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1. Introduction

In [1], Camouzis et al. studied the global character of the positive solutions of the difference
equation:

xn+1 =
δxn−2 + xn−3
A + xn−3

, n = 0, 1, . . . , (1.1)

where δ, A are positive parameters and the initial values x−3, x−2, x−1, x0 are positive real
numbers.

The mathematical modeling of a physical, physiological, or economical problem
very often leads to difference equations (for partial review of the theory of difference
equations and their applications see [2–12]). Moreover, a lot of difference equations with
periodic coefficients have been applied in mathematical models in biology (see [13–15]). In
addition, between others in [16–19], we can see somemore difference equations with periodic
coefficients that have been studied.
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In this paper, we investigate the difference equation

xn+1 =
pnxn−2 + xn−3
qn + xn−3

, n = 0, 1, . . . , (1.2)

where pn, qn, n = 0, 1, . . . are positive sequences of period 2 and the initial values xi, i =
−3,−2,−1, 0 are positive numbers.

Our goal in this paper is to extend some results obtained in [1]. More precisely, we
study the existence of a unique positive periodic solution of (1.2) of prime period 2. In the
sequel, we investigate the boundedness, the persistence, and the convergence of the positive
solutions to the unique periodic solution of (1.2). Finally, we study the stability of the positive
periodic solution and the zero solution of (1.2).

If we set yn = x2n−1, zn = x2n, it is easy to prove that (1.2) is equivalent to the following
system of difference equations:

yn+1 =
p0zn−1 + yn−1
q0 + yn−1

, zn+1 =
p1yn + zn−1
q1 + zn−1

, n = 0, 1, . . . , (1.3)

where pi, qi, i = 0, 1 are positive constants and the initial values yi, zi, i = −1, 0 are positive
numbers. So in order to study (1.2)we investigate system (1.3).

2. Existence of the Unique Positive Equilibrium of System (1.3)

In the following proposition, we study the existence of the unique positive equilibrium of
system (1.3).

Proposition 2.1. Consider system (1.3) where pi, qi, i = 0, 1 are positive constants and the initial
values yi, zi, i = −1, 0 are positive numbers. Suppose that

q0 − 1 < p0, q1 − 1 < p1 (2.1)

are satisfied. Then system (1.3) possesses a unique positive equilibrium.

Proof. Let (y, z) be a positive equilibrium of system (1.3) then

y =
p0z + y

q0 + y
, z =

p1y + z

q1 + z
. (2.2)

Equations (2.2) imply that z is a solution of the equation

f(x) = x3 + 2
(
q1 − 1

)
x2 +

[(
q1 − 1

)2 + p1
(
q0 − 1

)]
x +
(
q1 − 1

)(
q0 − 1

)
p1 − p0p

2
1 = 0. (2.3)

Suppose that

q1 ≥ 1. (2.4)
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Let λ1, λ2, and λ3 be the solutions of (2.3). Then from (2.1), (2.3), and (2.4)we take

λ1 + λ2 + λ3 = 2
(
1 − q1

) ≤ 0,

λ1λ2λ3 = −(q1 − 1
)(
q0 − 1

)
p1 + p0p

2
1 > 0,

(2.5)

and so (2.3) has unique positive solution z. Then from (2.2) and (2.4) we have

z > 1 − q1, y =
z2 +

(
q1 − 1

)
z

p1
> 0, (2.6)

and so system (1.3) has a unique positive equilibrium.
Now suppose that

q1 < 1,
(
q1 − 1

)(
q0 − 1

)
> p1p0. (2.7)

If λ1, λ2, and λ3 are the solutions of (2.3), then from (2.3) and (2.7) we take

λ1 + λ2 + λ3 = 2
(
1 − q1

)
> 0,

λ1λ2λ3 = −(q1 − 1
)(
q0 − 1

)
p1 + p0p

2
1 < 0,

(2.8)

and so (2.3) has a negative solution, but also (2.3) has a solution in the interval (0, 1 − q1),
since

f(0) =
(
q1 − 1

)(
q0 − 1

)
p1 − p0p

2
1 > 0,

f
(
1 − q1

)
= −p0p21 < 0.

(2.9)

Moreover, (2.3) has a solution z in the interval (1 − q1,∞), since

lim
x→∞

f(x) = ∞, (2.10)

therefore, we get (2.6) and so system (1.3) has a unique positive equilibrium.
Finally, suppose that

q1 < 1,
(
q1 − 1

)(
q0 − 1

)
< p1p0. (2.11)

If λ1, λ2, and λ3 are the solutions of (2.3), then from (2.3) and (2.11), we take

λ1 + λ2 + λ3 = 2
(
1 − q1

)
> 0,

λ1λ2λ3 = −(q1 − 1
)(
q0 − 1

)
p1 + p0p

2
1 > 0.

