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1. Introduction

Let B denote the open unit ball of the n-dimensional complex vector space C
n, ∂B its

boundary, and let H(B) denote the space of all holomorphic functions on B. For 0 < p < ∞
and α ≥ 0 we define the weighted Hardy space Hp

α(B) as follows:

H
p
α(B) =

{
f ∈ H(B) : sup

0<r<1
(1 − r)α

∫
∂B

|f(rζ)|p dσ(ζ) < ∞
}
, (1.1)

where dσ is the normalized Lebesgue measure on ∂B (see, also [1], as well as [2], for an
equivalent definition of the space). Note that for α = 0 the weighted Hardy space becomes
the Hardy space Hp(B). We define the norm ‖ · ‖Hp

α
on this space as follows:

∥∥f∥∥p

H
p
α
= sup

0<r<1
(1 − r)α

∫
∂B

∣∣f(rζ)∣∣pdσ(ζ). (1.2)
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With this norm H
p
α(B) is a Banach space when 1 ≤ p < ∞. For a related space on the

unit polydisk; see [3]. In this paper, we investigate two types of operators acting between
weighted Hardy spaces.

Let ϕ be a holomorphic self-map of B and u ∈ H(B). Then ϕ and u induce a weighted
composition operator uCϕ onH(B)which is defined by uCϕf = u(f ◦ϕ). This type of operators
has been studied on various spaces of holomorphic functions in C

n, by many authors; see, for
example, [4], recent papers [5–17], and the references therein.

Let g ∈ H(D) and ϕ be a holomorphic self-map of the open unit disk D in the complex
plane. Products of integral and composition operators onH(D)were introduced by S. Li and
S. Stević in a private communication (see [18–21], as well as papers [22] and [23] for closely
related operators) as follows:

CϕJgf(z) =
∫ϕ(z)

0
f(ζ)g ′(ζ)dζ, (1.3)

JgCϕf(z) =
∫z

0
f
(
ϕ(ζ)

)
g ′(ζ)dζ. (1.4)

In [24] the first author of this paper has extended the operator in (1.4) in the unit ball
settings as follows (see also [25, 26]). Assume g ∈ H(B), g(0) = 0, and ϕ is a holomorphic
self-map of B, then we define an operator on the unit ball as follows:

P
g
ϕ

(
f
)
(z) =

∫1

0
f
(
ϕ(tz)

)
g(tz)

dt

t
, f ∈ H(B), z ∈ B. (1.5)

If n = 1, then g ∈ H(D) and g(0) = 0, so that g(z) = zg0(z), for some g0 ∈ H(D). By the
change of variable ζ = tz, it follows that

P
g
ϕ f(z) =

∫1

0
f
(
ϕ(tz)

)
tzg0(tz)

dt

t
=
∫z

0
f
(
ϕ(ζ)

)
g0(ζ)dζ. (1.6)

Thus the operator (1.5) is a natural extension of operator JgCϕ in (1.4). For related operators
see [27–33] as well as the references therein.

In this paper we study the boundedness and compactness of theweighted composition
operators as well as the integral-type operator Pg

ϕ , between different weighted Hardy spaces
on the unit ball.

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation a 	 b means that there is a positive constant C
such that a ≤ Cb. Moreover, if both a 	 b and b 	 a hold, then one says that a 
 b.

2. Weighted Composition Operators

This section is devoted to studying weighted composition operators between weighted
Hardy spaces. Weighted composition operators between different Hardy spaces on the unit
ball were previously studied in [15, 34], while the composition operators on the unit ball were
studied in [35, 36]. For the case of the unit disk see also [37].
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Before we formulate the main results in this section we quote several auxiliary results
which will be used in the proofs of these ones.

Lemma 2.1. Let 0 < p < ∞ and α ≥ 0. Suppose that u ∈ H(B) and ϕ is a holomorphic self-map of B.
Then for each f ∈ H(B)

∥∥uCϕf
∥∥
H

p
α
≤ lim inf

R→ 1−

∥∥uCϕfR
∥∥
H

p
α
, (2.1)

where uCϕfR(z) = u(z)f(Rϕ(z)).

Proof. Fix r ∈ (0, 1). Fatou’s lemma shows that

(1 − r)α
∫
∂B

|u(rζ)f(ϕ(rζ))|pdσ(ζ) ≤ (1 − r)αlim inf
R→ 1−

∫
∂B

|u(rζ)f(Rϕ(rζ))|pdσ(ζ)
= lim inf

R→ 1−
(1 − r)α

∫
∂B

∣∣u(rζ)f(Rϕ(rζ))∣∣pdσ(ζ)
≤ lim inf

R→ 1−
‖uCϕfR‖Hp

α
.

(2.2)

Hence we have the desired inequality.

Recall that an f ∈ H(B) has the homogeneous expansion

f(z) =
∞∑
k=0

∑
|γ|=k

c
(
γ
)
zγ , (2.3)

where γ = (γ1, . . . , γn) is a multi-index, |γ | = γ1 + · · · + γn and zγ = z1
γ1 · · · znγn . For the

homogeneous expansion of f and any integer j ≥ 1, let

Rjf(z) =
∞∑
k=0

∑
|γ|=k

c
(
γ
)
zγ , (2.4)

and Kj = I − Rj where If = f is the identity operator. Note that Kj is compact operator on
H

p
α(B) for each j ∈ N.

Lemma 2.2. If 1 < p < ∞, then Rj converges to 0 pointwise in the Hardy spaceHp(B) as j → ∞.

Proof. See [34, Corollary 3.4] .

