4 − 4α2β2γ2

)
.

(2.19)

Clearly q0 is the positive root of f(x) = 0 and q1, q2 are two positive roots of g(x) = 0 if
β > 2αγ . Note that f(x) ≤ 0 if 0 < x ≤ q0, andf(x) > 0 if x > q0, g(x) ≥ 0 if 0 < x ≤ q1, or
x ≥ q2, then g(x) < 0 if q1 < x < q2. Also note that as well as if β > 2αγ , q2

0 < q1. In fact it is
based on the following calculation:

q1 − q2
0 =

1
2

(
β2 −
√
β4 − 4α2β2γ2

)
− 1

4

(
−β +

√
β2 + 4αβγ

)2

=
β

2

(√
β2 + 4αβγ −

√
β2 − 4α2γ2 − 2αγ

)

=
2αβγ

(
β −
√
β2 − 4α2γ2

)

√
β2 + 4αβγ +

√
β2 − 4α2γ2 + 2αγ

> 0.

(2.20)

Thus for β > 2αγ , we always have q0 <
√
q1 <

√
q2. Noting that q ∈ (0, 1), we have the

following result.
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Lemma 2.4. Let β > 2αγ . Then the following are given.

(i) Suppose that q0 ≥ 1. Then for 0 < q < 1, then (2.6) has a simple zero root and does not have
roots in the imaginary axis.

(ii) Suppose that q0 < 1 ≤ √q1 <
√
q2. If 0 < q ≤ q0, then (2.6) has a simple zero root and does

not have roots in the imaginary axis. And if q0 < q < 1, (2.6) has a double zero root and
does not have roots in the imaginary axis.

(iii) Suppose that q0 <
√
q1 < 1 < √q2. If 0 < q ≤ q0, then (2.6) has a simple zero root and does

not have roots in the imaginary axis. If q0 < q ≤
√
q1, then (2.6) has a double zero root and

does not have roots in the imaginary axis. And if √q1 < q < 1, then (2.6) has a double zero
root and has a pair of purely imaginary roots.

(iv) Suppose that √q2 ≥ 1. Then if 0 < q ≤ q0, then (2.6) has a simple zero root and does not
have roots in the imaginary axis. If q0 < q ≤ √q1, then (2.6) has a double zero root and
does not have roots in the imaginary axis. If √q1 < q <

√
q2, then (2.6) has a double zero

root and has a pair of purely imaginary roots when τ∗ = τj for some j. And if √q2 ≤ q < 1,
(2.6) has a double zero root and does not have a pair of purely imaginary roots.

Define λ(τ) = σ(τ) + iω(τ) to be the root of (2.6) such that σ(τj) = 0 and ω(τj) = ω0.
Then we have the following result.

Lemma 2.5. Suppose that k = k∗ and g(q2) < 0. Then σ ′(τj) > 0.

Proof. Differentiating (2.6) with respect to τ yields

(
dλ

dτ

)−1

=

[
2λ + q − α

(
k − γ

)]
eλτ + β

λβ
(
λ + αγ

) − τ
λ
, (2.21)

and a simple calculation gives

Re
(
dλ

dτ

)−1
∣∣∣∣∣
τ=τj

=
α2β2γ2 + q2(−β2 + q2 + 2ω2

0

)

β2q2
(
α2γ2 +ω2

0

) =
q2β2 − α2β2γ2 − q4

β2q2
(
α2γ2 +ω2

0

) , (2.22)

which gives

Sign Re
(
dλ

dτ

)−1
∣∣∣∣∣
τ=τj

= Sign
(
−g
(
q2
))

= 1, (2.23)

thus completing the proof.

Next we discuss the distribution of other roots of (2.6). We need the following lemma
due to Ruan and Wei [19].

Lemma 2.6. Consider the exponential polynomial

P
(
λ, e−λτ

)
= p(λ) + q(λ)e−λτ , (2.24)
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where p, q are real polynomials such that deg(q) < deg(p) and τ ≥ 0. As τ varies, the sum of the
order of zeros of P(λ, e−λτ) on the open right half-plane can change only if a zero appears on or crosses
the imaginary axis.

Lemma 2.7. Let k = k∗ and τ > 0. Then, the following are obtained.

(i) If q > q0, then all roots of (2.6) except 0 and purely imaginary roots have negative real
parts,

(ii) If 0 < q ≤ q0, then (2.6) has at least one positive root.

Proof. Note that, for τ = 0, if q > q0 or q2 + qβ > αβγ , Δ(λ) = 0 has a zero root and a negative
root. Using Lemmas 2.2 and 2.6, we obtain claim (i). For τ = 0, Δ(λ) = 0 has a zero root and a
positive root if 0 < q ≤ q0 or q2 + qβ ≤ αβγ . For τ > 0, let

f(λ) =
Δ(λ)
λ

= λ +A + βe−λτ +
B + Ce−λτ

λ
. (2.25)

Also noting that B + C = 0 when k = k∗, we have that

lim
λ→ 0+

f(λ) = A + β − Cτ =
1
q

[(
q2 + qβ − αβγ

)
− αβγτ

]
< 0, (2.26)

and limλ→∞f(λ) = ∞. This proves the second part of the lemma and completes the proof of
the lemma.

3. Center Manifold Reduction

In this section, we briefly summarize the theory of center manifold reduction for general
DDEs. The material is mainly taken from [20, 21]. Consider the following DDE:

dx

dt
= L
(
μ
)
xt +G

(
xt, μ
)
, (3.1)

where x ∈ C([−τ, 0],Rn), μ ∈ R
p. This equation is equivalent to

dx

dt
= L
(
μ
)
xt +G

(
xt, μ
)
,

dμ

dt
= 0, (3.2)

which can be written as

dX

dt
= LXt + F(Xt), (3.3)

where X = (x, μ)T , F(Xt) = (G(xt), 0)
T , and L = diag(L, 0). Define X ∈ C := C([−τ, 0],Rn+p)

with supreme norm and Xt ∈ C is defined by Xt(θ) = X(t+θ), −τ ≤ θ ≤ 0;L : C → L(Rn+p) is
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a bounded linear operator; and F : C → C is a Ck (k ≥ 2) function with F(0) = 0, DF(0) = 0.
Consider the following linear system:

Ẋ(t) = LXt. (3.4)

Since L is a bounded linear operator, then L can be represented by a Riemann-Stieltjes
integral

