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We study the existence of positive solutions for the following nonlinear m-point boundary value
problem for an increasing homeomorphism and homomorphism with sign changing nonlinearity:
{(φ(u′(t)))′ + a(t)f(t, u(t)) = 0, 0 < t < 1, u′(0) =

∑m−2
i=1 aiu

′(ξi), u(1) =
∑k

i=1biu(ξi) −
∑s

i=k+1biu(ξi) −∑m−2
i=s+1biu

′(ξi), where φ : R → R is an increasing homeomorphism and homomorphism and
φ(0) = 0. The nonlinear term f may change sign. As an application, an example to demonstrate our
results is given. The conclusions in this paper essentially extend and improve the known results.
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1. Introduction

In this paper, we study the existence of positive solutions of the following nonlinear m-point
boundary value problem with sign changing nonlinearity:

(
φ
(
u′(t)

))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑

i=1

aiu
′(ξi

)
, u(1) =

k∑

i=1

biu
(
ξi
) −

s∑

i=k+1

biu
(
ξi
) −

m−2∑

i=s+1

biu
′(ξi

)
,

(1.1)

where φ : R → R is an increasing homeomorphism and homomorphism and φ(0) = 0;
ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and ai, bi, a, f satisfy

(H1) ai, bi ∈ [0,+∞), 0 <
∑k

i=1 bi −
∑s

i=k+1 bi < 1, 0 <
∑m−2

i=1 ai < 1;
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(H2) a(t) : (0, 1) → [0,+∞) does not vanish identically on any subinterval of [0, 1] and
satisfies

0 <

∫1

0
a(t)dt < ∞; (1.2)

(H3) f ∈ C([0, 1] × [0,+∞), (−∞,+∞)), f(t, 0) ≥ 0 and f(t, 0)/= 0.

Definition 1.1. A projection φ : R → R is called an increasing homeomorphism and
homomorphism, if the following conditions are satisfied:

(i) if x ≤ y, then φ(x) ≤ φ(y), for all x, y ∈ R;

(ii) φ is a continuous bijection and its inverse mapping is also continuous;

(iii) φ(xy) = φ(x)φ(y), for all x, y ∈ R.

The study of multipoint boundary value problems for linear second-order ordinary
differential equations was initiated by Il’in and Moiseev [1, 2]. Motivated by the study
of [1, 2], Gupta [3] studied certain three-point boundary value problems for nonlinear
ordinary differential equations. Since then, more general nonlinear multipoint boundary
value problems have been studied by several authors. We refer the reader to [4–12] for some
references along this line. Multipoint boundary value problems describe many phenomena
in the applied mathematical sciences. For example, the vibrations of a guy wire of a
uniform cross-section and composed of N parts of different densities can be set up as a
multipoint boundary value problems (see Moshinsky [13]); many problems in the theory
of elastic stability can be handled by the method of multipoint boundary value problems (see
Timoshenko [14]).

In 2001, Ma [6] studied m-point boundary value problem (BVP):

u′′(t) + h(t)f(u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1) =
m−2∑

i=1

αiu
′(ξi

)
,

(1.3)

where αi > 0 (i = 1, 2, . . . , m − 2),
∑m−2

i=1 αi < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and
f ∈ C([0,+∞), [0,+∞)), h ∈ C([0, 1], [0,+∞)). Author established the existence of positive
solutions under the condition that f is either superlinear or sublinear.

In [11], we considered the existence of positive solutions for the following nonlinear
four-point singular boundary value problem with p-Laplacian:

(
φp

(
u′(t)

))′ + a(t)f(u(t)) = 0, 0 < t < 1,

αφp(u(0)) − βφp

(
u′(ξ)

)
= 0, γφp(u(1)) + δφp

(
u′(η)

)
= 0,

(1.4)

where φp(s) = |s|p−2s, p > 1, φq = (φp)
−1, 1/p + 1/q = 1, α > 0, β ≥ 0, γ > 0, δ ≥ 0, ξ, η ∈

(0, 1), ξ < η, a : (0, 1) → [0,∞). By using the fixed-point theorem of cone, the existence of
positive solution andmany positive solutions for nonlinear singular boundary value problem
p-Laplacian is obtained.
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Recently, Ma et al. [5] used the monotone iterative technique in cones to prove the
existence of at least one positive solution form-point boundary value problem (BVP):

(
φp

(
u′(t)

))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑

i=1

aiu
′(ξi

)
, u(1) =

m−2∑

i=1

biu
(
ξi
)
,

(1.5)

where 0 <
∑m−2

i=1 bi < 1, 0 <
∑m−2

i=1 ai < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, a(t) ∈ L1[0, 1],
f ∈ C([0, 1] × [0,+∞), [0,+∞)).