Lemma 2.2 and the uniform boundedness principle show that {Rj} is an uniformly
bounded sequence inHp(B).
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The following lemma is proved similar to [4, Lemma3.16]. We omit its proof.

Lemma 2.3. If uCϕ is bounded from H
p
α(B) intoH

q

β
(B), then

‖uCϕ‖e,Hp
α (B)→H

q

β
(B) ≤ lim inf

j→∞
‖uCϕRj‖Hp

α (B)→H
q

β (B)
, (2.5)

where ‖ · ‖e,Hp
α (B)→H

q

β
(B) and ‖ · ‖Hp

α (B)→H
q

β
(B) denote the essential norm and the operator norm,

respectively.

Lemma 2.4. Let 0 < p ≤ q < ∞. Suppose that μ is a positive Borel measure on B which satisfies

μ(B(ζ, t)) ≤ C1t
qn/p (ζ ∈ ∂B, t > 0), (2.6)

for some positive constant C1. Then there exists a positive constant C2 which depends only on p, q,
and the dimension n such that

∫
B

|f |qdμ ≤ C1C2‖f‖qHp , (2.7)

for any f ∈ Hp(B). Here B(ζ, t) = {z ∈ B : |1 − 〈z, ζ〉| < t}.

Proof. See [38, page 13, Theorem ] or [34, Lemma2.1] .

Let 0 < q < ∞. For each r ∈ (0, 1), a holomorphic self-map ϕ of B and u ∈ H(B), we
define a positive Borel measure μr

u,ϕ on B by

μr
u,ϕ(E) =

∫
(ϕr)−1(E)

|ur |qdσ, (2.8)

for all Borel sets E of B. By the change of variables formula from measure theory, we can
verify

∫
B

g dμr
u,ϕ =

∫
∂B

|u(rζ)|q(g ◦ ϕ)(rζ) dσ(ζ), (2.9)

for each nonnegative measurable function g in B.

Theorem 2.5. Let 0 < p ≤ q < ∞ and α, β ≥ 0. Suppose that u ∈ H(B) and ϕ is a holomorphic
self-map of B. Then uCϕ : Hp

α(B) → H
q

β
(B) is bounded if and only if

sup
w∈B

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) < ∞. (2.10)
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Proof. For w ∈ B we put

fw(z) =

{
1 − |w|2

(1 − 〈z,w〉)2
}(α+n)/p

. (2.11)

Then we see that fw ∈ H
p
α(B) and moreover supw∈B

‖fw‖Hp
α

≤ C. By a straightforward
calculation, we have

‖uCϕfw‖qHq

β

= sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ), (2.12)

for all w ∈ B. Hence if uCϕ : Hp
α(B) → H

q

β(B) is bounded, then u and ϕ satisfy the condition

sup
w∈B

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) ≤ C‖uCϕ‖qHp
α (B)→H

q

β (B)
< ∞.

(2.13)

Next we assume

M := sup
w∈B

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) < ∞. (2.14)

Fix r ∈ (0, 1) and R ∈ (0, 1), respectively. For ζ ∈ ∂B and t, 0 < t ≤ tR = 1 − R, we put
w = (1 − t)ζ and wR = (1 − tR)ζ. Since the function fw(z), which is defined by (2.11) for this
w, satisfies

|fw(z)|q > 4−q(α+n)/p t−qn/p(1 − R)−qα/p (2.15)

for all z ∈ B(ζ, t), we have

μr
u,ϕ(B(ζ, t))

tqn/p
≤ 4q(α+n)/p(1 − R)qα/p

∫
B(ζ,t)

|fw(z)|qdμr
u,ϕ(z)

≤ 4q(α+n)/p(1 − R)qα/p
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ)

≤ 4q(α+n)/p
(1 − R)qα/p

(1 − r)β
M.

(2.16)

By the same argument, the function fwR(z) gives the following estimate:

μr
u,ϕ(B(ζ, 2tR)) ≤ 9q(α+n)/p

(1 − R)qα/p

(1 − r)β
MtR

qn/p. (2.17)
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Now we need to prove that there exists a positive constant C such that

μr
u,ϕ(B(ζ, t)) ≤ C

(1 − R)qα/p

(1 − r)β
Mtqn/p, (2.18)

for all ζ ∈ ∂B and t > 0. By the estimate (2.16), we see that the inequality (2.18) is true for all
t ∈ (0, tR]. Thus we assume t > tR. By the same argument as in [36, pages 241-242, proof of
Theorem1.1] , we see that the inequality (2.17) shows that there exists a positive constant Cn

which depends only on the dimension n such that

μr
u,ϕ(B(ζ, t)) ≤ Cn

(
t

tR

)n

9q(α+n)/p
(1 − R)qα/p

(1 − r)β
MtR

qn/p

= Cn9q(α+n)/p
(1 − R)qα/p

(1 − r)β
MtntR

(q/p−1)n

≤ Cn9q(α+n)/p
(1 − R)qα/p

(1 − r)β
Mtqn/p.

