Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2011, Article ID 201274, 19 pages
doi:10.1155/2011 /201274

Research Article

Global Properties of Virus Dynamics Models with
Multitarget Cells and Discrete-Time Delays

A. M. Elaiw’? and M. A. Alghamdi’

I Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Eqypt

Correspondence should be addressed to A. M. Elaiw, a_m_elaiw@yahoo.com
Received 8 July 2011; Accepted 16 October 2011
Academic Editor: Yong Zhou

Copyright © 2011 A. M. Elaiw and M. A. Alghamdi. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

We propose a class of virus dynamics models with multitarget cells and multiple intracellular
delays and study their global properties. The first model is a 5-dimensional system of nonlinear
delay differential equations (DDEs) that describes the interaction of the virus with two classes of
target cells. The second model is a (2n + 1)-dimensional system of nonlinear DDEs that describes
the dynamics of the virus, n classes of uninfected target cells, and 7 classes of infected target cells.
The third model generalizes the second one by assuming that the incidence rate of infection is
given by saturation functional response. Two types of discrete time delays are incorporated into
these models to describe (i) the latent period between the time the target cell is contacted by the
virus particle and the time the virus enters the cell, (ii) the latent period between the time the
virus has penetrated into a cell and the time of the emission of infectious (mature) virus particles.
Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected
and infected steady states of these models. We have proven that if the basic reproduction number
Ry is less than unity, then the uninfected steady state is globally asymptotically stable, and if Ry > 1
(or if the infected steady state exists), then the infected steady state is globally asymptotically
stable.

1. Introduction

Nowadays, various types of viruses infect the human body and cause serious and dangerous
diseases. Mathematical modeling and model analysis of virus dynamics have attracted the
interests of mathematicians during the recent years, due to their importance in understanding
the associated characteristics of the virus dynamics and guiding in developing efficient anti-
viral drug therapies. Several mathematical models have been proposed in the literature to
describe the interaction of the virus with the target cells [1]. Some of these models are given
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by a system of nonlinear ordinary differential equations (ODEs). Others are given by a system
of nonlinear delay differential equations (DDEs) to account the intracellular time delays. The
basic virus dynamics model with intracellular discrete time delay has been proposed in [2]
and given by

x(t) =L —dx(t) - px(t)v(t), (1.1)
y(t) =™ Px(t—-T)v(t—-7) —ay(t), (1.2)
o(t) = py(t) - co(t), (1.3)

where x(t), y(t), and v(t) represent the populations of uninfected target cells, infected cells,
and free virus particles at time ¢, respectively. Here, A represents the rate of which new target
cells are generated from sources within the body, d is the death rate constant, and f is the in-
fection rate constant. Equation (1.2) describes the population dynamics of the infected cells
and shows that they die with rate constant a. The virus particles are produced by the in-
fected cells with rate constant p, and are removed from the system with rate constant c. The
parameter T accounts for the time between viral entry into the target cell and the production
of new virus particles. The recruitment of virus-producing cells at time ¢ is given by the num-
ber of cells that were newly infected cells at time ¢ — 7 and are still alive at time f. The pro-
bability of surviving the time period from t — 7 to t is ™7, where m is the constant death rate
of infected cells but not yet virus-producing cells.

A great effort has been made in developing various mathematical models of viral in-
fections with discrete or distributed delays and studying their basic and global properties,
such as positive invariance properties, boundedness of the model solutions and stability anal-
ysis [3-19]. In [20-24], multiple inracellular delays have been incroporated into the virus dy-
namics model. Most of the existing models are based on the assumption that the virus attacks
one class of target cells (e.g., CD4" T cells in case of HIV or hepatic cells in case of HCV and
HBV). Since the interactions of some types of viruses inside the human body is not very clear
and complicated, therefore, the virus may attack more than one class of target cells. Hence,
virus dynamics models describing the interaction of the virus with more than one class of tar-
get cells are needed. In case of HIV infection, Perelson et al. [25] observed that the HIV attack
two classes of target cells, CD4" T cells and macrophages. In [26, 27], an HIV model with two
target cells has been proposed. In very recent works [28-30], we have proposed several HIV
models with two target cells and investigated the global asymptotic stability of their steady
states. In [31], we have proposed a class of virus dynamics models with multitarget cells.
However, the intracellular time delay has been neglected in [26-31].