Lϕ =
∫0

−τ
dη(θ)ϕ(θ), ∀ϕ ∈ C, (3.5)

by the Riesz representation theorem, where η(θ) (θ ∈ [−τ, 0]) is an (n + p) × (n + p)
matrix function of bounded variation. Let A0 be the infinitesimal generator for the solution
semigroup defined by Sys. (3.4) such that

A0ϕ = ϕ̇, D(A0) =

{

ϕ ∈ C1([−τ, 0],Rn+p) : ϕ̇(0) =
∫0

−τ
dη(θ)ϕ(θ)

}

. (3.6)

Define the bilinear form between C and C∗ = C([0, τ],R(n+p)∗) (where R
(n+p)∗ is the space of

all row (n + p)-vectors) by

〈
ψ, ϕ
〉
= ψ(0)ϕ(0) −

∫0

−τ

∫θ

0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ, ∀ψ ∈ C∗, ∀ϕ ∈ C. (3.7)

The adjoint ofA0 is defined byA∗0 as

A∗0ψ = −ψ̇, D
(
A∗0
)
=

{

ϕ ∈ C1
(
[0, τ],R(n+p)∗

)
: ψ̇(0) = −

∫0

−τ
ψ(−θ)dη(θ)

}

. (3.8)

In our setting, (3.3) has p trivial components. Assume that the characteristic equation of (3.3)
has eigenvalue zero with multiplicity 2p and all other eigenvalues have negative real parts.
Then L has a generalized eigenspace P which is invariant under the flow (3.4). Let P ∗ be the
space adjoint with P in C∗. Then C can be decomposed as C = P ⊕ Q where Q = {ϕ ∈ C :
〈ψ, ϕ〉 = 0, ∀ψ ∈ P ∗}. Choose the bases Φ and Ψ for P and P ∗, respectively, such that

〈Ψ,Φ〉 = I, Φ̇ = ΦJ, Ψ̇ = −JΨ, (3.9)

where J is Jordan matrix associated with the eigenvalue 0.
To consider Sys. (3.3), we need to enlarge the space C to the following BC:

BC =
{
ϕ : [−τ, 0] → R

n+p : ϕ is continuous on [−τ, 0), ∃ lim
θ→ 0−

ϕ(θ) ∈ R
n+p
}
. (3.10)



10 Discrete Dynamics in Nature and Society

The elements of BC can be expressed as ψ = ϕ +X0α with ϕ ∈ C, α ∈ R
n+p, and

X0(θ) =

⎧
⎨

⎩

0, −τ ≤ θ < 0,

I, θ = 0,
(3.11)

where I is the n × n identity matrix. Define the projection π : BC → P by

π
(
ϕ +X0α

)
= Φ
[(
Ψ, ϕ
)
+ Ψ(0)α

]
. (3.12)

Then the enlarged phase space BC can be decomposed as BC = P ⊕ kerπ. Let X = Φx + y
with x ∈ R

2p and y ∈ Q1 = {ϕ ∈ Q : ϕ̇ ∈ C}. Then (3.3) can be decomposed as

ẋ = Jx + Ψ(0)F
(
Φx + y

)
,

ẏ = AQ1y + (I − π) X0F
(
Ψx + y

)
,

(3.13)

whereA is an extension of the infinitesimal generatorA0 from C1 to BC, defined by

A0ϕ = ϕ̇ +X0
[
Lϕ − ϕ̇(0)

]
=

⎧
⎪⎪⎨

⎪⎪⎩

ϕ̇, −1 ≤ θ < 0,
∫0

−τ
dη(t)ϕ(t), θ = 0,

(3.14)

for ϕ ∈ C1 and its adjoint byA∗ is defined by

A∗ψ =

⎧
⎪⎪⎨

⎪⎪⎩

−ψ̇, 0 < s ≤ θ,
∫0

−τ
ψ(−θ)dη(θ), s = 0,

(3.15)

for ψ ∈ C1∗. Let F(v) =
∑

j≥2(1/j!)Fj(v). Then Sys. (3.13) becomes

ẋ = Jx +
∑

j≥2

1
j!
f1
j

(
x, y
)
,

ẏ = AQ1y +
∑

j≥2

1
j!
f2
j

(
x, y
)
,

(3.16)

where

f1
j

(
x, y
)
= Ψ(0)Fj

(
Φx + y

)
, f2

j

(
x, y
)
= (I − π)X0Fj

(
Φx + y

)
. (3.17)
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On the center manifold, (3.16) can be approximated as

ẋ = Jx +
∑

j≥2

1
j!
f1
j (x, 0). (3.18)

4. Simple-Zero Singularity

In this section, we assume that the condition (H2) holds. From the definition of τ∗, we know
that τ∗ > 0 if and only if q > q0. Therefore (H2) is equivalent to

k = k∗, q > q0, τ > 0, τ /= τ∗. (4.1)

From (ii) of Lemma 2.4 and (ii) of Lemma 2.7, we know that, at (0, 0), the characteristic
equation of the linear part of Sys. (2.5) has a simple zero root and the rest of roots have
negative parts. We treat k as a bifurcation parameter near k∗.

Set C := C([−τ, 0],R3), C∗ := C([0, τ],R3∗). Let μ = k − k∗. Then Sys. (2.5) can be
rewritten as

du1

dt
= α
[
βγ

q
u1(0) − βu2(0) + μu1(0) + i(2)u2

1(0) + i
(0)u3

1(t)
]
+O
(∣∣μ
∣∣|u|2 + |u|4

)
,

du2

dt
= k∗u1(−τ) − qu2(t) + μu1(−τ) − βu2(−τ) + i(2)u2

1(−τ) + i
(3)u3

1(−τ) +O
(∣∣μ
∣∣|u|2 + |u|4

)
,

dμ

dt
= 0.

(4.2)

The linearization of Sys. (4.2) at (0, 0, 0) is

du1

dt
=
αβγ

q
u1(0) − αβu2(0),

du2

dt
= k∗u1(−τ) − qu2(0) − βu2(−τ),

dμ

dt
= 0.

