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sidered. By the exponential time-dependent learning effect, it means that the processing time
of a job is defined by an exponent function of the total actual processing time of the already
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1. Introduction

In classical scheduling problems, the processing time of a job is assumed to be a constant.
However, in many realistic problems of operations management, both machines and workers
can improve their performance by repeating the production operations. Therefore, the actual
processing time of a job is shorter if it is scheduled later in a sequence. This phenomenon
is known as the “learning effect” in literature (see [1]). During the last few years, learning
effect has attracted growing attention from the scheduling research community on account
of its significance. Concerning the learning effects, two different approaches in scheduling
environments have been suggested. The first one can be best described as position-dependent
learning, which was first introduced into the field of scheduling by Biskup in [2] and
Cheng and Wang in [3], meaning that learning is affected by the pure number of jobs
being processed. Many references have studied such a learning effect model thereafter, a
sample of these papers can be seen in [4–13]. However, the position-dependent learning
effects neglect the processing times of the jobs already processed. If human interactions
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have a significant impact during the processing of jobs, the processing time will add to the
employees’ experience and cause learning effects. For situations like this, Kuo and Yang
in [14] introduced a time-dependent learning effect, that is, the sum of processing time
dependent learning, and showed that the shortest processing time (SPT) rule is optimal
for the objective of minimizing the total completion time. For more papers about this time-
dependent learning model, the reader is referred to the papers [15–17]. Besides, Koulamas
and Kyparisis in [18] introduced a general sum of processing time-dependent learning
effect model in which employees learn more if they perform a job with a longer processing
time. Recently, Wu and Lee in [19] proposed a new learning model where the actual job
processing time not only depends on its scheduled position but also depends on the sum
of the processing times of jobs already processed. Let pjr denote the actual processing time
job Jj scheduled in rth position, then pjr = (1 +

∑r−1
k=1 p[k]/

∑n
k=1 pk)

a1
ra2 , where p[k] is the

normal processing time of the kth job in a sequence and a1 ≤ 0, a2 ≤ 0. Under this model they
showed that the SPT sequence is optimal for minimizing makespan and total completion
time on single machine under the proposed learning model. In addition, they showed that
the WSPT sequence is optimal for minimizing the sum of the weighted completion times if
jobs have agreeable weights. Cheng et al. in [20] consider another learning model, in which
the learning effect is given as pjr = (1 −∑r−1

k=1 p[k]/
∑n

k=1 pk)
a1
ra2 , where a1 ≥ 1, a2 ≤ 0. Under

this learning model, they obtained the same results as that in [19]. Further, they showed that
the EDD sequence is optimal for the maximum lateness if jobs have agreeable due dates. For
a recent state-of-the-art review on scheduling models and problems with learning effects, the
readers are referred to [21].

On the other hand, it is reasonable and necessary to consider scheduling problems
with setup times (see [22]). There are two types of setup time or setup cost, namely, sequence-
independent and sequence-dependent. In the first case, the setup time/cost depends solely
on the task to be processed, regardless of its preceding task. While in the sequence-dependent
type, setup time/cost depends on both the task and its preceding task. For recent results and
trends in scheduling problems with setup times or costs, the reader may refer to the recent
review paper [23]. Koulamas and Kyparisis in [24] first introduced a scheduling problem
with past-sequence-dependent (p-s-d) setup times, that is, the setup time is dependent on all
already scheduled jobs. They showed that the standard single-machine scheduling problems
with p-s-d setup times to minimize makespan, total completion time and the total absolute
differences in completion times are polynomially solvable. They also extended their results to
nonlinear p-s-d setup times. Subsequently, Kuo and Yang in [25], Wang in [26], Biskup and
Herrmann [27], Wang et al. in [28] studied different single-machine scheduling problems
with time-dependent learning effect and setup times considerations.