(2.19)

Hence for C = max{4q(α+n)/p, Cn9q(α+n)/p}, we have the inequality in (2.18).
For f ∈ H

p
α(B) the dilate function fR belongs to the ball algebra, and so fR is in the

Hardy space Hp(B). Hence Lemma 2.4 gives

∫
B

|fR(z)|qdμr
u,ϕ(z) ≤ C′C

(1 − R)qα/p

(1 − r)β
M‖fR‖qHp , (2.20)

for some positive constant C′ and all R ∈ (0, 1). This implies that

(1 − r)β
∫
∂B

∣∣uCϕfR(rζ)
∣∣qdσ(ζ) ≤ C′CM

[
(1 − R)α

∫
∂B

∣∣f(Rζ)∣∣pdσ(ζ)]q/p, (2.21)

and so we have

‖uCϕfR‖qHq

β

≤ C′CM‖f‖q
H

p
α
, (2.22)

for all R ∈ (0, 1). By Lemma 2.1 we have

‖uCϕf‖qHq

β

≤ C′C‖f‖q
H

p
α

× sup
w∈B

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ).
(2.23)

This completes the proof.
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The following proposition is proved in a standard way; see, for example, the proofs of
the corresponding results in [4, 32, 33, 39]. Hence we omit its proof.

Proposition 2.6. Let 0 < p, q < ∞ and α, β ≥ 0. Suppose that u ∈ H(B) and ϕ is a holomorphic self-
map ofB which induce the bounded operator uCϕ : Hp

α(B) → H
q

β(B). Then uCϕ : Hp
α(B) → H

q

β(B)

is compact if and only if for every bounded sequence {fj}j∈N
inH

p
α(B) which converges to 0 uniformly

on compact subsets of B, {uCϕfj}j∈N
converges to 0 inH

q

β(B).

In the proof of Theorem 2.8, we need the following lemma.

Lemma 2.7. Let 1 < p < ∞, α ≥ 0, and fw be the family of test functions defined in (2.11). Then
fw → 0 weakly inH

p
α(B) as |w| → 1−.

Proof. The family {fw}w∈B
is bounded in H

p
α(B) and fw → 0 uniformly on compact subsets

of B as |w| → 1−. By the definitions of the space H
p
α(B) and the norm ‖ · ‖Hp

α
, we see that

H
p
α(B) is a subspace of the weighted Bergman space Ap

α(B) and

‖f‖Ap
α
≤ C

(
α, p, n

)‖f‖Hp
α

(
f ∈ H

p
α(B)

)
, (2.24)

for some positive constant C(α, p, n) which depends on α, p, and n. This inequality implies
that the family {fw}w∈B

is also bounded in A
p
α(B). Note also that the family converges to 0

uniformly on compact subsets of B as |w| → 1−. Hence fw → 0 weakly inA
p
α(B) as |w| → 1−.

In order to prove that fw → 0 weakly in H
p
α(B) as |w| → 1−, we take an arbitrary

bounded linear functional Λ on H
p
α(B). By the Hahn-Banach theorem, Λ can be extended to

a bounded linear functional Λ̃ on A
p
α(B) so that Λ̃(fw) = Λ(fw) for all w ∈ B. Since fw → 0

weakly in A
p
α(B) as |w| → 1−, we have Λ(fw) = Λ̃(fw) → 0 as |w| → 1−, and so fw → 0

weakly in H
p
α(B) as |w| → 1−.

Theorem 2.8. Let 1 < p ≤ q < ∞ and α, β ≥ 0. Suppose that u ∈ H(B) and ϕ is a holomorphic
self-map of B such that uCϕ : Hp

α(B) → H
q

β
(B) is bounded. Then the qth power of the essential norm

‖uCϕ‖e,Hp
α (B)→H

q

β
(B) is comparable to

lim sup
|w|→ 1−

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ). (2.25)

Hence uCϕ : Hp
α(B) → H

q

β
(B) is compact if and only if

lim
|w|→ 1−

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) = 0. (2.26)
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Proof. To prove a lower estimate

‖uCϕ‖qe,Hp
α (B)→H

q

β
(B)

≥ lim sup
|w|→ 1−

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ),

(2.27)

we consider the test functions fw defined in (2.11). The family {fw}w∈B
is bounded inH

p
α(B),

say by L, and fw → 0 uniformly on compact subsets of B as |w| → 1−. Thus by Lemma 2.7
we have that fw → 0 weakly in H

p
α(B) as |w| → 1−, so that ‖Kfw‖Hq

β
→ 0 as |w| → 1− for

every compact operator K : Hp
α(B) → H

q

β(B). Hence

L‖uCϕ −K‖Hp
α (B)→H

q

β
(B) ≥ lim sup

|w|→ 1−
‖(uCϕ −K)

fw‖Hq

β

≥ lim sup
|w|→ 1−

‖uCϕfw‖Hq

β

.
(2.28)

This inequality and (2.12) give the lower estimate for ‖uCϕ‖qe,Hp
α (B)→H

q

β
(B)

.

Next we prove an upper estimate. Take f ∈ H
p
α(B)with ‖f‖Hp

α
≤ 1. Fix ε > 0 and put

M1 := lim sup
|w|→ 1−

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ). (2.29)

Then we can choose R0 ∈ (0, 1) such that

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) < M1 + ε, (2.30)

for w ∈ B with |w| > R0. Fix r ∈ (0, 1) and R ∈ (R0, 1). By the same argument as in the proof
of inequality (2.20) in Theorem 2.5, we obtain that

∫
B

∣∣∣(Rjf
)
R
(z)

∣∣∣qdμr
u,ϕ(z) ≤ C

(1 − R)qα/p

(1 − r)β
(M1 + ε)‖(Rjf)R‖

q

Hp , (2.31)

where the positive constant C is independent of r, R and a positive integer j. Since fR is in
the ball algebra, Lemma 2.2 gives

‖(Rjf)R‖
q

Hp = ‖Rj

(
fR

)‖q
Hp ≤ sup

j≥1
‖Rj‖qHp(B)→Hp(B)‖fR‖

q

Hp . (2.32)
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Combining this with (2.31), we have

