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1. Introduction

Let S(t) denote the number of members of a population susceptible to a disease, I(t) the
number of infective members, and R(t) the number of members who have been removed
from the possibility of infection through full immunity, a standard SIR compartmental model
is of the form [1]

Ṡ(t) = A − μS(t) − βS(t)I(t),
İ(t) = βS(t)I(t) −

(
μ + γ + ε

)
I(t),

Ṙ(t) = γI(t) − μR(t),
(1.1)

where the parameters A, β, γ, μ, ε are positive constants in which A is the recruitment rate
of susceptible population, μ represents the natural death rate of the population, ε is the
disease-induced death rate of the infectives, and γ is the recovery rate from the infected
compartment. It is assumed further that susceptibles become infectious by contact with
infectious individuals. Later they may recover and join the group of immune (or dead)
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individuals. Based on the previous idea, different types of SIR epidemic models have been
investigated (see, e.g., [2–6]). We note that most of the previous works assume that each
species has the same contact and recovery rates ignoring the effect of stage structure. In the
real world, any species has a process of growth and development, such as from immature
to mature, and growth at various stages of life history showed differences in physiology.
In the recent years, there have been a fair amount of work on epidemiological models with
stage structure (see, e.g., [7–10]). In fact, the spread of disease is related to the species stage
structure. Some diseases, such as measles, mumps, chickenpox and scarlet fever, only spread
or have more opportunities to spread in children, and some other diseases, such as diphtheria,
leptospirosis, a variety of sexually transmitted diseases, may spread in adult. By assuming
that the mature population does not contract the disease and the immature population is
susceptible to the infection in [9], Xiao et al. proposed an SIR disease transmission model
with stage structure and bilinear incidence rate as follows:

ẋ1(t) = a
(
1 − γ

)
y(t) − r1x1(t) − βx1(t)x2(t),

ẋ2(t) = βx1(t)x2(t) − bx2(t) − r2x2(t),

ẋ3(t) = bx2(t) + aγy(t) − aγe−r3τy(t − τ) − r3x3(t),

ẏ(t) = aγe−r3τy(t − τ) − ry2(t),

(1.2)

where x1(t), x2(t), x3(t) denote the densities of the immature population that are susceptible,
infectious population and recovered population with immunity, respectively; y(t) denotes
the density of the mature population which does not contract the disease. The parameters
a, b, β, γ, r1, r2, r3, r are positive constants. a is the birth rate of the immature population.
It is assumed that newborn individuals are the recovered population with immunity with
probability γ (0 < γ < 1) and are susceptible population with probability 1−γ . β is the rate that
the susceptible population become infective, and b is the rate that the infective population
becomes recovered with immunity. r1, r2, r3 are the death rates of the susceptible, infective,
recovered population, respectively, and r1 ≤ r2 is reasonable for biological meaning. r is the
death rate of the mature population. Finally, it is assumed that those immatures born at time
t−τ that survive to time t exit from the immature population and enter the mature population.
Xiao et al. [9] proved that if the basic reproduction number is less than unity, the disease-free
equilibrium of system (1.2) is globally asymptotically stable; if the basic reproduction number
is greater than unity, sufficient conditions were derived for the global stability of an endemic
equilibrium.

Incidence rate plays a very important role in the research of epidemiological models; it
should generally be written as βU(N)S/N, where N is the total population size (see [1]). In
classical epidemic models, bilinear incidence rate βSI and standard incidence rate βSI/N
are frequently used. The bilinear incidence rate is based on the law of mass action. This
contact law is more appropriate for communicable diseases such as influenza., but not for
sexually transmitted diseases. For standard incidence rate, it may be a good approximation
if the number of available partners is large enough and everybody could not make more
contacts than is practically feasible [11]. After a study of the cholera epidemic spread in Bari
in 1973, Capasso and Serio [12] introduced a saturated incidence rate g(I)S into epidemic
models, where g(I) tends to a saturation level when I gets large, that is,

g(I) =
βI

1 + αI
, (1.3)
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where βI measures the force of infection of the disease, and 1/(1+αI) measures the inhibition
effect from the behavioral change of the susceptible individuals when their number increases
or from the crowding effect of the susceptible individuals. This incidence rate seems more
reasonable than the bilinear incidence rate g(I)S = βIS, because it includes the behavioral
change and crowding effect of the infective individuals and prevents the unboundedness of
the contact rate by choosing suitable parameters [13].