(4.3)

Let η(θ) = Aδ(θ) + Bδ(θ + τ) where

A =

⎛

⎜⎜⎜
⎝

αβγ

q
−αβ 0

0 −q 0

0 0 0

⎞

⎟⎟⎟
⎠
, B =

⎛

⎜⎜
⎝

0 0 0

k∗ −β 0

0 0 0

⎞

⎟⎟
⎠. (4.4)
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Let X = (u1, u2, μ)
T and

F(Xt) =

⎛

⎜⎜⎜
⎝

αμu1(0) + αi(2)u2
1(0) + αi

(3)u3
1(0) +O

(∣∣μ
∣∣|u|2 + |u|4

)

μu1(−τ) + i(2)u2
1(−τ) + i(3)u

3
1(−τ) +O

(∣∣μ
∣∣|u|2 + |u|4

)

0

⎞

⎟⎟⎟
⎠
. (4.5)

Define

Lϕ =
∫0

−τ
dη(θ)ϕ(θ), ∀ϕ ∈ C. (4.6)

Then Sys. (4.2) becomes

Ẋ(t) = LXt + F(Xt). (4.7)

From (3.7), the bilinear form can be expressed as

〈
ψ, ϕ
〉
= ψ(0)ϕ(0) +

∫0

−τ
ψ(ξ + τ)Bϕ(ξ)dξ. (4.8)

It is not hard to see that the infinitesimal generatorA : C1 → BC is given by

Aϕ = ϕ̇ +X0
[
Lϕ − ϕ̇(0)

]
=

⎧
⎨

⎩

ϕ̇, −τ ≤ θ < 0,

Aϕ(0) + Bϕ(−τ), θ = 0,
(4.9)

for ϕ ∈ C1 and its adjointA∗ by

A∗ψ =

⎧
⎨

⎩

−ψ̇, 0 < s ≤ θ,

ψ(0)A + ψ(τ)B, s = 0,
(4.10)

for ψ ∈ C1∗.
Next we obtain the bases for the center space P and its adjoint space P ∗, respectively.

LetAϕ = 0 for ϕ ∈ C1, that is,

ϕ̇(θ) = 0 for − τ ≤ θ < 0, Aϕ(0) + Bϕ(−τ) = 0 for θ = 0. (4.11)
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then we know that ϕ is a constant vector (a1, a2, a3)
T ∈ R

3 \ {0} such that

(A + B)(a1, a2, a3)T = 0. (4.12)

Then we have two linearly independent solutions ϕ1 = (q, γ, 0)T , ϕ2 = (0, 0, 1)T which are
bases for the center space P . Let Φ = (ϕ1, ϕ2).

Similarly, letA∗ψ = 0 for ψ ∈ C1∗, that is,

−ψ̇(s) = 0 for 0 < s ≤ τ, ψ(0)A + ψ(τ)B = 0 for s = 0, (4.13)

then we know that ψ is a constant vector (b1, b2, b3) ∈ R
3∗ \ {0} such that

(b1, b2, b3)(A + B) = 0. (4.14)

From this we have two linearly independent solutions ψ1 = (−(q + β), αβ, 0) and ψ2 = (0, 0, 1)
which are bases for the center space P ∗. Let Ψ = (rψ1, ψ2)

T with r being determined such that
〈ψ1, ϕ1〉 = 1. In fact

r =
1

qαβγ(τ − τ∗) . (4.15)

Clearly r is well defined since τ − τ∗ /= 0. It is not hard to check that Φ̇ = ΦJ , Ψ̇ = −JΨ and
〈Ψ,Φ〉 = I, where J =

(
0 0

0 0

)
.

Let u = Φx + y. Then Sys. (4.2) can be decomposed as

ẋ = ΨF
(
Φx + y

)
,

ẏ = AQ1y + (I − π)X0F
(
Φx + y

)
.

(4.16)

Write x = (x1, μ). Note that

Ψ(0)F(Φx) =

(
−rαq2(μx1 + qi(2)x2

1 + q
2i(3)x3

1

)

0

)

+ h.o.t.. (4.17)
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Here h.o.t. represents higher-order terms. Thus, for sufficiently small μ, on the center
manifold, if i(2) /= 0, then Sys. (4.2) becomes

ẋ1 = −rαq2μx1 − rαq3i(2)x2
1 + h.o.t.,

μ̇ = 0.
(4.18)

If i(2) = 0 and i(3) /= 0, then Sys. (4.2) can be transformed into the following form:

ẋ1 = −rαq2μx1 − rαq4i(3)x3
1 + h.o.t.,

μ̇ = 0.
(4.19)

Thus we have the following results.

Theorem 4.1. Let μ be small. Then consider what follows.

(i) Suppose that μ = 0. Then if i(2) /= 0, the equilibrium (Y ∗, K∗) is unstable, and if i(2) = 0
and i(3) /= 0, then the equilibrium (Y ∗, K∗) is asymptotically stable for (τ − τ∗)i(3) > 0 and
unstable if (τ − τ∗)i(3) < 0.

(ii) The equilibrium (Y ∗, K∗) is asymptotically stable if (τ−τ∗)μ > 0 and unstable if (τ−τ∗)μ <
0.

(iii) At (Y ∗, K∗, k∗), Sys. (1.4) undergoes a transcritical bifurcation if i(2) /= 0 and a pitchfork
bifurcation if i(2) = 0 and i(3) /= 0.

5. Double-Zero Singularity

In this section, we assume that one of the conditions (H3) and (H6) holds and g(q2) > 0, or
equivalently, as

k = k∗, τ = τ∗, q > q0, g
(
q2
)
> 0. (5.1)

From Section 2, we can see that, at (0, 0), the characteristic equation of Sys. (2.5) has a double
root 0 and all other roots have negative real parts if k = k∗ and τ = τ∗. We treat (k, τ) as a
bifurcation parameter near (k∗, τ∗).

By scaling t → t/τ , Sys. (2.2) can be written as

du1(t)
dt

= ατ
(
k − γ

)
u1(t) − αβτu2(t) + ατi(2)u2

1(t)

+ τi(3)u3
1(t) +O

(
|u1|4
)
,

du2(t)
dt

= τku1(t − 1) −
(
q + β
)
τu2(t) + τi(2)u2

1(t − 1)

+ τi(3)u3
1(t − 1) +O

(
|u1|4
)
.

(5.2)
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Let C := C([−1, 0],R4), C∗ := C([0, 1],R4∗). Let μ1 = k − k∗, μ2 = τ − τ∗. Then on C we have

du1

dt
= α
[
βγ

q
τ∗u1(0) − βτ∗u2(0) + τ∗μ1u1(0)

+
βγ

q
μ2u1(0) − βμ2u2(0) + τ∗i(2)u2

1(0)

+ i(2)μ2u
2
1(0) + i

(3)τ∗u3
1(0) + i

(3)μ2u
3
1(0)
]
+O
(∣∣μ
∣∣2|u| +

∣∣μ
∣∣|u|4
)
,

du2

dt
=
βγ

q
τ∗u1(t − 1) − qτ∗u2(t) − βτ∗u2(−1)

+ τ∗μ1u1(−1) +
βγ

q
μ2u1(−1) − qμ2u2(0) − βμ2u2(−1)

+ i(2)τ∗u2
1(−1) + i(2)μ2u

2
1(−1)

+ i(3)τ∗u3
1(−1) + i(3)μ2u

3
1(−1) +O

(∣∣μ
∣∣2|u| +

∣∣μ
∣∣|u|4
)
,

dμ1

dt
= 0,

dμ2

dt
= 0.