(1 − r)β
∫
∂B

|uCϕ

(
RjfR

)
(rζ)|qdσ(ζ) ≤ C′(M1 + ε)

[
(1 − R)α

∫
∂B

∣∣fR(ζ)∣∣pdσ(ζ)
]q/p

≤ C′(M1 + ε)‖f‖q
H

p
α
,

(2.33)

and so we have

‖uCϕ

(
RjfR

)‖q
H

q

β

≤ C′(M1 + ε)‖f‖q
H

p
α
. (2.34)

Letting R → 1−, by Lemma 2.1, we obtain

‖uCϕRjf‖qHq

β

≤ C′(M1 + ε)‖f‖q
H

p
α
. (2.35)

Since ε > 0 is arbitrary, this estimate and Lemma 2.3 imply

‖uCϕ‖qe,Hp
α (B)→H

q

β
(B)

≤ lim inf
j→∞

‖uCϕRj‖qHp
α (B)→H

q

β (B)

≤ C′lim sup
|w|→ 1−

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ),

(2.36)

which completes the proof.

Remark 2.9. In the above proof, we used Lemma 2.2. This lemma required the assumption 1 <
p < ∞. Hence we cannot have an upper estimate for ‖uCϕ‖e,Hp

α (B)→H
q

β
(B) in the case 0 < p ≤ 1.

However, Proposition 2.6 shows that the compactness of uCϕ : Hp
α(B) → H

q

β
(B) (0 < p ≤ q <

∞) is equivalent to

lim
|w|→ 1−

sup
0<r<1

(1 − r)β
∫
∂B

|u(rζ)|q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) = 0. (2.37)

3. Integral-Type Operators

Here we study the boundedness and compactness of the integral-type operators Pg
ϕ between

weighted Hardy spaces on the unit ball.
For f ∈ H(B) with the Taylor expansion f(z) =

∑
|γ |≥0aγz

γ , let Rf(z) =
∑

|γ |≥0|γ |aγz
γ

be the radial derivative of f .
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The following lemma was proved in [24] (see also [25]).

Lemma 3.1. Assume that ϕ is a holomorphic self-map of B, g ∈ H(B) and g(0) = 0. Then for every
f ∈ H(B) one holds

R
[
P
g
ϕ

(
f
)]
(z) = f

(
ϕ(z)

)
g(z). (3.1)

A positive continuous function ω on the interval [0, 1) is called normal [40] if there is
a δ ∈ [0, 1) and a and b, 0 < a < b such that

ω(r)
(1 − r)a

is decreasing on [δ, 1) and lim
r→ 1

ω(r)
(1 − r)a

= 0,

ω(r)

(1 − r)b
is increasing on [δ, 1) and lim

r→ 1

ω(r)

(1 − r)b
= ∞.

(3.2)

If it is said that a function ω : B → [0,∞) is normal, it is also assume that it is radial.

Lemma 3.2. Assume that 0 < q ≤ ∞, m is a positive integer and ω is normal. Then for every
f ∈ H(B)

sup
0<r<1

ω(r)Mq

(
f, r

) 
 ∣∣f(0)∣∣ + sup
0<r<1

(1 − r)mω(r)Mq

(
Rmf, r

)
, (3.3)

where

Mq

(
f, r

)
=
(∫

∂B

|f(rζ)|qdσ(ζ)
)1/q

, M∞
(
f, r

)
= sup

ζ∈∂B

∣∣f(rζ)∣∣. (3.4)

Proof. The proof of the lemma in the case 1 ≤ q ≤ ∞ can be found in [27, Theorem2]. However,
due to an overlook, the proof for the case q ∈ (0, 1) has a gap. Hence we will give a correct
proof here in the case.

We may assume that f(0) = 0, otherwise we can consider the functions h(z) = f(z) −
f(0). Also we may assume that δ = 0, to avoid some minor technical difficulties.

By [27, Lemma1], for each fixed q ∈ (0, 1], there is a positive constant C depending
only on q and the dimension n such that

Mq

(
f, r

) ≤ C

r

(∫ r

0
(r − t)q−1Mq

q

(
Rf, t

)
dt

)1/q

, (3.5)

for every r ∈ (0, 1) and f ∈ H(B) such that f(0) = 0.
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From (3.5) and the fact that ω is normal, we have

sup
0≤r<1

ω(r)Mq

(
f, r

) ≤ C sup
0≤r<1

ω(r)
1
r

(∫ r

0
(r − t)q−1Mq

q

(
Rf, t

)
dt

)1/q

≤ C sup
0≤r<1

(1 − r)a
1
r

(∫ r

0
(r − t)q−1

ωq(t)
(1 − t)aq

M
q
q

(
Rf, t

)
dt

)1/q

≤ C sup
0≤r<1

(1 − r)a
1
r

(∫ r

0

(r − t)q−1

(1 − t)aq+q
dt

)1/q

sup
0≤t<1

(1 − t)ω(t)Mq

(
Rf, t

)

= C sup
0≤r<1

(1 − r)a
(∫1

0

(1 − u)q−1

(1 − ur)aq+q
du

)1/q

sup
0≤t<1

(1 − t)ω(t)Mq

(
Rf, t

)
.

(3.6)

By [40, page 291, Lemma6] there exists a positive constant C such that

∫1

0

(1 − u)q−1

(1 − ur)aq+q
du ≤ C

(1 − r)aq
, (3.7)

for every r ∈ (0, 1). Combining this with (3.6), we have

sup
0≤r<1

ω(r)Mq

(
f, r

) ≤ C sup
0≤r<1

(1 − r)a
(

1
(1 − r)aq

)1/q

sup
0≤t<1

(1 − t)ω(t)Mq

(
Rf, t

)

= Csup
0≤t<1

(1 − t)ω(t)Mq

(
Rf, t

)
.