In [9], Wang and Hou investigated the following m-point BVP:

(
φp

(
u′(t)

))′ + f(t, u(t)) = 0, t ∈ (0, 1),

φp

(
u′(0)

)
=

n−2∑

i=1

aiφp

(
u′(ξi

))
, u(1) =

n−2∑

i=1

biu
(
ξi
)
,

(1.6)

where φp(u) = |u|p−2u, p > 1, ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξn−2 < 1 and ai, bi satisfy
ai, bi ∈ [0,+∞), 0 <

∑n−2
i=1 ai < 1, 0 <

∑n−2
i=1 bi < 1.

However, in all the above-mentioned paper, the authors discuss the boundary
value problem (BVP) under the key conditions that the nonlinear term is positive
continuous function. Motivated by the results mentioned above, in this paper we study the
existence of positive solutions of m-point boundary value problem (1.1) for an increasing
homeomorphism and homomorphism with sign changing nonlinearity. We generalize the
results in [4–12].

By a positive solution of BVP (1.1), we understand a function u which is positive on
(0, 1) and satisfies the differential equation as well as the boundary conditions in BVP (1.1).

2. The Preliminary Lemmas

In this section, we present some lemmas which are important to our main results.

Lemma 2.1. Let (H1) and (H2) hold. Then for u ≥ 0 ∈ C[0, 1], the problem

(
φ
(
u′(t)

))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑

i=1

aiu
′(ξi

)
, u(1) =

k∑

i=1

biu
(
ξi
) −

s∑

i=k+1

biu
(
ξi
) −

m−2∑

i=s+1

biu
′(ξi

) (2.1)

has a unique solution u(t) if and only if u(t) can be express as the following equation:

u(t) = −
∫1

t

ωf(s)ds + B, (2.2)
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where A, B satisfy

φ−1(A) =
m−2∑

i=1

aiφ
−1
(

A −
∫ ξi

0
a(s)f(s, u(s))ds

)

, (2.3)

B = − 1

1 −∑k
i=1bi +

∑s
i=k+1bi

[
k∑

i=1

bi

∫1

ξi

ωf(s)ds −
s∑

i=k+1

bi

∫1

ξi

ωf(s)ds

+
m−2∑

i=s+1

biφ
−1
(

A −
∫ ξi

0
a(s)f(s, u(s))ds

)]

,

(2.4)

where

ωf(s) = φ−1
(

−
∫s

0
a(r)f(r, u(r))dr +A

)

. (2.5)

Define l = φ(
∑m−2

i=1 ai)/(1 − φ(
∑m−2

i=1 ai)) ∈ (0, 1), then there exists a unique A ∈ [−l∫10a(s)f(s,
u(s))ds, 0] satisfying (2.3).

Proof. The method of the proof is similar to [5, Lemma 2.1], we omit the details.

Lemma 2.2. Let (H1) and (H2) hold. If u ∈ C+[0, 1], the unique solution of the problem (2.1)
satisfies

u(t) ≥ 0, t ∈ [0, 1]. (2.6)

Proof. According to Lemma 2.1, we first have

−A +
∫s

0
a(r)f(t, u(r))dr ≥ 0. (2.7)

So

u(1) = B

= − 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

[
k∑

i=1

bi

∫1

ξi

ωf(s)ds −
s∑

i=k+1

bi

∫1

ξi

ωf(s)ds

+
m−2∑

i=s+1

biφ
−1
(

A −
∫ ξi

0
a(s)f(t, u(s))ds

)]

=
1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

[
k∑

i=1

bi

∫1

ξi

−ωf(s)ds −
s∑

i=k+1

bi

∫1

ξi

−ωf(s)ds

+
m−2∑

i=s+1

biφ
−1
(

−A +
∫ ξi

0
a(s)f(t, u(s))ds

)]
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≥ 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

[
k∑

i=1

bi

∫1

ξk

−ωf(s)ds −
s∑

i=k+1

bi

∫1

ξk

−ωf(s)ds

]

=

(∑k
i=1 bi −

∑s
i=k+1 bi

)∫1
ξk
−ωf(s)ds

1 −∑k
i=1 bi +

∑s
i=k+1 bi

≥ 0.