(2.12)



4 Discrete Dynamics in Nature and Society

We have limx→∞ f(x) = ∞, and since f(1 − q1) < 0, it is obvious that (2.3) has a solution z in
the interval (1 − q1,∞). From (2.3), we get

f ′(x) = 3x2 + 4x
(
q1 − 1

)
+
(
q1 − 1

)2 + p1
(
q0 − 1

)
. (2.13)

If equation f ′(x) = 0 has complex roots, then it is obvious that z is the unique solution
of (2.3). Therefore, we get (2.6), and so system (1.3) has a unique positive equilibrium.

Now, suppose that the roots of f ′(x) = 0

μ1 =
2
(
1 − q1

) −
√
D

3
, μ2 =

2(1 − q1
)
+
√
D

3
, D = (1 − q1

)2 + 3p1(1 − q0
)
, (2.14)

are real numbers.
Suppose that q0 < 1, then it is obvious that

μ1 < 1 − q1 < μ2, (2.15)

and so we have that (2.3) has a unique solution z ∈ (1 − q1,∞).
If q0 ≥ 1, then it holds that

0 < μ1 ≤ μ2 ≤ 1 − q1, (2.16)

which implies that (2.3) has a unique solution z ∈ (1 − q1,∞).
Therefore, we can take (2.6) and so system (1.3) has a unique positive equilibrium.

This completes the proof of the proposition.

3. Boundedness and Persistence of the Solutions of System (1.3)

In the following propositions we study the boundedness and the persistence of the positive
solutions of system (1.3). In the sequel we will use the following result which has proved in
[20].

Theorem 3.1. Assume that all roots of the polynomial

P(t) = tN − s1t
N−1 − · · · − sN, (3.1)

where s1, s2, . . . , sN ≥ 0 have absolute value less than 1, and let yn be a nonnegative solution of the
inequality

yn+N ≤ s1yn+N−1 + · · · + sNyn + zn. (3.2)

Then, the following statements are true.

(i) If zn is a nonnegative bounded sequence, then yn is also bounded.

(ii) If limn→∞ zn = 0, then limn→∞ yn = 0.
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Proposition 3.2. One considers the system of difference equations (1.3) where pi, qi, i = 0, 1 are
positive constants and the initial values yi, zi, i = −1, 0 are positive numbers. Then the following
statements are true.

(i) If

q0q1
p0p1

≥ 1, (3.3)

then every solution of (1.3) is bounded.

(ii) If

q0 − 1 < p0 ≤ q0, q1 − 1 < p1 ≤ q1, (3.4)

then every solution of (1.3) is bounded and persists.

Proof. Let (yn, zn) be an arbitrary solution of (1.3).
(i) From (3.3), we get that one of the three following conditions holds:

q0
p0

> 1, (3.5)

q1
p1

> 1, (3.6)

p0 = q0 = p, p1 = q1 = q. (3.7)

We assume that (3.5) is satisfied. We prove that there exists a positive integer N such
that

yn < 1, zn <
q0
p0

, n ≥ N. (3.8)

First, we show that if there exists a positive integer n0 such that

zn0 <
q0
p0

, (3.9)

then

zn0+3p <
q0
p0

, p = 0, 1, . . . . (3.10)

In contradiction, we assume that

zn0+3 =
p1yn0+2 + zn0+1

q1 + zn0+1
≥ q0

p0
. (3.11)
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Using relations (1.3), (3.5), and (3.11), we get that

yn0+2 =
p0zn0 + yn0

q0 + yn0

>
q0q1
p0p1

, (3.12)

and so relations (1.3) and (3.3) imply that

zn0 >
q0

2q1

p02p1
>

q0
p0

, (3.13)

which contradicts (3.9). So zn0+3 < q0/p0 and working inductively, we get (3.10).
If z−1 < q0/p0, then from the analogous relations (3.9) and (3.10), we get

z−1+3p <
q0
p0

, p = 0, 1, . . . . (3.14)

Now, suppose that

z−1 ≥
q0
p0

, (3.15)

we prove that there exists a positive integer q such that

z−1+3q <
q0
p0

. (3.16)

From (3.3), there exists a positive integer h such that

z−1 <

(
q0q1
p0p1

)h

. (3.17)

If z2 < q0/p0, then (3.16) is true for q = 1.
Now, suppose that

z2 ≥
q0
p0

. (3.18)

Then from (1.3), (3.5), and (3.18), we get y1 > q0q1/p0p1 and so from (1.3), (3.3), and (3.5),
we have that

z−1 >
q1q0

2

p1p02
>

q1q0
p1p0

. (3.19)

If z5 < q0/p0, then (3.16) is true for q = 2.
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Now, suppose that

z5 ≥
q0
p0

. (3.20)