Motivated by the work of Capasso and Serio [12] and Xiao et al. [9], in this paper, we
are concerned with the effect of stage structure and saturation incidence on the dynamic of
an SIR epidemic model. To this end, we study the following delayed differential system

ẋ1(t) = a
(
1 − γ

)
y(t) − r1x1(t) −

βx1(t)x2(t)
1 + αx2(t)

,

ẋ2(t) =
βx1(t)x2(t)
1 + αx2(t)

− bx2(t) − r2x2(t),

ẋ3(t) = bx2(t) + aγy(t) − aγe−r3τy(t − τ) − r3x3(t),

ẏ(t) = aγe−r3τy(t − τ) − ry2(t).

(1.4)

The initial conditions for system (1.4) take the form

xi(θ) = φ1(θ), x2(θ) = φ2(θ), x3(θ) = φ3(θ), y(θ) = ψ(θ),

φ1(θ) ≥ 0, φ2(θ) ≥ 0, φ3(θ) ≥ 0, ψ(θ) ≥ 0, θ ∈ [−τ, 0],

φ1(0) > 0, φ2(0) > 0, φ3(0) > 0, ψ(0) > 0,

(1.5)

where

φi, ψ ∈ C
(
[−τ, 0],R4

+0

)
, φi(0) > 0 (i = 1, 2, 3), ψ(0) > 0, (1.6)

here R
4
+0 = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4}.
For continuity of initial conditions, we require

φ3(0) =
∫0

−τ
aγψ(s)er3sds. (1.7)

It is easy to show that all solutions of system (1.4) with initial conditions (1.5) and
(1.7) are defined on [0,+∞) and remain positive for all t ≥ 0.

The organization of this paper is as follows. In the next section, by analyzing the
corresponding characteristic equations, the local stability of each of nonnegative equilibria
of system (1.4) is discussed. In Section 3, we study the global stability of the disease-
free equilibrium and the endemic equilibrium of system (1.4), respectively. Numerical
simulations are carried out in Section 4 to illustrate the main theoretical results. A brief
discussion is given in Section 5 to conclude this work.
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2. Local Stability

In this section, we discuss the local stability of each of nonnegative equilibria of system (1.4)
by analyzing the eigenvalues of the corresponding characteristic equations, respectively.

System (1.4) always has a trivial equilibrium E0(0, 0, 0, 0), and a disease free
equilibrium E1(x0

1, 0, x
0
3, y

0), where

x0
1 =

a2γ
(
1 − γ

)
e−r3τ

rr1
, x0

3 =
a2γ2e−r3τ(1 − e−r3τ)

rr3
, y0 =

aγe−r3τ

r
. (2.1)

The basic reproduction number is given as

R0 =
a2βγ

(
1 − γ

)
e−r3τ

rr1(b + r2)
. (2.2)

It is easy to prove that if R0 > 1, system (1.4) has an endemic equilibrium E∗(x∗1, x
∗
2, x

∗
3, y

∗),
where

x∗1 =
aα

(
1 − γ

)
y∗ + b + r2

αr1 + β
, x∗2 =

aβ
(
1 − γ

)
y∗ − r1(b + r2)

(b + r2)
(
αr1 + β

) ,

x∗3 =
bx∗2 + aγ(1 − e−r3τ)y∗

r3
, y∗ =

aγe−r3τ

r
.

(2.3)

The characteristic equation of system (1.4) at the equilibrium E0(0, 0, 0, 0) is of the form

(λ + r1)(λ + b + r2)(λ + r3)
(
λ − aγe−(λ+r3)τ

)
= 0. (2.4)

Obviously, (2.4) always has three negative real roots λ = −r1, λ = −b2 − r2, and λ = −r3.
Noting that y = λ and y = aγe−τ(λ+r3) must intersect at a positive value of λ, hence, the
equation λ − aγe−(λ+r3)τ = 0 has a positive real root. Accordingly, E0 is unstable.