(5.3)

The linearization of Sys. (5.3) at (0, 0, 0, 0) is

du1(t)
dt

=
αβγ

q
τ∗u1(0) − αβτ∗u2(0),

du2(t)
dt

= k∗τ∗u1(−1) − qτ∗u2(0) − βτ∗u2(−1),

dμ1

dt
= 0,

dμ2

dt
= 0.

(5.4)

Let

η(θ) = Aδ(θ) + Bδ(θ + 1), (5.5)

where

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

αβγ

q
τ∗ −αβτ∗ 0 0

0 −qτ∗ 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, B =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 0

k∗τ∗ −βτ∗ 0 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠
. (5.6)
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Define

Lϕ =
∫0

−1
dη(θ)ϕ(θ), ∀ϕ ∈ C. (5.7)

Let C1 = C1([−1, 0],R4). Let X = (u1, u2, μ1, μ2)
T and F(Xt) = (F1, F2, 0, 0)T where

F1 = α
[
τ∗μ1u1(0) +

βγ

q
μ2u1(0) − βμ2u2(0) + i(2)τ∗u2

1(0) + i
(3)τ∗u3

1(0)
]

+O
(∣∣μ
∣∣2|u| +

∣∣μ
∣∣|u|4
)
,

F2 = τ∗μ1u1(−1) +
βγ

q
μ2u1(−1) − qμ2u2(0) − βμ2u2(−1)

+ i(2)τ∗u2
1(0) + i

(3)τ∗u3
1(−1) +O

(∣∣μ
∣∣2|u| +

∣∣μ
∣∣|u|4
)
.

(5.8)

Then Sys. (5.3) can be transformed into

Ẋ(t) = LXt + F(Xt). (5.9)

Let C∗ = C([0, 1],R4∗). From (3.7), the bilinear inner product between C and C∗ can be
expressed by

〈
ψ, ϕ
〉
= ψ(0)ϕ(0) +

∫0

−1
ψ(ξ + 1)Bϕ(ξ)dξ, (5.10)

for ϕ ∈ C and ψ ∈ C∗. As in Section 4, the infinitesimal generator A : C1 → BC associated
with L is given by

Aϕ = ϕ̇ +X0
[
Lϕ − ϕ̇(0)

]
=

⎧
⎨

⎩

ϕ̇, −1 ≤ θ < 0,

Aϕ(0) + Bϕ(−1), θ = 0,
(5.11)

for ϕ ∈ C1 and its adjoint by

A∗ψ =

⎧
⎨

⎩

−ψ̇, 0 < s ≤ 1,

ψ(0)A + ψ(1)B, s = 0,
(5.12)

for ψ ∈ C1∗. From Section 2, we know that 0 is an eigenvalue of A and A∗ with multiplicity
4. Now we compute eigenvectors ofA andA∗ associated with 0, respectively.

Next we obtain the bases for the center space P and its adjoint space P ∗, respectively.
LetAϕ = 0 for ϕ ∈ C1. This means that

ϕ̇(θ) = 0 for − 1 ≤ θ < 0, Aϕ(0) + Bϕ(−1) = 0 for θ = 0. (5.13)
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From this we obtain that ϕ(θ) = ϕ0 is a constant vector in R
4 satisfying

(A + B)ϕ0 = 0. (5.14)

This equation has three linearly independent solutions: a1 = (q, γ, 0, 0)T , a3 = (0, 0, 1, 0)T ,
a4 = (0, 0, 0, 1)T . Let ϕ0

1 be one of those. Suppose thatAa2 = ϕ0
1 for a2 ∈ C1, namely,

ȧ2(θ) = ϕ0
1 for − 1 ≤ θ < 0, Aa2(0) + Ba2(−1) = ϕ0

1 for θ = 0. (5.15)

This implies that there is a constant vector ϕ0
2 in R

4 such that a2(θ) = ϕ0
1θ + ϕ0

2 and

L
(
ϕ0

1θ + ϕ0
2

)
= ϕ0

1. (5.16)

Since

L
(
ϕ0

1θ + ϕ0
2

)
= L
(
ϕ0

1θ
)
+L
(
ϕ0

2

)
= −Bϕ0

1 + (A + B)ϕ0
2, (5.17)

we have that

(A + B)ϕ0
2 = (I + B)ϕ0

1. (5.18)

It is easy to see that (5.18) has no solution if ϕ0
1 is either a3 or a4. For ϕ0

1 = a1, setting ϕ0
2 =

(0, l, 0, 0)T in (5.18), we obtain

l = −
q2γ

q2 + qβ − αβγ
, (5.19)

and hence a2(θ) = (θq, l + γθ, 0, 0)T . Thus we obtain bases a1, a2, a3, a4 for the center space P .

Let Φ = (a1, a2, a3, a4). Then we have that Φ̇ = ΦJ where J =

⎛

⎜
⎝

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎠.

Similarly, letA∗ψ2 = 0 for ψ2 ∈ C1∗, that is,

−ψ̇2(s) = 0 for 0 < s ≤ 1, ψ2(0)A + ψ2(−1)B = 0 for s = 0, (5.20)

which means that ψ2(s) = ψ0
2 is a constant vector ψ0

2 ∈ R
4∗ \ {0} satisfying

ψ0
2(A + B) = 0. (5.21)
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This equation has three linearly independent solutions: b2 = (m(q + β),−mαβ, 0, 0), b3 =
(0, 0, 1, 0), b4 = (0, 0, 0, 1). Asserting that 〈b2, a2〉 = 1 gives

m =
2
(
q2 + qβ − αβγ

)

q4 − q2β2 + α2β2γ2
. (5.22)

Let ψ0
2 be one of b2, b3, b4. SupposeA∗b1 = ψ0

2 , that is,

−ḃ1(s) = ψ0
2 for 0 < s ≤ 1, b1(0)A + b1(1)B = ψ0

2 for s = 0, (5.23)

which implies that there is ψ0
1 ∈ R

4∗ such that b1(s) = −ψ0
2s + ψ

0
1 satisfying

L∗
(
−ψ0

2s + ψ
0
1

)
= ψ0

2 . (5.24)