(2.8)

If t ∈ [0, 1), we have

u(t) = B −
∫1

t

φ−1
(

A −
∫s

0
a(r)f(r, u(r))dr

)

ds

= u(1) +
∫1

t

φ−1
(

−A +
∫ s

0
a(r)f(r, u(r))dr

)

ds

≥ u(1)

≥ 0.

(2.9)

So u(t) ≥ 0, t ∈ [0, 1]. The proof of Lemma 2.2 is completed.

Lemma 2.3. Let (H1) and (H2) hold. If u ∈ C+[0, 1], the unique solution of the problem (2.1)
satisfies

inf
t∈[0,1]

u(t) ≥ γ‖u‖, (2.10)

where γ = (
∑k

i=1 bi−
∑s

i=k+1 bi)(1−ξk)/(1−
∑k

i=1 biξk+
∑s

i=k+1 biξk) ∈ (0, 1), ‖u‖ = maxt∈[0,1]|u(t)|.

Proof. Clearly

u′(t) = φ−1
(

A −
∫ t

0
a(s)f(s, u(s))ds

)

= −φ−1
(

−A +
∫ t

0
a(s)f(s, u(s))ds

)

≤ 0.

(2.11)

This implies that

‖u‖ = u(0), min
t∈[0,1]

u(t) = u(1). (2.12)
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It is easy to see that u′(t2) ≤ u′(t1), for any t1, t2 ∈ [0, 1]with t1 ≤ t2. Hence u′(t) is a decreasing
function on [0, 1]. This means that the graph of u(t) is concave down on (0, 1). So we have

u
(
ξk
) − u(1)ξk ≥ (

1 − ξk
)
u(0). (2.13)

Together with u(1) =
∑k

i=1 biu(ξi) −
∑s

i=k+1 biu(ξi) −
∑m−2

i=s+1 biu
′(ξi) and u′(t) ≤ 0 on [0, 1], we

get

u(0) ≤
∑k

i=1 biu
(
ξk
) − u(1)

∑k
i=1 biξk −

∑s
i=k+1 biu

(
ξk
)
+ u(1)

∑s
i=k+1 biξk(∑k

i=1 bi −
∑s

i=k+1 bi
)(

1 − ξk
)

≤
∑k

i=1 biu
(
ξi
) − u(1)

∑k
i=1 biξk −

∑s
i=k+1 biu

(
ξi
)
+ u(1)

∑s
i=k+1 biξk(∑k

i=1 bi −
∑s

i=k+1 bi
)(

1 − ξk
)

≤
u(1)

(
1 −∑k

i=1 biξk +
∑s

i=k+1 biξk
)

(∑k
i=1 bi −

∑s
i=k+1 bi

)(
1 − ξk

)

=
u(1)
γ

.

(2.14)

The proof of Lemma 2.3 is completed.

Lemma 2.4 (see [8]). Let K be a cone in a Banach space X. Let D be an open bounded subset of X
with DK = D ∩K/=φ and DK /=K. Assume that A : DK → K is a compact map such that x /=AK
for x ∈ ∂DK. Then the following results hold.

(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂DK, then i(A,DK,K) = 1.

(2) If there exists x0 ∈ K \ {θ} such that x /=Ax + λx0, for all x ∈ ∂DK and all x > 0, then
i(A,DK,K) = 0.

(3) LetU be open inX such thatU ⊂ DK. If i(A,DK,K) = 1 and i(A,DK,K) = 0, thenA has
a fixed point in DK \UK. The same results hold, if i(A,DK,K) = 0 and i(A,DK,K) = 1.