The characteristic equation of system (1.4) at the equilibrium E1(x0
1, 0, x

0
3, y

0) takes the
form

(λ + r1)(λ + r3)

[

λ −
a2βγ

(
1 − γ

)
e−r3τ − rr1(b + r2)
rr1

][
λ + 2aγe−r3τ − aγe−(λ+r3)τ

]
= 0. (2.5)

Obviously, (2.5) always has three real roots λ1 = −r1 < 0, λ2 = −r3 < 0, and λ3 = [a2βγ(1 −
γ)e−r3τ − rr1(b + r2)]/(rr1). Clearly, if R0 < 1, λ3 < 0. Other roots are given by the roots of
equation

λ + 2aγe−r3τ − aγe−(λ+r3)τ = 0. (2.6)
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Let f(λ) = λ+ 2aγe−r3τ −aγe−(λ+r3)τ . Now, we claim that the roots of f(λ) = 0 have only
negative real parts. Suppose that Reλ ≥ 0, then it follows from (2.6) that

Reλ = αγe−r3τ
[
e−τ Reλ cos(τImλ) − 2

]

≤ −αγe−r3τ < 0,
(2.7)

which leads to a contradiction. Hence, we have Reλ < 0. Therefore, if R0 < 1, the disease-free
equilibrium E1(x0

1, 0, x
0
3, y

0) is locally asymptotically stable. IfR0 > 1, (2.5) has a positive root,
then the disease-free equilibrium E1 is unstable.

The characteristic equation of system (1.4) at the endemic equilibrium E∗(x∗1, x
∗
2, x

∗
3, y

∗)
takes the form

(λ + r3)
(
λ2 + pλ + q

)(
λ + 2aγe−r3τ − aγe−(λ+r3)τ

)
= 0, (2.8)

where

p =
r1 +

[
α(r1 + b + r2) + β

]
x∗2

1 + αx∗2
> 0,

q =
(b + r2)

(
αr1 + β

)
x∗2

1 + αx∗2
> 0.

(2.9)

Clearly, (2.8) always has a negative real root λ = −r3. Noting that p > 0, q > 0, roots of
equation λ2 + pλ + q = 0 have only negative real parts. In addition, from the discussion
above, we see that roots of the (2.6) have only negative real parts. By the general theory
on characteristic equations of delay differential equations from [14], we see that if R0 > 1, the
endemic equilibrium E∗ is locally asymptotically stable.

Based on the discussions above, we have the following result.

Theorem 2.1. For system (1.4), one has the following:

(i) if R0 > 1, the endemic equilibrium E∗(x∗1, x
∗
2, x

∗
3, y

∗) is locally asymptotically stable,

(ii) if R0 < 1, the disease-free equilibrium E1(x0
1, 0, x

0
3, y

0) is locally asymptotically stable.

3. Global Stability

In this section, we discuss the global stability of the disease-free equilibrium and the endemic
equilibrium of system (1.4), respectively. The technique of proofs is to use a comparison
argument and an iteration scheme.

We first consider the subsystem of (1.4)

ẋ1(t) = a
(
1 − γ

)
y(t) − r1x1(t) −

βx1(t)x2(t)
1 + αx2(t)

,

ẋ2(t) =
βx1(t)x2(t)
1 + αx2(t)

− bx2(t) − r2x2(t).

(3.1)
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Letting z(t) = x1(t) + x2(t), x(t) = x2(t), system (3.1) becomes

ż(t) = a
(
1 − γ

)
y(t) − r1z(t) + (r1 − r2 − b)x(t),

ẋ(t) = x(t)
[

βz(t)
1 + αx(t)

−
βx(t)

1 + αx(t)
− (b + r2)x(t)

]
.

(3.2)

The initial conditions for system (3.2) take the form

z(θ) = ϕ1(θ), x(θ) = ϕ2(θ), ϕi(θ) ≥ 0, ϕi(0) > 0, i = 1, 2. (3.3)

Clearly, system (3.2) has a nonnegative equilibriumA1(z0, 0), where z0 = a2γ(1−γ)e−r3τ/(rr1);
when R0 > 1, system (3.2) has a positive equilibrium A∗(z∗, x∗), where

z∗ =
a2γ

(
1 − γ

)
e−r3τ

rr1
+
(r1 − r2 − b)x∗

r1
,

x∗ =
a2βγ

(
1 − γ

)
e−r3τ − rr1(b + r2)

r(b + r2)
(
αr1 + β

) .