Using (1.3), (3.3), (3.5), (3.20) and arguing as to prove (3.19)we get

z−1 >

(
q1q0
p1p0

)2

. (3.21)

Working inductively, we get that

if z−1+3w ≥ q0
p0

, w = 1, 2, . . . , then z−1 >

(
q1q0
p1p0

)w

. (3.22)

From (3.22) for w = h, we get z−1 > (q1q0/p1p0)
h which contradicts (3.17). So z−1+3h < q0/p0

which means that (3.16) holds for q = h.
Arguing as for z−1, we can prove that there exist positive integers k, l such that

z0+3k <
q0
p0

, z1+3l <
q0
p0

. (3.23)

From (3.16) and (3.23), we get that there exists a positive integer r such that

zr <
q0
p0

, n ≥ r. (3.24)

Finally, from (1.3) and (3.24), we get yr+2 < 1 and so (3.8) is true for N = r + 2.
Similarly, we can prove that if (3.6) holds, then there exists a positive integer N such

that

zn < 1, yn <
q1
p1

, n ≥ N. (3.25)

Finally, suppose that (3.7) hold. From (1.3) and (3.7), we have

yn+1 − 1 =
p
(
zn−1 − 1

)

p + yn−1
, zn+1 − 1 =

q
(
yn − 1

)

q + zn−1
, (3.26)

and so,

yn+1 − 1 =
p

p + yn−1

q

q + zn−3

(
yn−2 − 1

)
. (3.27)
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From (3.27), we get

0 ≤ yn+1 − 1 ≤ yn−2 − 1, or 0 ≥ yn+1 − 1 ≥ yn−2 − 1, (3.28)

and so the subsequences y3n, y3n+1, y3n+2 either are bounded from below by 1 and decreasing
or bounded from above by 1 and increasing. Hence, yn is bounded and persists. Similarly,
we can prove that zn is bounded and persists. This completes the proof of part (i) of the
proposition.

(ii) In statement (i), we have already proved that if (3.7) hold, then every solution of
(1.3) is bounded and persists. So, from (3.4), it remains to show that if either

q0 − 1 < p0 < q0, q1 − 1 < p1 ≤ q1, (3.29)

or

q0 − 1 < p0 ≤ q0, q1 − 1 < p1 < q1, (3.30)

holds, then the solution (yn, zn) persists. From (3.3), (3.8), (3.25), (3.29), and (3.30), we get
that

yn <
q1
p1

, zn <
q0
p0

, n ≥ N. (3.31)

We consider the positive number m such that

m < min
{
yN, zN, yN+1, zN+1, p0 + 1 − q0, p1 + 1 − q1

}
. (3.32)

Moreover, if

f(y, z) =
p0z + y

q0 + y
, g(y, z) =

p1y + z

q1 + z
, (3.33)

then it is easy to see that for the functions (3.33), f is increasing with respect to y for any z,
z < q0/p0 and g is increasing with respect to z for any y, y < q1/p1.

Therefore, from (1.3), (3.31), and (3.32)we have

yN+2 >

(
p0 + 1

)
m

q0 +m
> m, zN+2 >

(
p1 + 1

)
m

q1 +m
> m, (3.34)

and working inductively, we take

yN+s ≥ m, zN+s ≥ m, s = 0, 1, . . . . (3.35)

Therefore, (yn, zn) persists and using statement (i), then (yn, zn) is bounded and persists. This
completes the proof of the proposition.
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Proposition 3.3. One considers the system of difference equations (1.3) where pi, qi, i = 0, 1 are
positive constants, and the initial values yi, zi, i = −1, 0 are positive numbers. Then, the following
statements are true.

(i) If

q0q1
p0p1

< 1, (3.36)

then every solution of (1.3) persists.

(ii) If

q0 ≤ p0 ≤ q0 + 1, q1 ≤ p1 ≤ q1 + 1, (3.37)

then every solution of (1.3) is bounded and persists.

Proof. Let (yn, zn) be an arbitrary solution of (1.3).

(i) From (3.36), we have

q0
p0

< 1, (3.38)

or

q1
p1

< 1. (3.39)

Arguing as in the proof of statement (i) of Proposition 3.2, we can easily prove that if
(3.38) holds, then there exists a positive integer M such that

yn > 1, zn >
q0
p0

, n ≥ M, (3.40)

and if (3.39) holds, then there exists a positive integer M such that

zn > 1, yn >
q1
p1

, n ≥ M. (3.41)

(ii) From Proposition 3.2, we have that if (3.7) holds, then every solution of (1.3) is
bounded and persists. So, from (3.37), it remains to show that if either

q0 < p0 ≤ q0 + 1, q1 ≤ p1 ≤ q1 + 1, (3.42)
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or

q0 ≤ p0 ≤ q0 + 1, q1 < p1 ≤ q1 + 1, (3.43)

holds, then the solution (yn, zn) is bounded and persists.