From the learning models mentioned earlier, it is not hard to see that the actual
processing time of, say, the rth job is affected by the sum of the normal processing times
of the preceding r-1 jobs. This learning effect model is based on the assumption that the
number of operating processes in a job depends on the repetitions of the same operation.
However, in many situations, the operating processes of a job are different, for example,
car repair or maintenance and patient diagnosis and treatment. The conditions of cars or
patients are different. Hence, there are no identical repetitions of operating processes in
the job. Nevertheless, there still exists a certain learning effect after operating the job. In
such situations, the learning effect is due to the experiences of operating jobs, that is, the
total actual processing time of jobs. To the best of our knowledge, apart from the recent
paper [29], it has not been investigated the scheduling models considering the actual
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time-dependent learning effect. In this paper, we consider a single machine total completion
time minimization problem with past-sequence-dependent setup times and learning effect
where the actual processing time of a job is not only an exponential function of the total
actual processing times of the jobs already processed but also a function of the job’s scheduled
position.

2. Problem Formulation

The model is described as follows. There are given a single machine and n independent and
nonpreemptive jobs that are immediately available for processing. The normal processing
time of job Jj is pj (1 ≤ j ≤ n). Associated with each job Jj (1 ≤ j ≤ n) is a weight wj and a
due-date dj . Let p[k] and pA[k] be the normal processing time and the actual processing time of
a job when it is scheduled in the kth position in a sequence, respectively. Let pAjr be the actual
processing time of job Jj when it is scheduled in position r in a sequence. Then

pAjr = pjα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ , (2.1)

where pA[1] = p[1], pA[s] = p[s]α
−β(∑s−1

k=1 p
A
[k]/

∑n
k=1 p[k])sτ (1 < s ≤ r − 1), α ≥ 1, β ≥ 0, and τ ≤ 0.

For convenience, we denote this actual time-dependent and job-position dependent learning
effect defined in (2.1) by LEat-p.

As in [24, 26], we assume that the p-s-d setup time of a job if it is scheduled in position
r is given by

s[1] = 0, s[r] =
r−1∑

k=1

bpA[k], (2.2)

where b ≥ 0 is a normalizing constant, and we denote the p-s-d setup given in (2.2) by spsd.
For a given schedule S, let Cj(S) denote the completion time of job Jj and C[r](S)

represent the complete time of the job scheduled in the rth position in π . For single-machine
scheduling with past-sequence-dependent setup times and time-dependent learning effect,
Wang in [26] showed that the completion time of the rth job in a given sequence S is given
by

C[r](S) =
r∑

k=1

(b(r − k) + 1)pA[k]. (2.3)

Similarly, the completion time of the rth job in a given sequence S under (2.1) is

C[r](S) =
r∑

k=1

(b(r − k) + 1)p[k]α
−β(∑k−1

l=1 pA[l]/
∑n

l=1 p[l])kτ . (2.4)

Let Cmax denote the makespan, where Cmax = max{C1, C2, . . . , Cn}. Let
∑

wjCj rep-
resent the weighted sum of completion times. In the remaining part of the paper, the problem
will be denoted using the three-field notation scheme 1/LEat-p, spsd/

∑
wjCj introduced by

Graham et al. in [30].
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3. Total Completion Time Minimization Problem

In this section, we consider the total completion time minimization problems with past-
sequence-dependent setup times defined in (2.2) and the learning effect defined in (2.1).

First, we give three lemmas, which are useful for the following theorem.

Lemma 3.1. It holds that, tλ((r + 1)/r)τ − λt((r + 1)/r)τ + λ − 1 > 0 for λ > 1, 0 ≤ t ≤ 1, τ ≤
0, and r = 1, 2, . . . , n − 1.