(3.4)

Moreover, from Theorem 2.1, we see that A1 is locally asymptotically stable if R0 < 1, and A∗

is locally asymptotically stable if R0 > 1.
To study the global dynamics of system (1.4), we need only to discuss the global

behavior of solutions of system (3.2). In the following, we investigate the global asymptotic
stability of the equilibria A1 and A∗ by using the comparison arguments and the iteration
scheme [15], respectively. To this end, we need the following result developed by Song and
Chen in [16].

Lemma 3.1. Consider the following equation:

ẋ(t) = ax(t − τ) − bx(t) − cx2(t), (3.5)

where a, b, c, τ > 0, x(t) > 0 for t ∈ [−τ, 0]. One has the following:

(i) if a > b, then limt→+∞x(t) = (a − b)/c;
(ii) if a < b, then limt→+∞x(t) = 0.

Lemma 3.2. Let R0 > 1. If αr1 > β, then A∗(z∗, x∗) is globally asymptotically stable.

Proof. Let (z(t), x(t)) be any positive solution of system (3.2) with initial condition (3.3). Let

U1 = lim sup
t→+∞

z(t), V1 = lim inf
t→+∞

z(t),

U2 = lim sup
t→+∞

x(t), V2 = lim inf
t→+∞

x(t).
(3.6)

Now we claim that U1 = V1 = z∗, U2 = V2 = x∗.
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From Lemma 3.1, it is easy to show that

lim
t→∞

y(t) = y0 = y∗ =
αβe−r3τ

r
. (3.7)

Hence, we know that for ε > 0, there exists a T0 > 0 such that, if t > T0,

y∗ − ε < y(t) < y∗ + ε. (3.8)

We derive from the first equation of system (3.2) that

ż(t) ≤ a
(
1 − γ

)(
y∗ + ε

)
− r1z. (3.9)

By comparison, we have

lim sup
t→+∞

z(t) ≤
a
(
1 − γ

)(
y∗ + ε

)

r1
. (3.10)

Since this is true for arbitrary ε > 0 sufficiently small, it follows that U1 ≤Mz
1 , where

Mz
1 =

a
(
1 − γ

)
y∗

r1
. (3.11)

Hence, for ε > 0 sufficiently small, there is a T1 > T0 such that, if t > T1, z(t) ≤Mz
1 + ε.

For ε > 0 sufficiently small, we derive from the second equation of system (3.2) that,
for t > T1,

ẋ(t) ≤ x(t)
1 + αx(t)

[(
β
(
Mz

1 + ε
)
− (b + r2)

)
−
(
β + α(b + r2)

)
x(t)

]
. (3.12)

Consider the following auxiliary system:

u̇(t) = u(t)
[(
β
(
Mz

1 + ε
)
− (b + r2)

)
−
(
β + α(b + r2)

)
u(t)

]
. (3.13)

By Lemma 3.1 it follows from (3.13) that

lim
t→+∞

u(t) =
β
(
Mz

1 + ε
)
− (b + r2)

β + α(b + r2)
. (3.14)

By comparison, we obtain that

lim sup
t→+∞

x(t) ≤
β
(
Mz

1 + ε
)
− (b + r2)

β + α(b + r2)
. (3.15)
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Since the inequality is true for arbitrary ε > 0 sufficiently small, it follows that U2 ≤ Mx
1 ,

where

Mx
1 =

βMz
1 − (b + r2)

β + α(b + r2)
. (3.16)

Hence, for ε > 0 sufficiently small, there is a T2 > T1 such that, if t > T2, x(t) ≤Mx
1 + ε.

For ε > 0 sufficiently small, we derive from the first equation of system (3.2) that, for
t > T2,

ż(t) ≥ a
(
1 − γ

)(
y∗ − ε

)
− r1z(t) + (r1 − r2 − b)

(
Mx

1 + ε
)
. (3.17)

By comparison and by Lemma 3.1, we have

lim inf
t→+∞

z(t) ≥
a
(
1 − γ

)(
y∗ − ε

)
+ (r1 − r2 − b)

(
Mx

1 + ε
)

r1
. (3.18)

Since the inequality is true for arbitrary ε > 0 sufficiently small, it follows that V1 ≥Nz
1 , where

Nz
1 =

a
(
1 − γ

)
y∗ + (r1 − r2 − b)Mx

1

r1
. (3.19)

Hence, for ε > 0 sufficiently small, there is a T3 > T2 such that, if t > T3, z(t) ≥Nz
1 − ε.