From (3.36), (3.40), (3.41), (3.42), and (3.43), we get that

yn >
q1
p1

, zn >
q0
p0

, n ≥ M. (3.44)

Suppose that

p0 /= q0 + 1 or p1 /= q1 + 1. (3.45)

From (1.3) and (3.44), we have

zM+1 > 1, yM+3 > 1. (3.46)

We have for the functions (3.33) that f is decreasing with respect to y for any z, z > q0/p0
and g is decreasing with respect to z for any y, y > q1/p1. Therefore, relations (1.3), (3.44),
and (3.46) imply that

zM+3 ≤
p1yM+2 + 1

q1 + 1
, (3.47)

and so from (1.3) and (3.46),

yM+5 ≤
p0p1

(
q0 + 1

)(
q1 + 1

)yM+2 +
p0

(
q0 + 1

)(
q1 + 1

) + 1. (3.48)

Working inductively, we can prove that

yn+5 ≤
p0p1

(
q0 + 1

)(
q1 + 1

)yn+2 +
p0

(
q0 + 1

)(
q1 + 1

) + 1, n ≥ M. (3.49)

Then from (3.42), (3.43), (3.45), and Theorem 3.1, yn is bounded. Similarly, we take that zn is
bounded. Therefore, from (3.44), the solution (yn, zn) is bounded and persists.

Now, suppose that

p0 = q0 + 1, p1 = q1 + 1. (3.50)
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We claim that yn is bounded. For the sake of contradiction, we assume that yn is not bounded.
Then, there exists a subsequence ni such that

lim
i→∞

yni+1 = ∞, (3.51)

yni+1 > max
{
yj, j < ni

}
. (3.52)

Moreover, from (1.3) and (3.50), we get

yni+1 <
q0 + 1
q0

zni−1 + 1, (3.53)

and so from (3.51),

lim
i→∞

zni−1 = ∞. (3.54)

Moreover, from (1.3) and (3.50),

zni−1 <
q1 + 1
q1

yni−2 + 1, (3.55)

and so from (3.54),

lim
i→∞

yni−2 = ∞. (3.56)

Working inductively, we can prove that

lim
i→∞

yni+1−3s = ∞, lim
i→∞

zni−1−3s = ∞, s = 0, 1, . . . . (3.57)

We claim that yni−6 is a bounded sequence. Suppose on the contrary that there exists an
unbounded subsequence of yni−6 and without loss of generality, we may suppose that

lim
i→∞

yni−6 = ∞. (3.58)

Arguing as above, we can easily prove that

lim
i→∞

yni−9 = lim
i→∞

yni−12 = ∞. (3.59)

Also, since from (1.3),

yni−6 =

(
q0 + 1

)((
zni−8

)
/
(
yni−8

))
+ 1

q0/yni−8 + 1
<

(
q0 + 1

)
zni−8

yni−8
+ 1, (3.60)
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from (3.58), we have that limi→∞( zni−8/yni−8) = ∞ and so eventually,

zni−8 > yni−8. (3.61)

From (1.3), (3.50), and (3.61), we have

yni+1 =

(
q0 + 1

)
zni−1 + yni−1

q0 + yni−1

<
q0 + 1
q0

zni−1 + 1

=
q0 + 1
q0

((
q1 + 1

)
yni−2 + zni−3

q1 + zni−3

)

+ 1

< 1 +
q0 + 1
q0

+
q0 + 1
q0

q1 + 1
q1

yni−2

< · · · < A + Byni−8

< A + Bzni−8,

(3.62)

where

A = 1 +
q0 + 1
q0

+
q0 + 1
q0

q1 + 1
q1

+

(
q0 + 1
q0

)2
q1 + 1
q1

+

(
q0 + 1
q0

)2(
q1 + 1
q1

)2

+

(
q0 + 1
q0

)3(
q1 + 1
q1

)2

,

B =

(
q0 + 1
q0

)3(
q1 + 1
q1

)3

.

(3.63)

Therefore, using (1.3) and (3.50), we get

yni+1 < A + B

((
q1 + 1

)
yni−9 + zni−10

q1 + zni−10

)

, (3.64)

and since from (3.57) and (3.59), we have that yni−9 → ∞, zni−10 → ∞ as i → ∞, we can
easily prove that eventually,

yni+1 < yni−9, (3.65)

which contradicts to (3.52).
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Therefore, yni−6 is a bounded sequence. From (1.3), (3.50), and (3.57), we get

zni−5 =

(
q1 + 1

)
yni−6 + zni−7

q1 + zni−7
=

(
q1 + 1)

(
yni−6/zni−7

)
+ 1

q1/zni−7 + 1
−→ 1, i −→ ∞. (3.66)