Let E = C[0, 1], then E is Banach space, with respect to the norm ‖u‖ = supt∈[0,1]|u(t)|.
Denote

K =
{
u | u ∈ C[0, 1], u(t) ≥ 0, inf

t∈[0,1]
u(t) ≥ γ‖u‖

}
, (2.15)

where γ is the same as in Lemma 2.3. It is obvious that K is a cone in C[0, 1].
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We define ϕ(t) = min{t, 1 − t}, t ∈ (0, 1) and

Kρ = {u(t) ∈ K : ‖u‖ < ρ},
K∗

ρ = {u(t) ∈ K : ρϕ(t) < u(t) < ρ},

Ωρ =
{
u(t) ∈ K : min

ξm−2≤t≤1
u(t) < γρ

}

=
{
u(t) ∈ E : u ≥ 0, γ‖u‖ ≤ min

ξm−2≤t≤1
u(t) < γρ

}
.

(2.16)

Lemma 2.5 (see [13]). Ωρ defined above has the following properties:

(a) Kγρ ⊂ Ωρ ⊂ Kρ;

(b) Ωρ is open relative to K;

(c) X ∈ ∂Ωρ if and only ifminξm−2≤t≤1c x(t) = γρ;

(d) If x ∈ ∂Ωρ, then γρ ≤ x(t) ≤ ρ for t ∈ [ξm−2, 1].

Now, for the convenience, one introduces the following notations:

f
ρ
γρ = min

{

min
ξm−2≤t≤1

f(t, u)
φ(ρ)

: u ∈ [γρ, ρ]
}

,

f
ρ

0 = max
{

max
0≤t≤1

f(t, u)
φ(ρ)

: u ∈ [0, ρ]
}

,

f
ρ

ϕ(t)ρ = max
{

max
0≤t≤1

f(t, u)
φ(ρ)

: u ∈ [ϕ(t)ρ, ρ]
}

,

fα = lim
u→α

sup max
0≤t≤1

f(t, u)
φ(u)

,

fα = lim
u→α

inf min
ξm−2≤t≤1

f(t, u)
φ(u)

,
(
α := ∞ or 0+

)
,

m =

⎧
⎨

⎩

(
1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi

)
φ−1((l + 1)

∫1
0a(s)ds

)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

⎫
⎬

⎭

−1

,

M =

{ ∑k
i=1 bi −

∑s
i=k+1 bi

1 −∑k
i=1 bi +

∑s
i=k+1 bi

∫1

ξk

φ−1
(∫s

0
a(r)dr

)

ds

}−1
.

(2.17)
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3. The Main Result

In the rest of the section, we also assume the following conditions.

(A1) There exist ρ1, ρ2 ∈ (0,+∞)with ρ1 < γρ2 such that

(1) f(t, u) > 0, t ∈ [0, 1], u ∈ [
ρ1ϕ(t),+∞

)
,

(2) f
ρ1
ϕ(t)ρ1

≤ φ(m), f
ρ2
γρ2 ≥ φ(Mγ).

(3.1)

(A2) There exist ρ1, ρ2 ∈ (0,+∞)with ρ1 < ρ2 such that

(3) f(t, u) > 0, t ∈ [0, 1], u ∈ [
min

{
γρ1, ρ2ϕ(t)

}
,+∞)

,

(4) f
ρ1
γρ1 ≥ φ(Mγ), f

ρ2
ϕ(t)ρ2

≤ φ(m).
(3.2)

(A3) There exist ρ1, ρ2, ρ3 ∈ (0,+∞)with ρ1 < γρ2 and ρ2 < ρ3 such that

(1) f(t, u) > 0, t ∈ [0, 1], u ∈ [
ρ1ϕ(t),+∞

)
,

(2) f
ρ1
ϕ(t)ρ1

≤ φ(m), f
ρ2
γρ2 ≥ φ(Mγ), f

ρ3
ϕ(t)ρ3

≤ φ(m).
(3.3)

(A4) There exist ρ1, ρ2, ρ3 ∈ (0,+∞)with ρ1 < ρ2 < γρ3 such that

(3) f(t, u) > 0, t ∈ [0, 1], u ∈ [
min

{
γρ1, ρ2ϕ(t)

}
,+∞)

,

(4) f
ρ1
γρ1 ≥ φ(Mγ), f

ρ2
ϕ(t)ρ2

≤ φ(m), f
ρ3
γρ3 ≥ φ(Mγ).