For ε > 0 sufficiently small, we derive from the second equation of system (3.2) that,
for t > T3,

ẋ(t) ≥ x(t)
1 + αx(t)

[(
β
(
Nz

1 − ε
)
− (b + r2)

)
−
(
β + α(b + r2)

)
x(t)

]
. (3.20)

By comparison and by Lemma 3.1, we have

lim inf
t→+∞

x(t) ≥
β
(
Nz

1 − ε
)
− (b + r2)

β + α(b + r2)
. (3.21)

Since the inequality holds for arbitrary ε > 0 sufficiently small, it follows that V2 ≥Nx
1 , where

Nx
1 =

βNz
1 − (b + r2)

β + α(b + r2)
. (3.22)

Therefore, for ε > 0 sufficiently small, there is a T4 > T3 such that if t > T4, x(t) ≥Nx
1 − ε.

For ε > 0 sufficiently small, we derive from the first equation of system (3.2) that, for
t > T4,

ż(t) ≤ a
(
1 − γ

)(
y∗ + ε

)
− r1z(t) + (r1 − r2 − b)

(
Nx

1 − ε
)
. (3.23)
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By comparison and by Lemma 3.1, we have

lim sup
t→+∞

z(t) ≤
a
(
1 − γ

)(
y∗ + ε

)
+ (r1 − r2 − b)

(
Nx

1 − ε
)

r1
. (3.24)

Since the inequality holds for arbitrary ε > 0 sufficiently small, it follows thatU1 ≤Mz
2 , where

Mz
2 =

a
(
1 − γ

)
y∗ + (r1 − r2 − b)Nx

1

r1
. (3.25)

Hence, for ε > 0 sufficiently small, there is a T5 > T4 such that, if t > T5, z(t) ≤Mz
2 + ε.

For ε > 0 sufficiently small, we derive from the second equation of system (3.2) that,
for t > T5,

ẋ(t) ≤ x(t)
1 + αx(t)

[(
β
(
Mz

2 + ε
)
− (b + r2)

)
−
(
β + α(b + r2)

)
x(t)

]
. (3.26)

By comparison and by Lemma 3.1, we have

lim sup
t→+∞

x(t) ≤
β
(
Mz

2 + ε
)
− (b + r2)

β + α(b + r2)
. (3.27)

Since the inequality holds for arbitrary ε > 0 sufficiently small, we conclude that U2 ≤ Mx
2 ,

where

Mx
2 =

βMz
2 − (b + r2)

β + α(b + r2)
. (3.28)

Therefore, for ε > 0 sufficiently small, there is a T6 > T5 such that, if t > T6, x(t) ≤Mx
2 + ε.

For ε > 0 sufficiently small, we derive from the first equation of system (3.2) that, for
t > T6,

ż(t) ≥ a
(
1 − γ

)(
y∗ − ε

)
− r1z(t) + (r1 − r2 − b)

(
Mx

2 + ε
)
. (3.29)

By comparison and by Lemma 3.1 it follows that

lim inf
t→+∞

z(t) ≥
a
(
1 − γ

)(
y∗ − ε

)
+ (r1 − r2 − b)

(
Mx

2 + ε
)

r1
. (3.30)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude that V1 ≥Nz
2 , where

Nz
2 =

a
(
1 − γ

)
y∗ + (r1 − r2 − b)Mx

2

r1
. (3.31)

Hence, for ε > 0 sufficiently small, there is a T7 > T6 such that, if t > T7, z(t) ≥Nz
2 − ε.
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For ε > 0 sufficiently small, we derive from the second equation of system (3.2) that,
for t > T7,

ẋ(t) ≥ x(t)
1 + αx(t)

[(
β
(
Nz

2 − ε
)
− (b + r2)

)
−
(
β + α(b + r2)

)
x(t)

]
. (3.32)

By comparison and by Lemma 3.1 it follows that

lim inf
t→+∞

x(t) ≥
β
(
Nz

2 − ε
)
− (b + r2)

β + α(b + r2)
. (3.33)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude that V2 ≥Nx
2 , where

Nx
2 =

βNz
2 − (b + r2)

β + α(b + r2)
. (3.34)

Hence, for ε > 0 sufficiently small, there is a T8 > T7 such that, if t > T8, x(t) ≥Nx
2 − ε.