Since

L∗
(
−ψ0

2s + ψ
0
1

)
= −L∗

(
ψ0

2s
)
+L∗
(
ψ0

1

)
= −ψ0

2B + ψ0
1(A + B), (5.25)

we have

ψ0
1(A + B) = ψ0

2(I + B). (5.26)

It is not hard to check that (5.26) has no solution if ψ0
2 = b3 or b4. Letting ψ0

2 = b2, setting
ψ0

1 = (n1, n2, 0, 0) in (5.26) and using 〈b1, a2〉 = 0, we can get n1 and n2:

n1 =
2
(
q + β
)(
q6 − 3q5β − 3q4β2 + q3β3 + 3q2α2β2γ2 − 3qα2β3γ2 + 2α3β3γ3)

3
(
q4 − q2β2 + α2β2γ2

)2 ,

n2 =
2αβ
(
−q2 + 2qβ + αβγ

)(
q2 + qβ − αβγ

)2

3
(
q4 − q2β2 + α2β2γ2

)2 .

(5.27)

Hence

b1(s) = ψ0
1 − sψ

0
2 =
(
−m
(
q + β
)
s + n1, mαβs + n2, 0, 0

)
. (5.28)

Then b1, b2, b3, b4 are bases of the center space P ∗. Let Ψ = (b1, b2, b3, b4)
T . Then 〈Ψ,Φ〉 = I,

Φ̇ = ΦJ and Ψ̇ = −JΨ.
Let u = Φx + y, namely,

u1(θ) = qx1 + qθx2 + y1(θ),

u2(θ) = γx1 +
(
l + γθ

)
x2 + y2(θ).

(5.29)
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Then Sys. (5.9) can be decomposed as

ẋ = Jx + Ψ(0)F
(
Φx + y

)
,

ẏ = AQ1y + (I − π)X0F
(
Φx + y

)
.

(5.30)

Write x = (x1, x2, μ1, μ2). Then, on the center manifold, Sys. (5.30) becomes

ẋ1 =
(
a11μ1 + a21μ2

)
x1 +
(
a21μ1 + a22μ2

)
x2

+ αn1τ
∗
(
i(2)q2x2

1 + i
(3)q3τ∗x3

1

)
+ n2τ

∗

×
[
i(2)q2(x1 − x2)2 + i(3)q3τ∗(x1 − x2)3

]
+ h.o.t.,

ẋ2 =
(
b11μ1 + b21μ2

)
x1 +
(
b12μ1 + b22μ2

)
x2

+mα
(
q + β
)
τ∗
(
i(2)q2x2

1 + i
(3)q3τ∗x3

1

)
+mαβτ∗

×
[
i(2)q2(x1 − x2)2 + i(3)q3τ∗(x1 − x2)3

]
+ h.o.t.,

μ̇1 = 0, μ̇2 = 0,

(5.31)

where

a11 = qτ∗(αn1 + n2), a21 = −α
((
q + β
)
γ − qk∗

)
n1 +
(
−
(
2q + β

)
γ + qk∗

)
n2,

a12 = −qn2τ
∗, a22 = −

(
lαβn1 +

((
q + β
)(
l − γ
)
+ qk∗

)
n2
)
,

b11 = mq2ατ∗, b21 = mqαβγ, b12 = mqαβτ∗, b22 = mαβ
(
−
(
q + β
)
γ + qk∗

)
.

(5.32)

Next we use techniques of nonlinear transformations in [22] to transform Sys. (5.31)
into normal forms. If i(2) /= 0, then up to the second order, Sys. (5.31) can be written as

ẋ1 =
(
a11μ1 + a21μ2

)
x1 +
(
a21μ1 + a22μ2

)
x2

+ αn1τ
∗i(2)q2x2

1 + n2τ
∗i(2)q2(x1 − x2)2 + h.o.t.,

ẋ2 =
(
b11μ1 + b21μ2

)
x1 +
(
b12μ1 + b22μ2

)
x2

+mα
(
q + β
)
τ∗i(2)q2x2

1 +mαβτ
∗i(2)q2(x1 − x2)2 + h.o.t.,

μ̇1 = 0, μ̇2 = 0.

(5.33)

This system can be transformed into the following normal form:

ẋ1 = x2 + h.o.t.,

ẋ2 = ρ1x1 + ρ2x2 + a1x
2
1 + b1x1x2 + h.o.t.,

(5.34)
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where

ρ1 = b11μ1 + b21μ2, ρ2 = (a11 + b12)μ1 + (a21 + b22)μ2,

a1 = mq3ατ∗i(2), b1 = 2q2(mαβ + αn1 + n2
)
τ∗i(2).

(5.35)

Since

∣∣∣∣
∂ρ

∂μ

∣∣∣∣ = det

⎛

⎜⎜
⎝

∂ρ1

∂μ1

∂ρ1

∂μ2
∂ρ2

∂μ1

∂ρ2

∂μ2

⎞

⎟⎟
⎠

= −mq2αγ
(
mαβ2 + αβn1 +

(
q + β
)
n2

)
τ∗

= −
4q3α3β2γ2τ∗

(
q2 + qβ − αβγ

)

(
q4 − q2β2 + α2β2γ2

)2 /= 0,

(5.36)

we have that (μ1, μ2) → (ρ1, ρ2) is regular and hence the transversality condition holds.
If i(2) = 0 and i(3) /= 0, then up to the third order, Sys. (5.31) becomes

ẋ1 =
(
a11μ1 + a21μ2

)
x1 +
(
a21μ1 + a22μ2

)
x2

+ αn1τ
∗i(3)q3τ∗x3

1 + n2τ
∗i(3)q3τ∗(x1 − x2)3 + h.o.t.,

ẋ2 =
(
b11μ1 + b21μ2

)
x1 +
(
b12μ1 + b22μ2

)
x2

+mα
(
q + β
)
τ∗i(3)q3τ∗x3

1 +mαβτ
∗i(3)q3τ∗(x1 − x2)3 + h.o.t.,

μ̇1 = 0, μ̇2 = 0.

(5.37)

This system can be transformed into the following normal form:

ẋ1 = x2 + h.o.t.,

ẋ2 = ρ1x1 + ρ2x2 + a2x
3
1 + b2x

2
1x2 + h.o.t.,

(5.38)

where a2 = mq4ατ∗i(3), b2 = 3q3(mαβ + αn1 + n2)τ∗i(3).

6. Bifurcation Diagrams

In this section, we will use the truncated systems (5.34) and (5.38) to obtain bifurcation
diagrams of Sys. (5.3).