(3.4)

(A5) There exist ρ′, ρ ∈ (0,+∞) with ρ′ < γρ such that

(1) f(t, u) > 0, t ∈ [0, 1], u ∈ [
ρ′ϕ(t),+∞)

,

(2) f
ρ′

ϕ(t)ρ′ ≤ φ(m), f
ρ
γρ ≥ φ(Mγ), 0 ≤ f∞ < φ(m).

(3.5)

(A6) There exist ρ′, ρ ∈ (0,+∞) with ρ′ < ρ such that

(3) f(t, u) > 0, t ∈ [0, 1], u ∈ [
min

{
γρ′, ρϕ(t)

}
,+∞)

,

(4) f
ρ′

γρ′ ≥ φ(Mγ), f
ρ

ϕ(t)ρ ≤ φ(m), φ(M) < f∞ ≤ ∞.
(3.6)
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Our main results are the following theorems.

Theorem 3.1. Assume that (H1), (H2), (H3), (A3) hold. Then BVP (1.1) has at least three
positive solutions.

Theorem 3.2. Assume that (H1), (H2), (H3), (A4) hold. Then BVP (1.1) has at least two positive
solutions.

Theorem 3.3. Assume that (H1), (H2), (H3) hold and also assume that (A1) or (A2) hold. Then
BVP (1.1) has at least a positive solution.

Theorem 3.4. Assume that (H1), (H2), (H3) hold and also assume that (A5) or (A6) hold. Then
BVP (1.1) has at least two positive solutions.

Proof of Theorem 3.1. Without loss of generality, we suppose that (A3) hold. Denote

f∗(t, u) =

⎧
⎨

⎩

f(t, u), u ≥ ρ1ϕ(t),

f
(
t, ρ1ϕ(t)

)
, 0 ≤ u < ρ1ϕ(t),

(3.7)

it is easy to check that f∗(t, u) ∈ C([0, 1] × [0,+∞), (0,+∞)).
Now define an operator T : K → C[0, 1] by setting

(Tu)(t) = − 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

[
k∑

i=1

bi

∫1

ξi

ω(s)ds −
s∑

i=k+1

bi

∫1

ξi

ω(s)ds

+
m−2∑

i=s+1

biφ
−1
(

A −
∫ ξi

0
a(s)f∗(s, u(s))ds

)]

−
∫1

t

ω(s)ds,

(3.8)

where

ω(s) = φ−1
(

−
∫s

0
a(r)f∗(τ, u(r))dr +A

)

. (3.9)

By Lemma 2.3, we have T(K) ⊂ K. So by applying Arzela-Ascoli’s theorem, we can obtain
that T(K) is relatively compact. In view of Lebesgue’s dominated convergence theorem, it is
easy to prove that T is continuous. Hence, T : K → K is completely continuous.

Now, we consider the following modified BVP (1.1):

(
φ
(
u′))′ + a(t)f∗(t, u(t)) = 0, 0 < t < 1,

u′(0) =
m−2∑

i=1

aiu
′(ξi

)
, u(1) =

k∑

i=1

biu
(
ξi
) −

s∑

i=k+1

biu
(
ξi
) −

m−2∑

i=s+1

biu
′(ξi

)
.

(3.10)
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Obviously, BVP (3.10) has a solution u(t) if and only if u is a fixed point of the operator T .
From the condition (A3)(2), we have

f
∗ρ1
ϕ(t)ρ1

≤ φ(m), f
∗ρ2
γρ2 ≥ φ(Mγ), f

∗ρ3
ϕ(t)ρ3

≤ φ(m). (3.11)

Next, we will show that i(T,K∗
ρ1 , K) = 1.