Continuing this process, we derive four sequences Mz
n,M

x
n,N

z
n,N

x
n (n = 1, 2, . . .) such

that for n ≥ 2,

Mz
n =

a
(
1 − γ

)
y∗ + (r1 − r2 − b)Nx

n−1

r1
,

Nz
n =

a
(
1 − γ

)
y∗ + (r1 − r2 − b)Mx

n

r1
,

Mx
n =

βMz
n − (b + r2)

β + α(b + r2)
,

Nx
n =

βNz
n − (b + r2)

β + α(b + r2)
.

(3.35)

Clearly, we have

Nx
n ≤ V2 ≤ U2 ≤Mx

n, Nz
n ≤ V1 ≤ U1 ≤Mz

n. (3.36)

It follows from (3.36) that

Mx
n+1 =

aβ
(
1 − γ

)
y∗ − r1(b + r2)

r1
[
β + α(b + r2)

]

[

1 +
β(r1 − r2 − b)

r1
(
β + α(b + r2)

)

]

+
β2(r1 − r2 − b)2

r2
1

[
β + α(b + r2)

]2
Mx

n.

(3.37)
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Noting that Mx
n ≥ x∗ and αr1 > β, we derive from (3.37) that

Mx
n+1 −M

x
n =

aβ
(
1 − γ

)
y∗ − r1(b + r2)

r1
[
β + α(b + r2)

]

[

1 +
β(r1 − r2 − b)

r1
(
β + α(b + r2)

)

]

+

[
β2(r1 − r2 − b)2

r2
1

[
β + α(b + r2)

]2
− 1

]

Mx
n

≤
aβ

(
1 − γ

)
y∗ − r1(b + r2)

r1
[
β + α(b + r2)

]

[

1 +
β(r1 − r2 − b)

r1
(
β + α(b + r2)

)

]

+

[
β2(r1 − r2 − b)2

r2
1

[
β + α(b + r2)

]2
− 1

]

x∗

= 0.

(3.38)

Hence, the sequence Mx
n is monotonically nonincreasing. Therefore, limn→+∞M

x
n exists.

Taking n → +∞, it follows from (3.37) that

lim
n→+∞

Mx
n =

a2βγ
(
1 − γ

)
e−r3τ − rr1(b + r2)

r(b + r2)
(
r1α + β

) = x∗. (3.39)

We therefore obtain from (3.35) and (3.39) that

lim
n→+∞

Nx
n = x∗, lim

n→+∞
Mz

n = z∗, lim
n→+∞

Nz
n = z∗. (3.40)

It follows from (3.36), (3.39), and (3.40) that

U1 = V1 = z∗, U2 = V2 = x∗. (3.41)

We therefore have

lim
t→+∞

z(t) = z∗, lim
t→+∞

x(t) = x∗. (3.42)

Noting that if R0 > 1 and αr1 > β hold, the positive equilibrium A∗ is locally asymptotically
stable, we conclude that A∗ is globally asymptotically stable. The proof is complete.

Theorem 3.3. If R0 > 1 and αr1 > β hold, then the endemic equilibrium E∗(x∗1, x
∗
2, x

∗
3, y

∗) of system
(1.4) is globally asymptotically stable; that is, the disease remains endemic.

Proof. From (3.7), we know that limt→+∞ y(t) = y∗ = y0 = aγe−r3τ/r. According to the results
of Lemma 3.2, we prove that

lim
t→+∞

x1(t) = x∗1, lim
t→+∞

x2(t) = x∗2. (3.43)
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In the following, we show the existence of limt→+∞ x3(t).
By Lemma 3.2, it follows from (3.43) that for ε > 0 sufficiently small, there exists a

T > 0, such that, if t > T ,

y∗ − ε < y(t) < y∗ + ε, x∗1 − ε < x1(t) < x∗1 + ε, x∗2 − ε < x2(t) < x∗2 + ε. (3.44)