Proof. Let

F(t) = tλ
(
r + 1
r

)τ

− λt

(
r + 1
r

)τ

+ λ − 1. (3.1)

Taking the first derivative of F(t)with respect to t, we have

F ′(t) = λtλ−1
(
r + 1
r

)τ

− λ

(
r + 1
r

)τ

= λ

(
r + 1
r

)τ(
tλ−1 − 1

)
. (3.2)

Since λ > 1 and 0 ≤ t ≤ 1, we have F ′(t) ≤ 0. This implies that F(t) is nonincreasing on
0 ≤ t ≤ 1. Hence,

F(t) ≥ F(1) =
(
r + 1
r

)τ

− λ

(
r + 1
r

)τ

+ λ − 1 = (λ − 1)
(

1 −
(
r + 1
r

)τ)

> 0 (3.3)

for λ > 1, τ ≤ 0 and r = 1, 2, . . . , n − 1. This completes the proof.

Lemma 3.2. It holds that, 1 − λ1t((r + 1)/r)τ + λ2t ln t((r + 1)/r)τ ≥ 0 for 0 < t ≤ 1, τ ≤ 0, 0 ≤
λ1 ≤ λ2 ≤ 1, and r = 1, 2, . . . , n − 1.

Proof. Let

F(t, λ1, λ2) = 1 − λ1t

(
r + 1
r

)τ

+ λ2t ln t
(
r + 1
r

)τ

. (3.4)

Then ∂F/∂λ1 = −t((r + 1)/r)τ < 0, ∂F/∂λ2 = t ln t((r + 1)/r)τ ≤ 0, thus we have

F(t, λ1, λ2) ≥ F(t, 1, 1) = 1 − t

(
r + 1
r

)τ

+ t ln t
(
r + 1
r

)τ

. (3.5)

Let

f(t) = 1 − t

(
r + 1
r

)τ

+ t ln t
(
r + 1
r

)τ

. (3.6)

Then f ′(t) = ((r + 1)/r)τ ln t ≤ 0, hence f(t) is nonijncreasing on t and f(t) ≥ f(1) = 1 −
((r + 1)/r)τ ≥ 0 for 0 < t ≤ 1. Therefore, F(t, λ1, λ2) ≥ 0 for 0 < t ≤ 1, τ ≤ 0, 0 ≤ λ1 ≤ λ2 ≤ 1,
and r = 1, 2, . . . , n − 1. This completes the proof.
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Lemma 3.3. It holds that, μ[1 − λ1t((r + 1)/r)τ] − [1 − λ2t
μ((r + 1)/r)τ] ≥ 0 for μ ≥ 1, 0 < t ≤

1, τ ≤ 1, 0 ≤ λ1 ≤ λ2 ≤ 1, and r = 1, 2, . . . , n − 1.

Proof. Let

h
(
μ
)
= μ

[

1 − λ1t

(
r + 1
r

)τ]

−
[

1 − λ2t
μ

(
r + 1
r

)τ]

. (3.7)

To take the first and second derivatives of (3.7)with respect to μ, we have

h′(μ
)
= 1 − λ1t

(
r + 1
r

)τ

+ λ2t
μ ln t

(
r + 1
r

)τ

,

h′′′(μ
)
= λ2t

μ ln2 t

(
r + 1
r

)τ

≥ 0.

(3.8)

Hence, h′(μ) is nondecreasing on μ ≥ 1, that is, h′(μ) ≥ h′(1) for μ ≥ 1. By Lemma 3.2, we have

h′(1) = 1 − λ1t

(
r + 1
r

)τ

+ λ2t ln t
(
r + 1
r

)τ

≥ 0. (3.9)

Therefore, h′(μ) ≥ h′(1) ≥ 0. Hence, h(μ) is nondecreasing on μ, that is, h(μ) ≥ h(1) = (λ2 −
λ1)t((r + 1)/r)τ ≥ 0 for t ≥ 0, τ ≤ 0, 0 ≤ λ1 ≤ λ2 ≤ 1 and r = 1, 2, . . . , n − 1. This completes the
proof.

Theorem 3.4. For the total completion time minimization problem 1/LEat-p, spsd/
∑

wjCj when
pAjr is given by (2.1), an optimal schedule can be obtained by sequencing jobs in the WSPT rule if
pl ≤ ((b + 1)/3τβ lnα)

∑n
k=1 pk (l = 1, . . . , n) and jobs have reversely agreeable weights, that is,

pi < pj implies wi ≥ wj for all jobs Ji and Jj .