Similarly, from (1.3), (3.50) and (3.57) and (3.66) follows,

yni−3 =

(
q0 + 1

)
zni−5 + yni−5

q0 + yni−5
=

(
q0 + 1

)(
zni−5/yni−5

)
+ 1

q0/yni−5 + 1
−→ 1, i −→ ∞. (3.67)

Now, we prove that

lim inf
i→∞

yni−1 > 1. (3.68)

Otherwise, andwithout loss of generality, wemay suppose that limi→∞ yni−1 ≤ 1. So, relations
(1.3), (3.50), and (3.67) imply that

lim
i→∞

yni−1 =

(
q0 + 1

)
limi→∞ zni−3 + limi→∞ yni−3
q0 + limi→∞ yni−3

≤ 1, (3.69)

and so

lim
i→∞

zni−3 ≤
q0

q0 + 1
. (3.70)

Moreover, from (1.3), (3.44), and (3.50), we get eventually

zni−3 =

(
q1 + 1

)
yni−4 + zni−5

q1 + zni−5
>

(
q1 + 1

)(
q1/(q1 + 1)

)
+ zni−5

q1 + zni−5
= 1, (3.71)

and so from (3.66), limi→∞ zni−3 ≥ 1 which contradicts to (3.70).
Hence, (3.68) is true.
Similarly, we can prove that

lim inf
i→∞

zni−3 > 1. (3.72)

Therefore, from (3.68) and (3.72), we have eventually

yni−1 > 1 + k, zni−3 > 1 +m, (3.73)

where k, m are positive real numbers.
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Hence, from (1.3), (3.50), and (3.73)we have

yni+1 =
(q0 + 1)

[((
q1 + 1

)
yni−2 + zni−3

)
/
(
q1 + zni−3

)
] + yni−1

q0 + yni−1

<

(
q0 + 1

)(
q1 + 1

)

(
q1 + 1 +m

)(
q0 + 1 + k

)yni−2 +
q0 + 1
q0

+ 1.
(3.74)

Then from (3.57), we can prove that eventually

yni+1 < yni−2, (3.75)

which contradicts to (3.52).
Therefore, yn is a bounded sequence. Moreover, from (1.3), (3.50), we take that zn is

bounded. Therefore, the solution (yn, zn) is bounded and persists. This completes the proof
of the proposition.

4. Attractivity of the Positive Equilibrium of System (1.3)

In the following propositions, we study the convergency of the solutions of system (1.3) to its
positive equilibrium.

Proposition 4.1. One considers the system of difference equations (1.3) where pi, qi, i = 0, 1 are
positive constants, and the initial values yi, zi, i = −1, 0 are positive numbers. If either (3.29) or
(3.30) hold, then every solution of (1.3) tents to the positive equilibrium of (1.3).

Proof. Let (yn, zn) be an arbitrary solution of (1.3). From Proposition 3.2, there exist

L1 = lim sup
n→∞

yn, L2 = lim sup
n→∞

zn, l1 = lim inf
n→∞

yn, l2 = lim inf
n→∞

zn,

0 < L1, L2, l1, l2 < ∞.

(4.1)

From (1.3), (3.31), and the monotony of functions (3.33), we have

L1 ≤
p0L2 + L1

q0 + L1
, L2 ≤

p1L1 + L2

q1 + L2
, l1 ≥

p0l2 + l1
q0 + l1

, l2 ≥
p1l1 + l2
q1 + l2

, (4.2)

and hence

L1
2 + L1

(
q0 − 1

) − p0L2 ≤ 0, L2
2 + L2

(
q1 − 1

) − p1L1 ≤ 0,

l1
2 + l1

(
q0 − 1

) − p0l2 ≥ 0, l2
2 + l2

(
q1 − 1

) − p1l1 ≥ 0.
(4.3)
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The third inequality of (4.3), implies that

l1 ≥
1 − q0 +

√(
1 − q0

)2 + 4p0l2
2

, (4.4)

and so from the last inequality of (4.3), we have

2l2
2 + 2l2

(
q1 − 1

)
+
(
q0 − 1

)
p1 ≥ p1

√(
1 − q0

)2 + 4p0l2. (4.5)

Hence, we get

(
2l2

2 + 2l2
(
q1 − 1

)
+
(
q0 − 1

)
p1
)2 ≥

(
p1

√(
1 − q0

)2 + 4p0l2
)2
, (4.6)

or

l2
3 + 2l2

2(q1 − 1
)
+ l2
[(
q1 − 1

)2 + p1
(
q0 − 1

)]
+ p1
(
q1 − 1

)(
q0 − 1

) − p0p1
2 ≥ 0. (4.7)

The first inequality of (4.3), implies that

0 < L1 ≤
1 − q0 +

√(
1 − q0

)2 + 4p0L2

2
, (4.8)

and so from second inequality of (4.3), we get

2L2
2 + 2L2

(
q1 − 1

)
+
(
q0 − 1

)
p1 ≤ p1

√(
1 − q0

)2 + 4p0L2. (4.9)

Using (4.3), we have

L1 ≥ l1 > 1 − q0, L2 ≥ l2 > 1 − q1. (4.10)

Therefore, from (4.5) and (4.10), we get

2L2
2 + 2L2

(
q1 − 1

)
+
(
q0 − 1

)
p1 = 2L2

(
L2 + q1 − 1

)
+
(
q0 − 1

)
p1

≥ 2l2
2 + 2l2

(
q1 − 1

)
+
(
q0 − 1

)
p1

> 0.