Therefore, we derive from the third equation of system (1.4) that, for t > T + τ ,

ẋ3(t) ≤ b
(
x∗2 + ε

)
+ aγ

(
y∗ + ε

)
− aγe−r3τ

(
y∗ − ε

)
− r3x3(t). (3.45)

By comparison, we have

lim sup
t→+∞

x3(t) ≤
b
(
x∗2 + ε

)
+ aγ

(
y∗ + ε

)
− aγe−r3τ

(
y∗ − ε

)

r3
. (3.46)

Since the inequality holds for arbitrary ε > 0 sufficiently small, we have lim supt→+∞ x3(t) ≤
Mx3 , where

Mx3 =
bx∗2 + aγ(1 − e−r3τ)y∗

r3
. (3.47)

Hence, for ε > 0 sufficiently small, there is a T1 > T such that, if t > T1,

x3(t) ≤Mx3 + ε. (3.48)

Again, for ε > 0 sufficiently small, it follows from the third equation of system (1.4)
that, for t > T1 + τ ,

ẋ3(t) ≥ b
(
x∗2 − ε

)
+ αγ

(
y∗ − ε

)
− αγe−r3τ

(
y∗ + ε

)
− r3x3(t). (3.49)

By comparison, we have

lim inf
t→+∞

x3(t) ≥
b
(
x∗2 − ε

)
+ aγ

(
y∗ − ε

)
− aγe−r3τ

(
y∗ + ε

)

r3
. (3.50)

Since the inequality holds for arbitrary ε > 0 sufficiently small, we conclude that
lim inft→+∞ x3(t) ≥Nx3 , where

Nx3 =
bx∗2 + aγ(1 − e−r3τ)y∗

r3
. (3.51)

Hence, for ε > 0 sufficiently small, there is a T2 > T1 such that, if t > T2,

x3(t) ≥Nx3 − ε. (3.52)
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It follows from (3.48) and (3.52) that

lim
t→+∞

x3(t) =
bx∗2 + aγ(1 − e−r3τ)y∗

r3
= x∗3. (3.53)

Noting that if R0 > 1 and αr1 > β hold, the endemic equilibrium E∗ is locally asymptotically
stable, we see that E∗ is globally asymptotically stable. This completes the proof.

Theorem 3.4. IfR0 < 1 holds, the disease-free equilibrium E1(x0
1, 0, x

0
3, y

0) of system (1.4) is globally
asymptotically stable; that is, the disease fades out.

Proof. Choose ε > 0 sufficiently small satisfying

β

(
a
(
1 − γ

)
y0

r1
+ ε

)

< b + r2. (3.54)

From (3.7), we know that for ε > 0 sufficiently small, there exists a t0 > 0 such that if t > t0,

y0 − ε < y(t) < y0 + ε. (3.55)

We derive from the first equation of system (3.2) that

ż(t) ≤ a
(
1 − γ

)(
y0 + ε

)
− r1z. (3.56)

By Lemma 3.1 and by a comparison argument, we get

lim sup
t→+∞

z(t) ≤
a
(
1 − γ

)(
y0 + ε

)

r1
. (3.57)

Since this inequality holds for arbitrary ε > 0 sufficiently small, we conclude that

lim sup
t→+∞

z(t) ≤
a
(
1 − γ

)
y0

r1
. (3.58)

Hence, for ε > 0 sufficiently small, there is a t1 > t0 such that, for t > t1,

z(t) ≤
a
(
1 − γ

)
y0

r1
+ ε. (3.59)

For ε > 0 sufficiently small satisfying (3.54), it follows from (3.59) and the second equation of
system (3.2) that

ẋ(t) ≤ x(t)
1 + αx(t)

[

β

(
a
(
1 − γ

)
y0

r1
+ ε

)

− (b + r2) −
(
β + α(b + r2)

)
x(t)

]

. (3.60)
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Noting that (3.54) holds, we conclude that

lim
t→+∞

x(t) = 0. (3.61)

Hence, for ε > 0 sufficiently small satisfying (3.54), there is a t2 > t1 such that, if t > t2, x(t) <
ε.