Proof (by pair-wise interchanging technique). Consider an optimal schedule S that does not
follow the WSPT rule. Then in this schedule there must be at least two adjacent jobs, say
job Jj followed by job Ji such that pj/wj > pi/wi which implies that pj ≥ pi by reversely
agreeable weights. If pj > pi, then wi ≥ wj ; if pi = pj , then wi > wj . Assume that job Jj is
scheduled in position r. By performing an adjacent pair-wise interchange of jobs Jj and Ji
and remaining all the other jobs in their original positions, we can obtain a new schedule,
denoted by S′. Whereas under the original schedule Jj is scheduled in position r and Ji is
scheduled in position r + 1, under S′, Ji is scheduled in position r, and Jj is scheduled in
position r + 1. Denote S = (σ1, Jj , Ji, σ2), let Cσ1 be the completion time of the last job in σ1,
and let Jk be the first job in σ2.

The completion times of the jobs processed before jobs Jj and Ji are not affected by
the interchange. In the following we will show that wiCi(S′) +wjCj(S′) ≤ wiCi(S) +wjCj(S)
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and the completion times of the jobs processed after jobs Jj and Ji are not increased by the
interchanging argument. Under S, the completion times of jobs Jj and Ji are

Cj(S) =
r−1∑

k=1

(b(r − k) + 1)pA[k] + pjα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ ,

Ci(S)=
r−1∑

k=1

(b(r+1−k)+1)pA[k]+(b + 1)pjα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ+piα

−β((∑r−1
k=1 p

A
[k]+p

A
jr)/

∑n
k=1 p[k])(r+1)τ .

(3.10)

whereas under S′, they are

Ci

(
S′) =

r−1∑

k=1

(b(r − k) + 1)pA[k] + piα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ ,

Cj

(
S′)=

r−1∑

k=1

(b(r+1−k)+1)pA[k]+(b+1)piα−β(∑r−1
k=1 p

A
[k]/

∑n
k=1 p[k])rτ+pjα

−β((∑r−1
k=1 p

A
[k]+p

A
jr)/

∑n
k=1 p[k])(r+1)τ .

(3.11)

So we have

wiCi(S) +wjCj(S) −wiCi

(
S′) −wjCj

(
S′)

= b
(
wi −wj

)r−1∑

k=1

pA[k] + b
(
wipj −wjpi

)
α−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ

+
(
wi +wj

)(
pj − pi

)
α−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ

+wipiα
−β((∑r−1

k=1 p
A
[k]+p

A
jr)/

∑n
k=1 p[k])(r + 1)τ −wjpjα

−β((∑r−1
k=1 p

A
[k]+p

A
ir )/

∑n
k=1 p[k])(r + 1)τ .

(3.12)

Let x = α−β(∑r−1
k=1 p

A
[k]/

∑n
k=1 p[k]), λ1 = wj/(wi + wj), λ2 = wi/(wi + wj), μ = pj/pi, and

t = α−β(pAir /
∑n

k=1 pk). Clearly μ ≥ 1, 0 ≤ λ1 ≤ λ2 ≤ 1, and t > 0. Then the last three terms in
(3.12) can be rewritten as

wiCi(S) +wjCj(S) −wiCi

(
S′) −wjCj

(
S′)

= pi
(
wi +wj

)
rτx

{

μ

[

1 − λ1t

(
r + 1
r

)τ]

−
[

1 − λ2t
μ

(
r + 1
r

)τ]}

≥ 0
(
by Lemma 3.3

)
.