In fact, by f
∗ρ1
ϕ(t)ρ1

≤ φ(m), for ∀u ∈ ∂K∗
ρ1 , we have

(Tu)(t) = − 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

×
(

k∑

i=1

bi

∫1

ξi

ω(s)ds −
s∑

i=k+1

bi

∫1

ξi

ω(s)ds +
m−2∑

i=s+1

biφ
−1
(

A −
∫ ξi

0
a(s)f∗(s, u(s))ds

))

−
∫1

t

ω(s)ds

≤ 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

(
k∑

i=1

bi

∫1

0
φ−1

(

(l + 1)
∫1

0
a(r)f∗(r, u(r)

)

dr

)

ds

+
m−2∑

i=s+1

biφ
−1
(

(l + 1)
∫1

0
a(s)f∗(s, u(s))ds

))

+
∫1

0
φ−1

(

(l + 1)
∫1

0
a(r)f∗(r, u(r))dr

)

ds

≤

(
1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi

)
φ−1((l + 1)

∫1
0a(s)ds

)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

φ−1(φ
(
ρ1
)
φ(m)

)

= ρ1 = ‖u‖.
(3.12)

This implies that ‖Tu‖ ≤ ‖u‖ for u ∈ ∂K∗
ρ. By Lemma 2.4(1), we have

i
(
T,K∗

ρ1 , K
)
= 1. (3.13)

Furthermore, we will show that i(T,Kρ2 , K) = 1.
Let e(t) ≡ 1, for t ∈ [0, 1], then e ∈ ∂K1. We claim that

u/= Tu + λe, u ∈ ∂Ωρ2 , λ > 0. (3.14)

In fact, if not, there exist u0 ∈ ∂Ω2 and λ0 > 0 such that u0 = Tu0 + λ0e.
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By (A3) and Lemma 2.1, we have for t ∈ [0, 1],

−
∫ s

0
a(τ)f∗(τ, u(τ))dτ +A ≤ −φ(ρ2

)
φ(Mγ)

(∫ s

0
a(τ)dτ

)

, (3.15)

so that

−ω(s) = φ−1
(

−
∫s

0
a(τ)f∗(τ, u(τ))dτ +A

)

≥ ρ2Mγφ−1
[∫s

0
a(τ)dτ

]

.

(3.16)

Then, we have that

u0(t) = Tu0(t) + λ0e(t)

≥ 1

1 −∑k
i=1 bi +

∑s
i=k+1 bi

k∑

i=1

(

bi

∫1

ξk

(−ω(s))ds −
s∑

i=k+1

bi

∫1

ξk

(−ω(s))ds

)

+ λ0

≥
∑k

i=1 bi −
∑s

i=k+1 bi

1 −∑k
i=1 bi +

∑s
i=k+1 bi

ρ2Mγ

∫1

ξk

φ−1
(∫s

0
a(r)dr

)

ds + λ0

= γρ2 + λ0.

(3.17)

This implies that γρ2 ≥ γρ2 + λ0, this is a contradiction. Hence, by Lemma 2.4(2), it follows
that

i(T,Ωρ2 , K) = 0. (3.18)

Finally, similar to the proof of i(T,K∗
ρ1 , K) = 1, we can show that i(T,K∗

ρ3 , K) = 1.

By Lemma 2.5(a) and ρ1 < γρ2 and ρ2 < ρ3, we have Kρ1 ⊂ Kγρ2 ⊂ Ωρ2 ⊂
Kρ2 ⊂ Kρ3 . It follows from Lemma 2.4(3) that T has three positive fixed points u1, u2, u3 in
K∗

ρ1 ,Ωρ2 \K∗
ρ1 , K

∗
ρ3 , respectively. Therefore, BVP (3.10) has three positive solutions u1, u2, u3

in K∗
ρ1 ,Ωρ2 \K∗

ρ1 , K
∗
ρ3 , respectively.

Then, BVP (3.10) has three positive solutions u1, u2, u3 ∈ [ρ1ϕ(t),∞), which means that
u1, u2, u3 are also the positive solutions of BVP (1.1).

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of Theorem 3.1, and so we
omit it here. The proof of Theorem 3.2 is completed.