(3.8)

The reverse inequality is proved by the following inequality:

(1 − r)Mq

(
Rf, r

) ≤ CMq

(
f,

1 + r

2

)
(3.9)

and the fact that ω(r) 
 ω(1 + r/2) for ω normal (see [27]). Hence, we obtain the result for
the case m = 1.

For m ≥ 2 it should be only noticed that (1 − r)mω(r) is still normal, that Rmf(0) = 0
for every integer m ≥ 1, and use the method of induction.

Theorem 3.3. Let 0 < p ≤ q < ∞ and α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ is a
holomorphic self-map of B. Then P

g
ϕ : Hp

α(B) → H
q

β
(B) is bounded if and only if

sup
w∈B

sup
0<r<1

(1 − r)β+q
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) < ∞. (3.10)
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Proof. Take f ∈ H
p
α(B) with ‖f‖Hp

α
≤ 1. Since the function (1 − r)β/q for β > 0 and 0 < q < ∞ is

normal, Lemma 3.2 gives

sup
0<r<1

(1 − r)β/qMq

(
P
g
ϕ f, r

)


∣∣∣Pg

ϕ f(0)
∣∣∣ + sup

0<r<1
(1 − r)(β/q)+1Mq

(
R
[
P
g
ϕ f

]
, r
)
. (3.11)

The assumption g(0) = 0 implies Pg
ϕ f(0) = 0, and Lemma 3.1 shows R[Pg

ϕ f] = gCϕf . Hence
we obtain

sup
0<r<1

(1 − r)βMq
q

(
P
g
ϕ f, r

)

 sup

0<r<1
(1 − r)β+qMq

q

(
gCϕf, r

)
, (3.12)

and so we obtain ‖Pg
ϕ f‖qHq

β


 ‖gCϕf‖qHq

β+q
. This implies that the boundedness of Pg

ϕ : Hp
α(B) →

H
q

β(B) is equivalent to the boundedness of gCϕ : Hp
α(B) → H

q

β+q(B). So Theorem 2.5 shows
that the condition

sup
w∈B

sup
0<r<1

(1 − r)β+q
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) < ∞ (3.13)

is a necessary and sufficient condition for the boundedness of Pg
ϕ : Hp

α(B) → H
q

β
(B). This

completes the proof.

The next proposition is proved similar to Proposition 2.6.

Proposition 3.4. Let 0 < p, q < ∞, and α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ
is a holomorphic self-map of B which induce the bounded operator Pg

ϕ : Hp
α(B) → H

q

β(B). Then

P
g
ϕ : Hp

α(B) → H
q

β(B) is compact if and only if for every bounded sequence {fj}j∈N
inH

p
α(B) which

converges to 0 uniformly on compact subsets of B, {Pg
ϕ fj}j∈N

converges to 0 inH
q

β
(B).

Theorem 3.5. Let 0 < p ≤ q < ∞ and α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ
is a holomorphic self-map of B which induce the bounded operator Pg

ϕ : Hp
α(B) → H

q

β(B). Then

P
g
ϕ : Hp

α(B) → H
q

β(B) is compact if and only if

lim
|w|→ 1−

sup
0<r<1

(1 − r)β+q
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ) = 0. (3.14)

Proof. First we assume that condition (3.14) holds. Take a bounded sequence {fj}j∈N
⊂ H

p
α(B)

which converges to 0 uniformly on compact subsets of B. Theorem 2.8 and the remark in
Section 2 show that gCϕ : Hp

α(B) → H
q

β+q(B) is compact. Thus Proposition 2.6 implies that

lim
j→∞

‖gCϕfj‖Hq

β+q
= 0. (3.15)
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From (3.15) and since ‖Pg
ϕ fj‖qHq

β


 ‖gCϕfj‖qHq

β+q
, we have that ‖Pg

ϕ fj‖qHq

β

→ 0 as j → ∞. By

Proposition 3.4, we see that Pg
ϕ : Hp

α(B) → H
q

β(B) is compact.
To prove the necessity of the condition in (3.14), we consider the family of test

functions fw which is defined by (2.11). Hence we have

‖Pg
ϕ fw‖qHq

β


 ‖gCϕfw‖qHq

β+q

= sup
0<r<1

(1 − r)β+q
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ),
(3.16)

for all w ∈ B. Since {fw}w∈B
is a bounded sequence in H

p
α(B) and fw → 0 uniformly on

compact subsets of B as |w| → 1−, the compactness of Pg
ϕ and Proposition 3.4 show that

‖Pg
ϕ fw‖qHq

β

→ 0 as |w| → 1−. This fact along with (3.16) implies the condition in (3.14),

finishing the proof of the theorem.