The purpose of this paper is to propose a class of virus dynamics models with multi-
target cells and establish the global stability of their steady states. The first model considers
the interaction of the virus with two classes of target cells. In the second model, we assume
that the virus attacks 7 classes of target cells. The third model generalizes the second one by
assuming that the infection rate is given by saturation functional response. We incorporate
two types of discrete time delays into these models describing (i) the time between the target
cell is contacted by the virus particle and the contacting virus enters the cell, (ii) the time
between the virus has penetrated into a cell and the emission of infectious (mature) virus
particles. The global stability of these models is established using Lyapunov functionals,
which are similar in nature to those used in [11, 20]. We prove that the global dynamics
of these models are determined by the basic reproduction number Ry. If Ry < 1, then
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the uninfected steady state is globally asymptotically stable (GAS). If Ry > 1 (or if the infected
steady state exists), then the infected steady state is GAS for all time delays.

2. Virus Dynamics Model with Two Target Cells and Delays

In this section, we introduce a mathematical model of virus infection with two classes of
target cells. This model can describe the HIV dynamics with two classes of target cells, CD4*
T cells and macrophages [26, 27]. This model can be considered as an extension of the models
given in [11, 26, 27]:

X1(t) =M —dixi(t) - prxi(H)o(t), (2.1)

nt) =e ™" prx(t - m)o(t - 1) — iy (), (2.2)

X2 (t) = Ay — daxa(t) — Poxa(t)v(t), (2.3)

Y2(t) = e frxa(t - T2)v(t - 72) — azya(t), (2.4)

o(t) = e priya (t - wr) + e paya(t - w2) — co(t), (2.5)

where x; and x; represent the populations of the two classes of uninfected target cells; y;
and y; are the populations of the infected cells. The population of the target cells are described
by (2.1) and (2.3), where 1; and A, represent the rates of which new target cells are generated,
di and d; are the death rate constants, and f; and f, are the infection rate constants. Equations
(2.2) and (2.4) describe the population dynamics of the two classes of infected cells and show
that they die with rate constants a; and a,. The virus particles are produced by the two classes
of infected cells with rate constants p; and p, and are cleared with rate constant c. Here the
parameter 7; accounts for the time between the target cells of class i are contacted by the virus
particle and the contacting virus enters the cells. The recruitment of virus-producing cells at
time t is given by the number of cells that were newly infected cells at times ¢ — 7; and are still
alive at time t. Also, m; is assumed to be a constant death rate for infected target cells, but not
yet virus-producing cells. Thus, the probability of surviving the time period from t — 7; to ¢
is e™%, i = 1,2. The time between the virus has penetrated into a target cell of class i and
the emission of infectious (matures) virus particles is represented by w;. The probability of
survival of an immature virus is given by e i, where #; is constant.

2.1. Initial Conditions
The initial conditions for system (2.1)—(2.5) take the form

x1(0) =¢10),  y1(0) =9200),  x200) =3(0),  y2(0) = a(6),  v(0) = ¢5(0),

i(0) >0, 0¢€[-max{T, n,wi,w},0], i=1,...,5
(2.6)

where (¢1(0),...,¢5(0)) € C([-max{T|, T», w1, w,},0],R3), the Banach space of continuous
functions mapping the interval [-max {7, 7, w1, w>},0] into R3, where R = {(z1,z,...,
z5) : z; 2 0}.
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By the fundamental theory of functional differential equations [32], system (2.1)—(2.5)
has a unique solution (x1(t), y1(t), x2(t), y2(t), v(t)) satisfying the initial conditions (2.6).

2.2. Nonnegativity and Boundedness of Solutions

In the following, we establish the nonnegativity and boundedness of solutions of (2.1)-(2.5)
with initial conditions (2.6).