Proof of Theorem 3.3. Theorem 3.3 is corollary of Theorem 3.1. The proof of Theorem 3.3 is
completed.
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Proof of Theorem 3.4. We show that condition (A5) implies condition (A3). Let k ∈ (f∞, φ(m)),
then there exists r > ρ such that maxt∈[0,1]f(t, u) ≤ kφ(u), u ∈ [r,∞) since 0 ≤ f∞ < φ(m).
Denote

β = max
{

max
t∈[0,1]

f(t, u) : ρ′ϕ(t) ≤ u ≤ r

}

, ρ3 > max
{

φ−1
(

β

φ(m) − k

)

, ρ

}

. (3.19)

Then we have

max
t∈[0,1]

f(t, u) ≤ kφ(u) + β ≤ kφ
(
ρ3
)
+ β ≤ φ(m)φ

(
ρ3
)
, u ∈ [

ρ′ϕ(t),∞)
. (3.20)

This implies that fρ3
ϕ(t)ρ3

≤ φ(m) and (A3) holds. Similarly condition (A6) implies condition
(A4).

By an argument similar to that Theorem 3.1, we can obtain the result of Theorem 3.4.
The proof of Theorem 3.4 is completed.

4. Examples

Example 4.1. Consider the following five-point boundary value problem with p-Laplacian:

(
φ
(
u′))′ + f(t, u) = 0, 0 < t < 1,

u′(0) =
1
128

u′
(
1
4

)

+
1

256
u′
(
1
2

)

+
1
64

u′
(
3
4

)

,

u(1) =
1
8
u

(
1
4

)

− 1
64

u

(
1
2

)

,

(4.1)

where a1 = 1/128, a2 = 1/256, a3 = 1/64, b1 = 1/8, b2 = 1/64, b3 = 0, ξ1 = 1/4, ξ2 =
1, /2, ξ3 = 3/4:

φ(u) =

⎧
⎨

⎩

−u2, u ≤ 0,

u2, u > 0,

f(t, u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
5
(1 + t)

(

u(t) − ϕ(t)
2

)30

, (t, u) ∈ [0, 1] × (0, 2],

1
5
(1 + t)

(

2 − ϕ(t)
2

)30

, (t, u) ∈ [0, 1] × (2,+∞).

(4.2)
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It is easy to check that f : [0, 1] × [0,+∞) → [0,+∞) is continuous. It follows from a
direct calculation that

m =

⎧
⎨

⎩

(
1 +

∑s
i=k+1 bi +

∑m−2
i=s+1 bi

)
φ−1((l + 1)

∫1
0a(s)ds

)

1 −∑k
i=1 bi +

∑s
i=k+1 bi

⎫
⎬

⎭

−1

= 0.96,

γ =

(∑k
i=1 bi −

∑s
i=k+1 bi

)(
1 − ξk

)

1 −∑k
i=1 biξk +

∑s
i=k+1 biξk

=
21
250

,

M =

{ ∑k
i=1 bi −

∑s
i=k+1 bi

1 −∑k
i=1 bi +

∑s
i=k+1 bi

∫1

ξk

φ−1
(∫s

0
a(r)dr

)

ds

}−1
= 0.76.

(4.3)

Choose ρ1 = 1, ρ2 = 250, it is easy to check that ρ1 < γρ2 and

f(t, u) > 0, t ∈ [0, 1], u ∈ [ϕ(t),+∞),

f
ρ1
ρ1ϕ(t)

= max

{

max
0≤t≤1

(1/5)(1 + t)(u(t) − ϕ(t)/2)30

12

}

=
(1/5)(1 + 1)130

12
=

2
5

< φ(m) = m2 = 0.92, t ∈ [0, 1], u ∈ [
ϕ(t)ρ1, ρ1

]
,

f
ρ2
γρ2 = min

{

min
3/4≤t≤1

(1/5)(1 + t)(2 − ϕ(t)/2)30

2502

}

=
(1/5)(1 + 3/4)(2 − 1/2)30

2502
= 1.0742

> φ(Mγ) = (Mγ)2 = 0.004, t ∈
[
3
4
, 1
]

, u ∈ [
γρ2, ρ2

]
.

(4.4)

It follows that f satisfies the condition (A1) of Theorem 3.3, then problems (1.1) have at least
two positive solutions.

Remark 4.2. Let ϕ(u) = u, the problem is second-order m-point boundary value problem.

Remark 4.3. Let φp(s) = |s|p−2s, p > 1, the problem is boundary value problem with p-
Laplacian operators.

Hence our results generalize boundary value problem with p-Laplacian operators.
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