Theorem 3.6. Let 1 < p ≤ q < ∞ and α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ is a
holomorphic self-map of B which induce the bounded operator Pg

ϕ : Hp
α(B) → H

q

β(B). Then the qth

power of the essential norm of Pg
ϕ is comparable to

lim sup
|w|→ 1−

sup
0<r<1

(1 − r)β+q
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ). (3.17)

Proof. To prove a lower estimate, we take an arbitrary compact operator K : H
p
α(B) →

H
q

β
(B). Since Lemma 2.7 implies that the family of functions fw defined by (2.11) converges

to 0 weakly inH
p
α(B) as |w| → 1−, we obtain

C‖Pg
ϕ −K‖

H
p
α (B)→H

q

β (B)
≥ lim sup

|w|→ 1−

(
‖Pg

ϕ fw‖Hq

β

− ‖Kfw‖Hq

β

)
≥ lim sup

|w|→ 1−
‖Pg

ϕ fw‖Hq

β

. (3.18)

Combining this with (3.16), we have

C‖Pg
ϕ ‖qe,Hp

α (B)→H
q

β (B)
≥ lim sup

|w|→ 1−
sup
0<r<1

(1 − r)β+q
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ),

(3.19)

which is a lower estimate.
By some modification of Lemma 2.3 and the application of Lemmas 3.1 and 3.2, we get

‖Pg
ϕ ‖qe,Hp

α(B)→H
q

β (B)
≤ lim inf

j→∞
sup

‖f‖
H
p
α
≤1
‖Pg

ϕRjf‖qHq

β

≤ C lim inf
j→∞

sup
‖f‖

H
p
α
≤1
‖gCϕRjf‖qHq

β+q
.

(3.20)
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As in the proof of Theorem 2.8, we obtain

lim inf
j→∞

sup
‖f‖

H
p
α
≤1
‖gCϕRjf‖qHq

β+q
≤ C lim sup

|w|→ 1−
sup
0<r<1

(1 − r)β+q

×
∫
∂B

∣∣g(rζ)∣∣q
{

1 − |w|2∣∣1 − 〈
ϕ(rζ), w

〉∣∣2
}q(α+n)/p

dσ(ζ),

(3.21)

and so we have an upper estimate for ‖Pg
ϕ ‖qe,Hp

α (B)→H
q

β
(B)

.

4. The Case P
g
ϕ : H∞

α (B) → H∞
β (B)

When p = ∞ and α > 0, we define the weighted-type space H∞
α (B) as follows:

H∞
α (B) =

{
f ∈ H(B) : sup

0<r<1
(1 − r)αM∞

(
f, r

)
< ∞

}
. (4.1)

It is easy to see that f ∈ H∞
α (B) if and only if supz∈B

(1 − |z|)α|f(z)| < ∞, so we define the
norm ‖f‖H∞

α
on H∞

α (B) by this supremum.
Furthermore we consider the subspace H∞

α,0(B) defined by

H∞
α,0(B) =

{
f ∈ H(B) : lim

r→ 1−
(1 − r)αM∞

(
f, r

)
= 0

}
. (4.2)

Theorem 4.1. Let α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ is a holomorphic self-map
of B. Then P

g
ϕ : H∞

α (B) (or H∞
α,0(B)) → H∞

β
(B) is bounded if and only if

sup
z∈B

(1 − |z|)β+1∣∣g(z)∣∣
(1 − ∣∣ϕ(z)∣∣)α < ∞. (4.3)

In this case, the operator norm ‖Pg
ϕ ‖H∞

α (B) (or H∞
α,0(B))→H∞

β
(B) is comparable to the above supremum.

Proof. By the definition of the space H∞
α (B), f ∈ H∞

α (B) satisfies the growth condition

∣∣f(w)
∣∣ ≤ (1 − |w|)−α‖f‖H∞

α
(w ∈ B), (4.4)

so it follows from Lemma 3.1 and Lemma 3.2 that

‖Pg
ϕ f‖H∞

β


 sup
z∈B

(1 − |z|)β+1∣∣gCϕf(z)
∣∣ ≤ ‖f‖H∞

α
sup
z∈B

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α , (4.5)

for every f ∈ H∞
α (B).
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Hence we obtain

‖Pg
ϕ ‖H∞

α (B) (or H∞
α,0(B))→H∞

β (B) ≤ Csup
z∈B

(1 − |z|)β+1∣∣g(z)∣∣
(1 − |ϕ(z)|)α . (4.6)

Now we prove the reverse inequality. For w ∈ B, we put

fw(z) =
1

(1 − 〈z,w〉)α . (4.7)

Note that fw ∈ H∞
α,0(B) for each w ∈ B and moreover supw∈B

‖fw‖H∞
α
≤ 1.

When ϕ(z)/= 0, we have

‖Pg
ϕ ‖H∞

α,0(B)→H∞
β (B) ≥ ‖Pg

ϕ ft(ϕ(z)/|ϕ(z)|)‖H∞
β


 sup
w∈B

(1 − |w|)β+1
∣∣∣gCϕft(ϕ(z)/|ϕ(z)|)(w)

∣∣∣
≥ (1 − |z|)β+1∣∣g(z)∣∣∣∣∣ft(ϕ(z)/|ϕ(z)|)(ϕ(z))

∣∣∣
=

(1 − |z|)β+1∣∣g(z)∣∣(
1 − t

∣∣ϕ(z)∣∣)α ,

(4.8)

for all t ∈ (0, 1). Letting t → 1− in (4.8), we have

‖Pg
ϕ ‖H∞

α,0(B)→H∞
β (B) ≥ C

(1 − |z|)β+1∣∣g(z)∣∣
(1 − ∣∣ϕ(z)∣∣)α . (4.9)

For the constant function 1 ∈ H∞
α,0(B)we obtain

‖Pg
ϕ 1‖Hq

β


 sup
w∈B

(1 − |w|)β+1∣∣gCϕ1(w)
∣∣ ≥ (1 − |z|)β+1∣∣g(z)∣∣. (4.10)

Inequality (4.10) shows that the estimate in (4.9) also holds when ϕ(z) = 0.
Hence, from (4.9) we obtain

‖Pg
ϕ ‖H∞

α,0(B)→H∞
β (B) ≥ Csup

z∈B

(1 − |z|)β+1∣∣g(z)∣∣
(1 − ∣∣ϕ(z)∣∣)α , (4.11)

which along with the obvious inequality

‖Pg
ϕ ‖H∞

α (B)→H∞
β (B) ≥ ‖Pg

ϕ ‖H∞
α,0(B)→H∞

β (B) (4.12)

completes the proof of the theorem.