First, we consider the truncated system of (5.34):

ẋ1 = x2,

ẋ2 = ρ1x1 + ρ2x2 + a1x
2
1 + b1x1x2,

(6.1)
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where a2 and b2 are in Section 5. Note that (a1, b1) → (−a1,−b1) under the transformation
(x1, x2) → (−x1,−x2). We may assume that i(2) > 0. After the change of coordinates

x1 =
a1

b2
1

(
ξ1 −

ρ1

b1

)
, x2 −→ s

a2
1

b3
1

ξ2, t −→
∣∣∣∣
b1

a1

∣∣∣∣τ, (6.2)

we have (still using x1, x2 for simplicity) that

ẋ1 = x2,

ẋ2 = ν1 + ν2x1 + x2
1 + sx1x2,

(6.3)

where ν1 = −(b2
1/a

3
1)(b1ρ1 − a1ρ2), ν2 = (b1/a

2
1)(b1ρ1 − 2a1ρ1) and s = sign a1b1 = ±1. Simple

calculation shows that s = sign(δ) where

δ = q6 − 3q4β2 − 2q3β3 + 3q2α2β2γ2 + 2α3β3γ3. (6.4)

Now take s = −1, namely δ < 0. The complete bifurcation diagrams of Sys. (6.3) can be
found in [22]. Here, we just briefly list some results. For (ν1, ν2) small enough, consider the
following.

(i) Sys. (6.3) undergoes a fold bifurcation when (ν1, ν2) is on the curves

T+ =
{
(ν1, ν2) : 4ν1 − ν2

2 = 0, ν2 > 0
}
, T− =

{
(ν1, ν2) : 4ν1 − ν2

2 = 0, ν2 < 0
}
. (6.5)

(ii) Sys. (6.3) undergoes a Hopf bifurcation when (ν1, ν2) is on the half-line

H = {(ν1, ν2) : ν1 = 0, ν2 < 0}, (6.6)

and the Hopf bifurcation gives rise to a stable limit cycle.

(iii) Sys. (6.3) undergoes a homoclinic loop bifurcation when (ν1, ν2) is on the curve

P =
{
(ν1, ν2) : ν1 = − 6

25
ν2

2 , ν2 < 0
}
. (6.7)

Moreover, when (ν1, ν2) is in the region between the curves H and P , Sys. (6.1) has a unique
stable periodic orbit.

For s = 1, under the transformation t → −t, x1 → −x1, we can get Sys. (6.12) whose
parametric portrait remains as it was but the cycle becomes unstable. Applying the above
results and using the expressions of ν1, ν2, we obtain the following result regarding Sys. (5.3).
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Theorem 6.1. Suppose that i(2) > 0 and δ < 0. For sufficiently small μ1, μ2, consider the following

(i) Sys. (5.3) undergoes a fold bifurcation in the half-lines

T+ =
{(
μ1, μ2

)
: μ1 = −

βγ

qτ∗
μ2, μ2 < 0

}
, T− =

{(
μ1, μ2

)
: μ1 = −

βγ

qτ∗
μ2, μ2 > 0

}
. (6.8)

(ii) Sys. (5.3) undergoes a Hopf bifurcation on the curve

H =

{
(
μ1, μ2

)
: μ1 = −

γ
(
2mαβ2 + 2αβn1 +

(
q + 2β

)
n2
)

q
(
mαβ + αn1 + n2

)
τ∗

μ2 +O
(
μ2

2

)
, μ2 > 0

}

. (6.9)

(iii) Sys. (5.3) undergoes a saddle of homoclinic bifurcation on the curve

P =

{
(
μ1, μ2

)
: μ1 = −

γ
(
12mαβ2 + 2αβn1 +

(
7q + 12β

)
n2
)

5q
(
mαβ + αn1 + n2

)
τ∗

μ2 +O
(
μ3/2

2

)
, μ2 > 0

}

. (6.10)

Moreover, if (μ1, μ2) is in the region between the curves H and P , Sys. (5.3) has a unique stable
periodic orbit.

Next, we consider the truncated system of (5.38):

ẋ1 = x2,

ẋ2 = ρ1x1 + ρ2x2 + a2x
3
1 + b2x

2
1x2,

(6.11)

where a2, b2 are in Section 5. The bifurcation diagrams of this system are more complicated
and interesting. We must consider two cases.

Case 1 (i(3) > 0 so that a2 > 0). We can assume b2 < 0 which is equivalent to δ < 0 in (6.4).
Then Sys. (6.11) can be transformed as

ẋ1 = x2,

ẋ2 = ε1x1 + ε2x2 + x3
1 − x

2
1x2,

(6.12)

where

ε1 =
(
b2

a2

)2

ρ1, ε2 = − b2

a2
ρ2. (6.13)

The complete bifurcation diagrams of Sys. (6.12) can be found, for example, in [22–24]. For
b2 > 0, under the transformation t → −t and x1 → −x1, we can get Sys. (6.12). Here, we
briefly list some results: for small ε1, ε2 as follows.
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(i) When (ε1, ε2) is in the line

T1 = {(ε1, ε2) : ε1 = 0, ε2 ∈ R}, (6.14)

Sys. (6.12) undergoes a pitchfork bifurcation.

(ii) Sys. (6.12) undergoes a stable Hopf bifurcation for the trivial equilibrium point on
the half-line

H1 = {(ε1, ε2) : ε2 = 0, ε1 < 0}; (6.15)

(iii) On the curve

C =
{
(ε1, ε2) : ε2 = −1

5
ε1 +O

(
|ε1|3/2

)
, ε1 < 0

}
, (6.16)

Sys. (6.12) undergoes a heteroclinic bifurcation. Moreover, if (ε1, ε2) is in the region between
the curves H1 and C then Sys. (6.12) has a unique stable periodic orbit.

Applying the above results and using the expressions of ρ1, ρ2, ε1, ε2, we obtain the
following theorem regarding Sys. (5.3).

Theorem 6.2. Suppose that i(2) = 0, i(3) > 0 and δ < 0. For sufficiently small μ1, μ2, the following
are given.