On the other hand, we derive from the first equation of system (3.2) that, for t > t2,

ż(t) ≥ a
(
1 − γ

)(
y0 − ε

)
− r1z(t) + (r1 − r2 − b)ε. (3.62)

By Lemma 3.1 and by a comparison argument, we have

lim inf
t→+∞

z(t) ≥
a
(
1 − γ

)(
y0 − ε

)
+ (r1 − r2 − b)ε

r1
. (3.63)

Since this inequality is true for arbitrary ε > 0 sufficiently small, we conclude that

lim inf
t→+∞

z(t) ≥
a
(
1 − γ

)
y0

r1
, (3.64)

which, together with (3.58), yields

lim
t→+∞

z(t) =
a
(
1 − γ

)
y0

r1
= z0. (3.65)

According to (3.61) and (3.65), we can easily prove that

lim
t→+∞

x1(t) = x0
1, lim

t→+∞
x2(t) = 0. (3.66)

Using a similar argument as in the proof of Theorem 3.3, we can show that if R0 < 1, then

lim
t→+∞

x3(t) =
aγ(1 − e−r3τ)y0

r3
= x0

3. (3.67)

Noting that if R0 < 1, the disease-free equilibrium E1 is locally stable, we conclude that E1 is
globally asymptotically stable. This completes the proof.

4. Numerical Examples

In this section, we give two examples to illustrate the main theoretical results above.

Example 4.1. In system (1.4), let α = 1, β = 2, γ = 0.5, r1 = 3, r2 = 1, r3 = 0.5, r =
1, a = 6, b = 2, τ = 1. Computation gives the following value for the basic reproduction
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Figure 1: The numerical solution of system (1.4) with α = 1, β = 2, γ = 0.5, r1 = 3, r2 = 1, r3 = 0.5, r =
1, a = 6, b = 2, τ = 1; (φ1, φ2, φ3, ψ) = (15, 3, 4, 10).

number R0 = 2e−1/2 > 1, and system (1.4) has a unique endemic equilibrium E∗((9e−1/2 +
3)/5, (4e−1/2−3)/5, −3e−1+31e−1/2/5−12/5, 3e−1/2). Clearly, αr1−β = 1 > 0. By Theorem 3.3,
we see that the endemic equilibrium E∗ of system (1.4) is globally asymptotically stable.
Numerical simulation illustrates the previous result (see Figure 1).

Example 4.2. In system (1.4), let α = 1, β = 1, γ = 0.5, r1 = 0.5, r2 = 1, r3 = 1, r =
0.5, a = 2, b = 2, τ = 1. Computation gives the following value for the basic reproduction
numberR0 = 4e−1/3 < 1, system (1.4) has only a disease-free equilibrium E1(4e−1, 0, 2e−1(1−
e−1), 2e−1). By Theorem 3.4, we see that the disease-free equilibrium E1 of system (1.4) is
globally asymptotically stable. Numerical simulation illustrates this fact (see Figure 2).

5. Discussion

In this paper, we have discussed the effect of stage structure and saturation incidence rate on
an SIR epidemic model with time delay. The basic reproduction number R0 was found. The
local stability of each of feasible equilibria of system (1.4) was investigated. When the basic
reproduction number is greater than unity, by using the iteration scheme, we have established
sufficient conditions for the global stability of the endemic equilibrium of system (1.4). By
Theorem 3.3, we see that whenR0 > 1 and αr1 > β, the endemic equilibrium is globally stable.
Biologically, these indicate that when the proportionality (infection) constant and /or the
birth rate of the immature population is sufficiently large and the death rates of susceptible
population and the mature population are sufficiently small such thatR0 > 1, then the disease
remains endemic. On the other hand, by Theorem 3.4, we see that, if the basic reproduction
number is less than unity, the disease-free equilibrium is globally asymptotically stable.
Biologically, if the proportionality (infection) constant and /or the birth rate of the immature
population is small enough and the death rates of susceptible population and the mature
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Figure 2: The numerical solution of system (1.4) with α = 1, β = 1, γ = 0.5, r1 = 0.5, r2 = 1, r3 = 1, r =
0.5, a = 2, b = 2, τ = 1; (φ1, φ2, φ3, ψ) = (20, 2, 6, 15).

population are large enough such that R0 < 1, then the disease fades out. We would like to
point out here that Theorem 3.3 has room for improvement, we leave this for future work.
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