For the compactness of Pg
ϕ : H∞

α (B) (or H∞
α,0(B)) → H∞

β (B), we can also prove the
following proposition which is similar to Proposition 2.6.



16 Discrete Dynamics in Nature and Society

Proposition 4.2. Let α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ is a holomorphic
self-map of B which induce the bounded operator Pg

ϕ : H∞
α (B) (or H∞

α,0(B)) → H∞
β
(B). Then

P
g
ϕ : H∞

α (B) (or H∞
α,0(B)) → H∞

β
(B) is compact if and only if for every bounded sequence {fj}j∈N

in H∞
α (B) (or H∞

α,0(B)) which converges to 0 uniformly on compact subsets of B, {Pg
ϕ fj}j∈N

converges to 0 inH∞
β
(B).

Theorem 4.3. Let α, β > 0. Suppose that g ∈ H(B) with g(0) = 0 and ϕ is a holomorphic self-
map of B such that Pg

ϕ : H∞
α (B) (or H∞

α,0(B)) → H∞
β
(B) is bounded. Then the essential norm

‖Pg
ϕ ‖e,H∞

α (B) (or H∞
α,0(B))→H∞

β
(B) is comparable to

lim sup
|ϕ(z)|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣
(1 − ∣∣ϕ(z)∣∣)α . (4.13)

In particular, Pg
ϕ : H∞

α (B) (or H∞
α,0(B)) → H∞

β
(B) is compact if and only if

lim
|ϕ(z)|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣
(1 − ∣∣ϕ(z)∣∣)α = 0. (4.14)

Proof. First we consider the family {fw}w∈B
where

fw(z) =
1 − |w|

(1 − 〈z,w〉)α+1
. (4.15)

We can easily check that fw ∈ H∞
α,0(B), ‖fw‖H∞

α
≤ 1 for all w ∈ B and fw → 0 uniformly on

compact subsets of B as |w| → 1−. Hence [40, page 296, Theorem2] implies that fw → 0
weakly in H∞

α,0(B) as |w| → 1−.
If ‖ϕ‖∞ < 1, then as in the proof of [26, Theorem3] it can be seen that the operator

P
g
ϕ : H∞

α (B) (or H∞
α,0(B)) → H∞

β (B) is compact, so that

‖Pg
ϕ ‖e,H∞

α (B) (or H∞
α,0(B))→H∞

β (B) = 0. (4.16)

On the other hand, the limit in (4.13) is vacuously equal to zero, fromwhich the result follows
in this case. If ‖ϕ‖∞ = 1, then take a sequence {ϕ(zj)}j∈N

in B with |ϕ(zj)| → 1 as j → ∞
and put Fj(z) = fϕ(zj )(z) for each j ∈ N. Then {Fj}j∈N

is a bounded sequence in H∞
α,0(B)
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and {Fj}j∈N
converges to 0 weakly in H∞

α,0(B), as j → ∞. Hence for every compact operator
K : H∞

α,0(B) → H∞
β
(B)we have ‖KFj‖H∞

β

→ 0 as j → ∞. So we have

‖Pg
ϕ −K‖

H∞
α,0(B)→H∞

β (B) ≥ lim sup
j→∞

‖Pg
ϕFj −KFj‖H∞

β

≥ lim sup
j→∞

‖Pg
ϕFj‖H∞

β


 lim sup
j→∞

sup
w∈B

(1 − |w|)β+1∣∣g(w)
∣∣ ∣∣Fj

(
ϕ(w)

)∣∣
≥ lim sup

j→∞
(1 − ∣∣zj∣∣)β+1∣∣g(zj)∣∣∣∣Fj

(
ϕ
(
zj
))∣∣

≥ 1
2α+1

lim sup
j→∞

(1 − |zj |)β+1
∣∣g(zj)∣∣

(1 − ∣∣ϕ(zj)∣∣)α ,

(4.17)

for all compact operators K : H∞
α,0(B) → H∞

β (B). Taking the infimum over the set of all
compact operators K : H∞

α,0(B) → H∞
β
(B), we obtain

‖Pg
ϕ ‖e,H∞

α,0(B)→H∞
β (B) ≥ C lim sup

j→∞

(
1 − ∣∣zj∣∣)β+1∣∣g(zj)∣∣(

1 − ∣∣ϕ(zj)∣∣)α . (4.18)

Combining this with the estimate ‖Pg
ϕ ‖e,H∞

α (B)→H∞
β
(B) ≥ ‖Pg

ϕ ‖e,H∞
α,0(B)→H∞

β
(B), we have

‖Pg
ϕ ‖e,H∞

α (B)→H∞
β (B) ≥ Clim sup

|ϕ(z)|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣
(1 − ∣∣ϕ(z)∣∣)α . (4.19)

Next we prove an upper estimate. Assume that {rl}l∈N
⊂ (0, 1) is a sequence which

increasingly converges to 1. For this {rl}l∈N
, we define the operators defined by

P
g
rlϕf(z) =

∫1

0
g(tz)f

(
rlϕ(tz)

)dt
t
. (4.20)