(3.13)

From pj/wj > pi/wi, we have b(wipj − wjpi)α
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ > 0. In addition, from

pj ≥ pi, which implies that wi ≥ wj , we have b(wi −wj)
∑r−1

k=1 p
A
[k] ≥ 0. Hence,

wiCi(S) +wjCj(S) > wiCi

(
S′) +wjCj

(
S′). (3.14)
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Next, we will show that the completion times of the jobs in σ2 are not increased by the
interchanging argument. Firstly, we show that Cj(S′) ≤ Ci(S) after interchanging. Since

Cj(S′) − Ci(S)
pixrτ

= (b + 1)
(

1 − pj

pi

)

+
pj

pi
α−β(pAir /

∑n
k=1 p[k])

(
r + 1
r

)τ

− α−β(pAjr/
∑n

k=1 p[k])
(
r + 1
r

)τ

,

(3.15)

then let t = α−β(pAir /
∑n

k=1 pk) and λ = pj/pi. It is clearly that t ≥ 0 and λ > 1. By substituting t and
λ into (3.15), it is simplified to

Cj(S′) − Ci(S)
pixrτ

=
{

(b + 1)(1 − λ) + λt

(
r + 1
r

)τ

− tλ
(
r + 1
r

)τ}

. (3.16)

By Lemma 3.1, we have Cj(S′) < Ci(S).
Secondly, we show that the completion times of the jobs in σ2 are not increased. Note

that Jk is the first job in σ2, it is scheduled in (r + 2)th position, let

Λ1 = piα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ + pjα

−β(∑r
k=1 p

A
[k]/

∑n
k=1 p[k])(r + 1)τ ,

Λ2 = pjα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ + piα

−β(∑r
k=1 p

A
[k]/

∑n
k=1 p[k])(r + 1)τ .

(3.17)

Then we have

Λ1 −Λ2

pixrτ
= (1 − λ) + λt

(
r + 1
r

)τ

− tλ
(
r + 1
r

)τ

. (3.18)

By Lemma 3.1 we have Λ1 < Λ2. Since

Ck

(
S′) = Cj

(
S′) + b

(
r−1∑

l=1

pA[l] + pAir + pAjr+1

)

+ pkα
−β((∑r−1

l=1 pA[l]+p
A
ir+p

A
jr+1)/

∑n
l=1 p[l])(r + 2)τ

=
r−1∑

k=1

(b(r + 2 − k) + 1)pA[k] + (2b + 1)piα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ

+ (b + 1)pjα
−β((∑r−1

k=1 p
A
[k]+p

A
ir )/

∑n
k=1 p[k])(r + 1)τ + pkα

−β((∑r−1
l=1 pA[l]+p

A
ir+p

A
jr+1)/

∑n
l=1 p[l])(r + 2)τ ,

Ck(S) = Ci(S) + b

(
r−1∑

l=1

pA[l] + pAjr + pAir+1

)

+ pkα
−β((∑r−1

l=1 pA[l]+p
A
jr+p

A
ir+1)/

∑n
l=1 p[l])(r + 2)τ

=
r−1∑

k=1

(b(r + 2 − k) + 1)pA[k] + (2b + 1)pjα
−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ

+ (b + 1)piα
−β((∑r−1

k=1 p
A
[k]+p

A
jr)/

∑n
k=1 p[k])(r + 1)τ + pkα

−β((∑r−1
l=1 pA[l]+p

A
jr+p

A
ir+1)/

∑n
l=1 p[l])(r + 2)τ .

(3.19)



8 Discrete Dynamics in Nature and Society

Then we have

Ck

(
S′) − Ck(S) = b

(
pi − pj

)
α−β(∑r−1

k=1 p
A
[k]/

∑n
k=1 p[k])rτ + (b + 1)(Λ1 −Λ2)

+ pk(r + 2)τ
(
α−β((Λ+Λ1)/P) − α−β((Λ+Λ2)/P)

)

< (b + 1)(Λ1 −Λ2) + pk(r + 2)τ
(

−β lnα
P

α−β((Λ+ξ)/P)
)

(Λ1 −Λ2)

= (Λ2 −Λ1)
[

pk(r + 2)τ
(
β lnα
P

α−β((Λ+ξ)/P)
)

− (b + 1)
]

<
[(
β3τ lnα

)pk
P

− (b + 1)
]
(Λ2 −Λ1).