(4.11)

Using (4.9) and (4.11), we have

L2
3 + 2L2

2(q1 − 1
)
+ L2

[(
q1 − 1

)2 + p1
(
q0 − 1

)]
+ p1
(
q1 − 1

)(
q0 − 1

) − p0p1
2 ≤ 0. (4.12)
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In Proposition 2.1, we proved that (2.3) has a unique positive solution z, z ∈ (1 − q1,∞). We
can write

f(x) = (x − z)
(
x2 + ax + b

)
, a, b ∈ R, (4.13)

where f(x) is defined in (2.3) and x2 + ax + b > 0 for any x > 1 − q1. Then from (4.7), (4.12),
and (4.13), we have

(
L2 − z

)(
L2
2 + aL2 + b

) ≤ 0,
(
l2 − z

)(
l22 + al2 + b

) ≥ 0. (4.14)

Therefore, from (4.10) and (4.14),

L2 ≤ z ≤ l2,

which implies that

L2 = l2 = z. (4.15)

In addition, using (4.15), the first and the third inequalities of (4.3), we have

L2
1 +
(
q0 − 1

)
L1 ≤ l21 +

(
q0 − 1

)
l1, (4.16)

and so (4.10) implies that

L1 = l1. (4.17)

This completes the proof of the proposition.

Proposition 4.2. One considers the system of difference equations (1.3) where pi, qi, i = 0, 1 are
positive constants, and the initial values yi, zi, i = −1, 0 are positive numbers. If either (3.42) or
(3.43) hold, then every solution of (1.3) tents to the positive equilibrium of (1.3).

Proof. Let (yn, zn) be an arbitrary solution of (1.3). From Proposition 3.3, there exist Li, li,
i = 1, 2 such that (4.1) are satisfied.

From (1.3), the monotony of functions (3.33) and (3.44), we have

L1 ≤
p0L2 + l1
q0 + l1

, L2 ≤
p1L1 + l2
q1 + l2

, l1 ≥
p0l2 + L1

q0 + L1
, l2 ≥

p1l1 + L2

q1 + L2
, (4.18)

and hence

L1l1 + L1q0 ≤ p0L2 + l1, L1l1 + l1q0 ≥ p0l2 + L1,

L2l2 + L2q1 ≤ p1L1 + l2, L2l2 + l2q1 ≥ p1l1 + L2,
(4.19)
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which implies that

(
1 + q0

)(
L1 − l1

) ≤ p0
(
L2 − l2

)
,

(
1 + q1

)(
L2 − l2

) ≤ p1
(
L1 − l1

)
. (4.20)

Therefore,

[(
1 + q0

)(
1 + q1

) − p0p1
](
L1 − l1

) ≤ 0. (4.21)

First suppose that (3.45) holds. Then from (3.42) or (3.43), and (3.45), we get L1−l1 ≤ 0,which
means that

L1 = l1. (4.22)

Using (4.20), it is obvious that

L2 = l2. (4.23)

So if (3.45) holds, the proof is completed.
Now, suppose that (3.50) hold. Then from (4.20), we have

L2 − l2 = L1 − l1. (4.24)

Moreover, from (4.24), it follows that

(
q0 + 1

)
l2 + L1 − l1q0 =

(
q0 + 1

)
L2 + l1 − L1q0. (4.25)

In addition, from (3.50), the first and the second inequalities of (4.19), we get

(
q0 + 1

)
l2 + L1 − l1q0 ≤ L1l1 ≤

(
q0 + 1

)
L2 + l1 − L1q0. (4.26)

Therefore, from (4.25) and (4.26), we have

L1 =

(
q0 + 1

)
L2 + l1

q0 + l1
. (4.27)

We may assume that there exists a positive integer ni such that

lim
i→∞

yni−j = Aj, lim
i→∞

zni−j = Bj, lim
i→∞

yni+1 = L1. (4.28)

Moreover, from (1.3), (3.50), and (4.28), we get

L1 =

(
q0 + 1

)
B1 +A1

q0 +A1
. (4.29)
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Since f(x, y) = ((q0+1)x+y)/(q0+y) is decreasing with respect to y, for any x > (q0/(q0+1)),
if B1 < L2 or l1 < A1, then from (3.44), and (3.50), we get