(i) Sys. (5.3) undergoes a pitchfork bifurcation in the line

T1 =
{(
μ1, μ2

)
: μ1 = −

βγ

qτ∗
μ2, μ2 ∈ R

}
. (6.17)

(ii) Sys. (5.3) undergoes a stable Hopf bifurcation in the half-line

H1 =

{
(
μ1, μ2

)
: μ1 =

γn2

τ∗
(
mαβ + αn1 + n2

)μ2, μ2 > 0

}

. (6.18)

(iii) Sys. (5.3) undergoes a branch of homoclinic bifurcation on the curve

C =

{
(
μ1, μ2

)
: μ1 =

γ
(
3mαβ2 + 3αβn1 +

(
5q + 3β

)
n2
)

2q
(
mαβ + αn1 + n2

)
τ∗

μ2 +O
(∣∣μ2
∣∣3/2
)
, μ2 > 0

}

. (6.19)

Moreover, if (μ1, μ2) is in the region between the curves H1 and C, Sys. (5.3) has a unique stable
periodic orbit.
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Case 2 (i(3) < 0 so that a2 < 0). We assume b2 < 0, namely δ > 0. After rescaling, then Sys.
(6.11) can be transformed as

ẋ1 = x2,

ẋ2 = ε1x1 + ε2x2 − x3
1 − x

2
1x2,

(6.20)

where

ε1 =
(
b1

a1

)2

ρ1, ε2 =
b1

a1
ρ2. (6.21)

For b2 > 0, under the transformation t → −t, x1 → −x1, we can get Sys. (6.20). The complete
bifurcation diagrams of this system can be found, for example, in [22–24]. Here, we briefly
list some results: for small ε1, ε2, as follows.

(i) When (ε1, ε2) is in the line

T2 = {(ε1, ε2) : ε1 = 0, ε2 ∈ R}, (6.22)

Sys. (6.20) undergoes a pitchfork bifurcation.

(ii) When (ε1, ε2) is in the half-line

H2 = {(ε1, ε2) : ε2 = ε1, ε1 > 0}, (6.23)

Sys. (6.20) undergoes a stable Hopf bifurcation at E1,2 and the bifurcation is
subcritical.

(iii) When (ε1, ε2) is on the curve

C′ =
{
(ε1, ε2) : ε2 =

4
5
ε1 +O

(
|ε1|3/2

)
, ε1 > 0

}
, (6.24)

Sys. (6.20) has a unique homoclinic orbit connecting E1 and E2 and two homoclinic
orbits simultaneously at E0. Moreover, if (ε1, ε2) is in the region between the curves
H2 and C′, Sys. (6.20) has three limit periodic orbits: a “large” one and two “small”
ones.

(iv) When (ε1, ε2) is on the curve

Cd =
{
(ε1, ε2) : ε2 = cε1 +O

(
|ε1|3/2

)
, ε1 > 0

}
, (6.25)

where c ≈ 0.752, Sys. (6.20) undergoes a double limit cycle bifurcation. Moreover, if
(ε1, ε2) is in the region between the curves C′ and Cd, then Sys. (6.20) has two large
limit cycles: the outer one which is stable and the inner one which is unstable, and
these two cycles collide on Cd.
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Applying the above results and using the expressions of ρ1, ρ2, ε1, ε2, we obtain the
following theorem regarding Sys. (5.3).

Theorem 6.3. Suppose that i(2) = 0, i(3) < 0 and δ > 0. For sufficiently small μ1, μ2, considered the
following.

(i) Sys. (5.3) undergoes a pitchfork bifurcation in the line

T2 =
{(
μ1, μ2

)
: μ1 = −

βγ

qτ∗
, μ2 ∈ R

}
. (6.26)

(ii) Sys. (5.3) undergoes a branch of stable Hopf bifurcation on the curve

H2 =

{
(
μ1, μ2

)
: μ2 = −

γ
(
3mαβ2 + 3αβn1 +

(
q + 3β

)
n2
)

2q
(
mαβ + αn1 + n2

)
τ∗

μ2, μ2 < 0

}

. (6.27)

(iii) Sys. (5.3) has two small homoclinic orbits simultaneously at (Y∗, K∗) and a large
homoclinic orbit on the curve

C
′
=

{
(
μ1, μ2

)
: μ2 = −

γ
(
12mαβ2 + 12αβn1 +

(
5q + 12β

)
n2
)

7q
(
mαβ + αn1 + n2

)
τ∗

μ2 +O
(∣∣μ2
∣∣3/2
)
, μ2 < 0

}

. (6.28)

Moreover, if (μ1, μ2) is in the region between the curves H2 and C
′
, then Sys. (5.3) has

three limit periodic orbits: a “large” one and two “small” ones.

(iv) Sys. (5.3) undergoes a branch of a double limit cycle bifurcation on the curve

Cd =

{
(
μ1, μ2

)
: μ2 = −

γ
(
3cmαβ2 + 3cαβn1 +

(
q + 3cβ

)
n2
)

(−1 + 3c)q
(
mαβ + αn1 + n2

)
τ∗

μ2 +O
(∣∣μ2
∣∣3/2
)
, μ2 < 0

}

, (6.29)

where the constant c ≈ 0.752. Moreover, if (μ1, μ2) is in the region between the curves C
′

and Cd, Sys. (5.3) has two large different limit cycles. The outer one is stable, the inner one
is unstable, and these two cycles collide on Cd.

7. Numerical Simulations

In this section, we give some examples to verify the theoretical results obtained in Section 6.
For simplicity, we assume that (0,0) is one of the equilibrium points.

Example 7.1. This example demonstrates the result of Theorem 6.1. Let α = 1, β = 0.8, γ =
0.5625, q = 0.9. Then k∗ = 1.0625, τ∗ = 2.66667. Take

I(s) = tanh(ks) + 0.1s2. (7.1)
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Figure 1: A stable limit cycle is generated when (μ1, μ2) is in the region between H and P .

Then (0,0) is the trivial equilibrium point and i(2) = 0.1 > 0 and δ = −0.800442 < 0. Simple
calculation shows that

H =
{(
μ1, μ2

)
: μ1 = −0.079918μ2, μ2 > 0

}
,

P =
{(
μ1, μ2

)
: μ1 = −0.0368852μ2, μ2 > 0

}
.

(7.2)

Take μ1 = −0.00058, μ2 = 0.01. Then k = k∗ + μ1 = 1.06192, τ = τ∗ + μ2 = 2.67777, and (μ1, μ2)
is in the region between H and P . According to Theorem 6.1, Sys. (5.3) has a unique stable
periodic orbit (see Figure 1).