(3.20)

For any job Jl, by assumption pl ≤ (b + 1)/3τβ lnα
∑n

k=1 pk for α ≥ 1 and β ≥ 0. Then (3.20) is
not larger than zero, that is, Ck(S′) ≤ Ck(S). Similarly, we have Ch(S′) ≤ Ch(S) for any Jh in
σ2.

Repeating this interchange argument for all jobs not sequenced in theWSPT rule yields
the theorem.

Corollary 3.5. For the problem 1/LEat-p, spsd/Cmax when pAjr is given by (2.1), if pl ≤
∑n

k=1 pk/3
τβ lnα (l = 1, . . . , n), then there exists an optimal schedule in which the job sequence is

determined by the SPT rule.

Proof. it can be directly from the proof of Theorem 3.4.

Corollary 3.6. For the problem 1/LEat-p, spsd/
∑

Cj when pAjr is given by (2.1), if pl ≤
∑n

k=1 pk/3
τβ lnα (l = 1, . . . , n), then there exists an optimal schedule in which the job sequence is

determined by the SPT rule.

Corollary 3.7. For the problem 1/LEat-p, spsd/
∑

Ck
j when pAjr is given by (2.1), if pl ≤

∑n
k=1 pk/3

τβ lnα (l = 1, . . . , n) , then there exists an optimal schedule in which the job sequence
is determined by the SPT rule.

Proof. Here, we still use the same notations as in the proof of Theorem 3.4. In order to show
S′ dominates S, it suffices to show that (i) Cj(S′) ≤ Ci(S), (ii) Cl(S′) ≤ Cl(S) for any job Jl
(l /= i, j) and (iii) Ck

i (S
′) + Ck

j (S
′) ≤ Ck

i (S) + Ck
j (S).

The proof of part (i) and part (ii) are given in Theorem 3.4. In addition, from pi ≤ pj , we
haveCi(S′) ≤ Cj(S). Since k is a positive real number, we haveCk

i (S
′)+Ck

j (S
′) ≤ Ck

i (S)+C
k
j (S).

This completes the proof.

Corollary 3.8. For the problem 1/LEat-p, spsd, pj = p/
∑

wjCj when pjr is given by (2.1), an
optimal schedule can be obtained by sequencing jobs in non-increasing order of wj .

Corollary 3.9. For the problem 1/LEat-p, spsd,wj = kpj/
∑

wjCjwhen pjr is given by (2.1), if
pl ≤ ((b+1)/3τβ lnα)

∑n
k=1 pk (l = 1, . . . , n), then an optimal schedule can be obtained by sequencing

jobs in SPT rule.



Discrete Dynamics in Nature and Society 9

Remark 3.10. In this paper, the learning effect is defined in (2.1) and p-s-d setup times is
defined in (2.2), where the α ≥ 1, β ≥ 0, τ ≤ 0, and b ≥ 0 are controlled parameters. In
practises, even human interactions have a significant impact during the processing of jobs,
the impact should be limited. In general, half of the decreasing on the processing time is
impossible. So the parameters should have practical meaning and properly given. If there
parameters satisfy that ((b + 1)/3τβ lnα) < 1, then for any job pl (l = 1, 2, . . . , n) we have
pl ≤ ((b + 1)/3τβ lnα)

∑n
k=1 pk. Thus, Theorem 3.4 holds under agreeable condition.

4. Conclusions

In this paper we investigated the single machine total weighted completion time minimiza-
tion problem with p-s-d setup times and learning effect where the actual processing time of a
job is not only an exponential function of the total actual processing times of the jobs already
processed but also a function of the job’s scheduled position.We show that the classicalWSPT
rule is optimal under certain conditions. It is suggested for future research to investigate other
efficient heuristic algorithm to the problem or extend this kind of learning into the context of
other more complicated scheduling settings, or propose more general and practical models.
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