L1 <

(
q0 + 1

)
L2 + l1

q0 + l1
, (4.30)

which contradicts to (4.27). So,

B1 = L2, l1 = A1. (4.31)

Using the same argument, we can prove that

A2 = L1, B3 = l2,

B3 = l2, A3 = L1,

B4 = L2, A4 = l1,

A4 = l1, B5 = L2,

B5 = L2, A5 = l1,

A5 = L1, B6 = l2,

(4.32)

and so L1 = l1 = A. Also, from (4.24), we have L2 = l2 = B. Therefore,

lim
n→∞

yn = A, lim
n→∞

zn = B, (4.33)

where obviously A = B = 2. This completes the proof of the proposition.

Proposition 4.3. One considers the system of difference equations (1.3) where pi, qi, i = 0, 1 are
positive constants, and the initial values yi, zi, i = −1, 0 are positive numbers. If relations (3.7) hold,
then every solution of (1.3) tents to the positive equilibrium (1, 1) of (1.3).

Proof. Let (yn, zn) be an arbitrary solution of (1.3). From the proof of Proposition 3.2, the
subsequences y3n, y3n+1, y3n+2, z3n, z3n+1, and z3n+2 are monotone and yn, zn are bounded
and persist. So, there exist positive numbers L1, L2, L3, M1, M2, and M3 such that

L1 = lim
n→∞

y3n, L2 = lim
n→∞

y3n+1, L3 = lim
n→∞

y3n+2,

M1 = lim
n→∞

z3n, M2 = lim
n→∞

z3n+1, M3 = lim
n→∞

z3n+2,
(4.34)
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and from (1.3) and (3.7), we get

L1 =
pM2 + L2

p + L2
, M1 =

qL3 +M2

q +M2
,

L2 =
pM3 + L3

p + L3
, M2 =

qL1 +M3

q +M3
,

L3 =
pM1 + L1

p + L1
, M3 =

qL2 +M1

q +M1
.

(4.35)

Then, we have

L1p + L1L2 = pM2 + L2, M1q +M1M2 = qL3 +M2,

L2p + L2L3 = pM3 + L3, M2q +M2M3 = qL1 +M3,

L3p + L1L3 = pM1 + L1, M3q +M3M1 = qL2 +M1,

(4.36)

and hence,

(
L1 −M2

)
p = L2

(
1 − L1

)
,

(
M1 − L3

)
q = M2

(
1 −M1

)
,

(
L2 −M3

)
p = L3

(
1 − L2

)
,

(
M2 − L1

)
q = M3

(
1 −M2

)
,

(
L3 −M1

)
p = L1

(
1 − L3

)
,

(
M3 − L2

)
q = M1

(
1 −M3

)
.

(4.37)

Therefore, we take

1
p
L2
(
1 − L1

)
=

1
q
M3
(
M2 − 1

)
,

1
p
L3
(
1 − L2

)
=

1
q
M1
(
M3 − 1

)
,

1
p
L1
(
1 − L3

)
=

1
q
M2
(
M1 − 1

)
.

So,

if L1 ≥ 1
(
resp., L1 ≤ 1

)
, then M2 ≤ 1

(
resp., M2 ≥ 1

)
,

if L2 ≥ 1
(
resp., L2 ≤ 1

)
, then M3 ≤ 1

(
resp., M3 ≥ 1

)
,

if L3 ≥ 1
(
resp., L3 ≤ 1

)
, then M1 ≤ 1

(
resp., M1 ≥ 1

)
.

(4.38)

Therefore, if L1 ≥ 1, M2 ≤ 1 (resp., L1 ≤ 1, M2 ≥ 1), we have L1 − M2 ≥ 0 (resp., L1 −
M2 ≤ 0) and so from (4.37), L1 ≤ 1 (resp., L1 ≥ 1). Hence, L1 = 1 and from (4.37), M2 = 1.
Similarly, we can prove that L2 = 1, L3 = 1, M1 = 1, M3 = 1. This completes the proof of the
proposition.
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5. Stability of System (1.3)

In this section we find conditions so that the positive equilibrium (y, z) and the zero
equilibrium of (1.3) are stable.

Proposition 5.1. Consider system (1.3) where pi, qi, i = 0, 1 are positive constants and the initial
values yi, zi, i = −1, 0 are positive numbers. Then, the following statements are true.

(i) If

q0 − 1 < p0 ≤ q0, q1 − 1 < p1 ≤ q1, q0 + q1 + p0p1 + q0q1 < 1, (5.1)

then the unique positive equilibrium (y, z) of (1.3) is globally asymptotically stable.

(ii) If

q0 + q1 + p0p1 + 1 < q0q1, (5.2)

then the zero equilibrium of (1.3) is locally asymptotically stable.