Example 7.2. This example supports the result of Theorem 6.2. Let α = 1, β = 0.8, γ = 0.5625,
q = 0.9. Then k∗ = 1.0625, τ∗ = 2.66667, and δ = −0.800442 < 0. Take

I(s) = ks + 0.001s3. (7.3)

Then i(2) = 0, i(3) = 0.001 < 0, and hence, the condition of Theorem 6.2 is satisfied. After using
the algorithm in Section 6, we have

H1 =
{(
μ1, μ2

)
: μ1 = −0.295082μ2, μ2 > 0

}
,

C =
{(
μ1, μ2

)
: μ1 = −0.456455μ2 +O

(
μ3/2

2

)
, μ2 > 0

}
.

(7.4)

Take μ1 = −0.000035, μ2 = 0.0001, and hence (μ1, μ2) is in the region between H1 and C.
Figure 2 shows that there is a limit cycle which is stable according to Theorem 6.2.
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Figure 2: A stable periodic orbit is generated when (μ1, μ2) is located in the region between H and P .
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Figure 3: Three limit (two small and one large) cycles are generated when (μ1, μ2) is in the region between
H2 and C

′
.

Example 7.3. This example verifies the result of Theorem 6.3. Let α = 1, β = 0.5, γ = 0.5625,
q = 0.8. Then k∗ = 0.914063, τ∗ = 3.37222 and δ = 0.0233 > 0. Take

I(s) = ks − 0.001s3, (7.5)

and hence, I ′′(0) = 0, I ′′′(0) < 0. Thus the condition of Theorem 6.3 holds. Simple calculation
shows

H2 =
{(
μ1, μ2

)
: μ1 = −0.724353μ2, μ2 < 0

}
,

C
′
=
{(
μ1, μ2

)
: μ1 = −0.99011μ2 +O

(∣∣μ2
∣∣3/2
)
, μ2 < 0

}
,

Cd =
{(
μ1, μ2

)
: μ1 = −1.09167μ2 +O

(∣∣μ2
∣∣3/2
)
, μ2 < 0

}
.

(7.6)
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Figure 4: Two large limit cycles are generated when (μ1, μ2) is in the region between C
′
and Cd.

If we take μ1 = 0.0000861, μ2 = −0.0001, then (μ1, μ2) is in the region between H2 and C
′
, and

hence there are two small limit cycles and a large limit cycle (Figure 3). If we take μ1 = 0.0001,
μ2 = −0.0001, then (μ1, μ2) is in the region between C

′
and Cd, and hence, there are two large

limit cycles (Figure 4).

Acknowledgment

The author would like to thank the referees for their valuable suggestions.

References

[1] N. Kaldor, “A model of the trade cycle,” The Economic Journal, vol. 40, pp. 78–92, 1940.
[2] N. Kalecki, “A macrodynamic theory of business cycles,” Econometrica, vol. 3, pp. 327–344, 1935.
[3] A. Krawiec and M. Szydłowski, “The Kaldor-Kalecki business cycle model,” Annals of Operations

Research, vol. 89, pp. 89–100, 1999.
[4] M. Szydłowski and A. Krawiec, “The Kaldor-Kalecki model of business cycle as a two-dimensional

dynamical system,” Journal of Nonlinear Mathematical Physics, vol. 8, supplement, pp. 266–271, 2001.
[5] A. Krawiec and M. Szydłowski, “The Hopf bifurcation in the Kaldor-Kalecki model,” in Computation

in Economics, Finance and Engineering: Economics Systems, S. Holly and S. Greenblatt, Eds., pp. 391–396,
Elsevier, Amsterdam, The Netherlands, 2000.

[6] A. Krawiec and M. Szydłowski, “On nonlinear mechanics of business cycle model,” Regular & Chaotic
Dynamics, vol. 6, no. 1, pp. 101–118, 2001.

[7] M. Szydłowski and A. Krawiec, “The stability problem in the Kaldor-Kalecki business cycle model,”
Chaos, Solitons & Fractals, vol. 25, no. 2, pp. 299–305, 2005.

[8] M. Szydłowski, A. Krawiec, and J. Tobola, “Nonlinear oscillations in business cycle model with time
lags,” Chaos, Solitons & Fractals, vol. 12, no. 3, pp. 505–517, 2001.

[9] Y. Takeuchi and T. Yamamura, “Stability analysis of the Kaldor model with time delays: monetary
policy and government budget constraint,” Nonlinear Analysis: Real World Applications, vol. 5, no. 2,
pp. 277–308, 2004.

[10] X. P. Wu and L. Wang, “Multi-parameter bifurcations of the Kaldor-Kalecki model of business cycles
with delay,” Nonlinear Analysis: Real World Applications, vol. 11, no. 2, pp. 869–887, 2010.

[11] C. Zhang and J. Wei, “Stability and bifurcation analysis in a kind of business cycle model with delay,”
Chaos, Solitons & Fractals, vol. 22, no. 4, pp. 883–896, 2004.



Discrete Dynamics in Nature and Society 29

[12] W. W. Chang and D. J. Smith, “The existence and persistence of cycles in a nonlinear model: Kaldor’s
1940 model re-examined,” The Review of Economic Studies, vol. 38, pp. 37–44, 1971.

[13] J. Grasman and J. J. Wentzel, “Co-existence of a limit cycle and an equilibrium in Kaldor’s business
cycle model and its consequences,” Journal of Economic Behavior and Organization, vol. 24, no. 3, pp.
369–377, 1994.

[14] H. R. Varian, “Catastrophe theory and the business cycle,” Economic Inquiry, vol. 17, no. 1, pp. 14–28,
1979.

[15] A. Kaddar and H. Talibi Alaoui, “Hopf bifurcation analysis in a delayed Kaldor-Kalecki model of
business cycle,” Nonlinear Analysis: Modelling and Control, vol. 13, no. 4, pp. 439–449, 2008.

[16] A. Agliari, R. Dieci, and L. Gardini, “Homoclinic tangles in a Kaldor-like business cycle model,”
Journal of Economic Behavior and Organization, vol. 62, no. 3, pp. 324–347, 2007.

[17] G. I. Bischi, R. Dieci, G. Rodano, and E. Saltari, “Multiple attractors and global bifurcations in a
Kaldor-type business cycle model,” Journal of Evolutionary Economics, vol. 11, no. 5, pp. 527–554, 2001.

[18] L. Wang and X. P. Wu, “Bifurcation analysis of a Kaldor-Kalecki model of business cycle with time
delay,” Electronic Journal of Qualitative Theory of Differential Equations, no. 27, pp. 1–20, 2009.

[19] S. Ruan and J. Wei, “On the zeros of transcendental functions with applications to stability of delay
differential equations with two delays,” Dynamics of Continuous, Discrete & Impulsive Systems, vol. 10,
no. 6, pp. 863–874, 2003.
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