As in the proof of [26, Theorem3], Proposition 4.2 shows that Pg
rlϕ : H∞

α (B) → H∞
β
(B) is

compact for each l ∈ N.
Put

M2 := lim sup
|ϕ(z)|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α , (4.21)
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and fix ε > 0. Then we can choose R ∈ (0, 1) such that

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α < M2 + ε, (4.22)

if R < |ϕ(z)| < 1. Take f ∈ H∞
α (B) with ‖f‖H∞

α
≤ 1 and an integer l ∈ N. By Lemma 3.1 and

Lemma 3.2, we have

‖Pg
ϕ f − P

g
rlϕf‖H∞

β


 sup
z∈B

(1 − |z|)β+1
∣∣∣R[

P
g
ϕ f

]
(z) − R

[
P
g
rlϕf

]
(z)

∣∣∣
= sup

z∈B

(1 − |z|)β+1∣∣g(z)∣∣∣∣f(ϕ(z)) − f
(
rlϕ(z)

)∣∣
= sup
|ϕ(z)|≤R

(1 − |z|)β+1∣∣g(z)∣∣∣∣f(ϕ(z)) − f
(
rlϕ(z)

)∣∣

+ sup
R<|ϕ(z)|<1

(1 − |z|)β+1∣∣g(z)∣∣∣∣f(ϕ(z)) − f
(
rlϕ(z)

)∣∣.

(4.23)

By using the mean value theorem and the asymptotic relation

sup
z∈B

(1 − |z|)α+1∣∣∇f(z)
∣∣ 
 sup

z∈B

(1 − |z|)α+1∣∣Rf(z)
∣∣, (4.24)

we obtain

sup
|ϕ(z)|≤R

∣∣f(ϕ(z)) − f
(
rlϕ(z)

)∣∣ ≤ sup
|ϕ(z)|≤R

(1 − rl)
∣∣ϕ(z)∣∣sup

|w|≤R

∣∣∇f(w)
∣∣

≤ (1 − rl)R

(1 − R)α+1
sup
w∈B

(1 − |w|)α+1∣∣∇f(w)
∣∣


 (1 − rl)R

(1 − R)α+1
sup
w∈B

(1 − |w|)α+1∣∣Rf(w)
∣∣


 (1 − rl)R

(1 − R)α+1
‖f‖H∞

α
.

(4.25)

Since the boundedness of Pg
ϕ : H∞

α (B) → H∞
β
(B) implies that Pg

ϕ 1 ∈ H∞
β
(B), we see

sup
z∈B

(1 − |z|)β+1∣∣g(z)∣∣ < ∞, (4.26)

and so we have

sup
‖f‖H∞

α
≤1

sup
|ϕ(z)|≤R

(1 − |z|)β+1∣∣g(z)∣∣∣∣f(ϕ(z)) − f
(
rlϕ(z)

)∣∣ ≤ C
(1 − rl)R

(1 − R)α+1
sup
z∈B

(1 − |z|)β+1∣∣g(z)∣∣.
(4.27)
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On the other hand, the monotonicity of M∞(f, r) shows

∣∣f(rlϕ(z))∣∣ ≤ (
1 − ∣∣ϕ(z)∣∣)−α‖frl‖H∞

α
≤ (

1 − ∣∣ϕ(z)∣∣)−α‖f‖H∞
α
. (4.28)

Thus we have

sup
‖f‖H∞

α
≤1

sup
R<|ϕ(z)|<1

(1 − |z|)β+1∣∣g(z)∣∣∣∣f(ϕ(z)) − f
(
rlϕ(z)

)∣∣ ≤ 2 sup
R<|ϕ(z)|<1

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α

≤ 2(M2 + ε).
(4.29)

From (4.23), (4.27), (4.29), and the compactness of Pg
rlϕ, we obtain

‖Pg
ϕ ‖e,H∞

α (B)→H∞
β (B) ≤ ‖Pg

ϕ − P
g
rlϕ‖H∞

α (B)→H∞
β (B)

≤ C
(1 − rl)R

(1 − R)α+1
sup
z∈B

(1 − |z|)β+1∣∣g(z)∣∣ + 2(M2 + ε).
(4.30)

Letting l → ∞ and ε → 0, we have

‖Pg
ϕ ‖e,H∞

α (B)→H∞
β (B) ≤ 2lim sup

|ϕ(z)|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α . (4.31)

This completes the proof.

When P
g
ϕ : H∞

α (B) (or H∞
α,0(B)) → H∞

β,0(B) is bounded, we see that g ∈ H∞
β+1,0(B). By

a standard argument as in the proof of [26, Corollary 3], we have

lim sup
|z|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣
(1 − |ϕ(z)|)α = lim sup

|ϕ(z)|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α , (4.32)

and so

‖Pg
ϕ ‖e,H∞

α (B)(or H∞
α,0(B))→H∞

β,0(B)

 lim sup

|z|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α . (4.33)

Hence we obtain the following characterization for the compactness of the operator P
g
ϕ :

H∞
α (B) (or H∞

α,0(B)) → H∞
β,0(B).
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Corollary 4.4. Let α, β > 0. Suppose that g ∈ H(B)with g(0) = 0 and ϕ is a holomorphic self-map of
B such that Pg

ϕ : H∞
α (B) (or H∞

α,0(B)) → H∞
β,0(B) is bounded. Then P

g
ϕ : H∞

α (B) (or H∞
α,0(B)) →

H∞
β,0(B) is compact if and only if

lim
|z|→ 1−

(1 − |z|)β+1∣∣g(z)∣∣(
1 − ∣∣ϕ(z)∣∣)α = 0. (4.34)
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