Proof. (i) Since (y, z) is the unique positive positive equilibrium of (1.3), we have

y =
p0z + y

q0 + y
, z =

p1y + z

q1 + z
. (5.3)

Then from (5.1) and (5.3), we get

y ≤ q0z + y

q0 + y
, z ≤ q1y + z

q1 + z
. (5.4)

Without loss of generality we assume that z ≤ y. Then from (5.4), it results that

y ≤ q0y + y

q0 + y
, (5.5)

which means that

y ≤ 1. (5.6)

Moreover, from (5.4) and (5.6), we get

z ≤ q1 + z

q1 + z
= 1. (5.7)

In addition, from (5.3), we have

y >
y

q0 + y
, z >

z

q1 + z
, (5.8)
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and so

y > 1 − q0, z > 1 − q1. (5.9)

Then the linearized system of (1.3) about the positive equilibrium (y, z) is

Zn+1 = AZn, (5.10)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1

q0 − p0z
(
q0 + y

)2
p0

q0 + y
0 0

0
q1 − p1y
(
q1 + z

)2
p1

q1 + z
0

⎞

⎟
⎟
⎟
⎟
⎟⎟⎟⎟
⎠

, Zn =

⎛

⎜
⎜
⎝

wn−1
vn−1
wn

vn

⎞

⎟
⎟
⎠ . (5.11)

The characteristic equation of A is

λ4 −
(

q0 − p0z
(
q0 + y

)2 +
q1 − p1y
(
q1 + z

)2

)

λ2 − p1p0
(
q0 + y

)(
q1 + z

)λ +

(
q0 − p0z

)(
q1 − p1y

)

(
q0 + y

)2(
q1 + z

)2 = 0. (5.12)

According to Remark 1.3.1 of [7], all the roots of (5.12) are of modulus less than 1 if and only
if

∣∣∣∣∣
q0 − p0z
(
q0 + y

)2 +
q1 − p1y
(
q1 + z

)2

∣∣∣∣∣
+

p1p0
(
q0 + y

)(
q1 + z

) +

∣∣∣∣∣

(
q0 − p0z

)(
q1 − p1y

)

(
q0 + y

)2(
q1 + z

)2

∣∣∣∣∣
< 1. (5.13)

From (5.3), we get

q0 − p0z = (1 − y)
(
y + q0

)
, q1 − p1y = (1 − z)

(
z + q1

)
. (5.14)

Then from (5.6), (5.7), and (5.14), inequality (5.13) is equivalent to

1 − y

q0 + y
+

1 − z

q1 + z
+

p1p0
(
q0 + y

)(
q1 + z

) +
(1 − y)(1 − z)
(
q0 + y

)(
q1 + z

) < 1. (5.15)

Using (5.9), inequality (5.15) holds if (5.1) are satisfied. Using Propositions 4.1 and 4.3, we
have that the unique positive equilibrium (y, z) of (1.3) is globally asymptotically stable.

(ii) Arguing as above, we can prove that the linearized system of (1.3) about the zero
equilibrium is

Zn+1 = AZn, (5.16)
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where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0 0 1 0
0 0 0 1
1
q0

p0
q0

0 0

0
1
q1

p1
q1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

, Zn =

⎛

⎜
⎜
⎝

wn−1
vn−1
wn

vn

⎞

⎟
⎟
⎠ . (5.17)

The characteristic equation of A is

λ4 −
(

1
q0

+
1
q1

)

λ2 − p1p0
q0q1

λ +
1

q0q1
= 0. (5.18)

Using [7, Remark 1.3.1], all the roots of (5.18) are of modulus less than 1 if and only if relation
(5.2) holds. This completes the proof of the proposition.

6. Conclusion

In this paper, in order to investigate (1.2), we study the equivalent system (1.3). Summarizing
the results of Sections 2, 3, 4, we get the following statements, concerning (1.2).

(i) If (2.1) hold, then (1.2) has a unique positive periodic solution of period 2.

(ii) If either (3.4) or (3.37) holds, then every positive solution of (1.2) is bounded and
persists and tends to the unique positive periodic solution.

(iii) If (5.1) hold, then the unique periodic solution of (1.2) is globally asymptotically
stable and if (5.2) holds, then the zero solution of (1.2) is locally asymptotically
stable.

Open Problem

Consider the difference equation (1.2) where pn, qn, n = 0, 1, . . . are positive sequences of
period 2, and the initial values xi, i = −3,−2,−1, 0 are positive numbers. Prove that

(i) if

q0 − 1 < p0 ≤ q0 + 1, q1 − 1 < p1 ≤ q1 + 1 (6.1)

are satisfied, then every positive solution of (1.2) is bounded and persists;

(ii) if relations (6.1) are satisfied, then every positive solution of (1.2) tends to the
unique positive equilibrium (y, z) of (1.2) as n → ∞.
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