Proposition 2.1. Let (x1(t), yi(t), x2(t), y2(t), v(t)) be any solution of (2.1)—(2.5) satisfying the
initial conditions (2.6), then x1(t), y1(t), x2(t), y2(t), and v(t) are all nonnegative for t > 0 and
ultimately bounded.

Proof. From (2.1) and (2.3), we have

t t
xi(t) — xi(o)e—fé(dﬁﬂ,-v(@))dg + )LIJ‘ e_I’Y(di+ﬂiv(é))d§d1’l, i=1,2, (27)
0

which indicates that x1 (t) > 0, xo(¢) > 0 for all t > 0. Now from (2.2), (2.4), and (2.5), we have

t
yi(t) = yi(0)e ! + g7 f Bixi(n-1)o(n-)e " dy, i=1,2,
0 (2.8)

t
v(t) = v(0)e™ + f [e™“ pryr (1= w1) + e paya (1 - wa)] e dy,
0

confiming that y;(t) > 0, y»(t) 2 0, v(t) > 0 for all t € [0, max{7i, 7>, w1, w>}]. By a recursive
argument, we obtain y1(t) > 0, y»(t) > 0, v(t) >0 forall t > 0.
To show the boundedness of the solutions, we let X; () = e ™" x1(t—T1—w1) +y1 (t—wn)
and X, (t) = e x(t — T — wy) + Yo (t — wn), then
Xi(t) < he™™™ — a1 X (1), (2.9)
Xa(t) < Aye™™™ — 32 Xs(t),

where 01 = min{d,, a;} and 0, = min{d,, a;}. Hence, limsup, , _ X;(t) < Ly, and limsup, _,
X5(t) < Ly, where Ly = Aie™™"™ /oy and Ly = Ape ™" /0,. On the other hand,

o(t) <eM¥piLy + e py Ly - cv, (2.10)

then limsup, ,  v(t) < L3, where L3 = (e7™“'p1 L1 +e™“?p, L)/ c. It follows that the solution
(x1(t), y1 (1), x2(t), y2(t), v(t)) is ultimately bounded. O

2.3. Steady States

It will be explained in the following that the global behavior of model (2.1)—-(2.5) crucially
depends on the basic reproduction number given by

e—(m1T1+n1w1)P1ﬂl a2x0 + e—(szz+nzwz)p2p2a1x0
Ry = 1 2 , (2.11)
ayjasc
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where x? =A/d; and xg = A, /d>. We observe that Ry can be written as

Ryp =Ry + Ry, (212)

where

—(miT1+n1w1) —(maTy+nywr)
R, = e~ (mimi+muw Plﬁl)‘ll R, = e~ (mam+nw; Pzﬂz)tz (2.13)
[116110 llzdzC

are the basic reproduction numbers of each class of target cell dynamics separately (see [28]).

Following the same line as in [28], we can show that if Ry < 1, then system (2.1)-
(2.5) has only one steady state Ey = (x(l’,O, xg, 0,0) which is called uninfected steady state,
and if Ry > 1, then system (2.1)-(2.5) has two steady states Ey and infected steady state
E1 = (x],v7],%5,y5,0"). The coordinates of the infected steady state are given by

asC .
_—, if g =0,
a1as5 + aras
*
X, =
1 —(1a5 + g3 — ayC) + \/(alzxg, + araz — oc4c)2 + 4o aga5c if a4 %0
I g
2[110(4 ! !
asc .
_—, if a4 =0, (2.14)
a1as + arag .
*
XA =
2 ¢ (mas+amaz —ayc) - \/(a1a5 + a3 — ayc)® + dagagasc i a3 %0
— + I ay
an 20304 ’ ’
0 0 0
. _d g e o %2 1)y ) s G
yl - miT * xl’ yZ - MaT * xZ’ U = * 4
ae x3 are x5 P\ x]
where
—(niwy+miT) —(n2wr+maTs)
e pip e p2p2
ag=———, aOp=—"T""""-"-—"", az = A2,
a as (2.15)

ay = pidor — Pody, as = A1 fo.

2.4. Global Stability

In this section, we prove the global stability of the uninfected and infected steady states of
system (2.1)—(2.5). The strategy of the proof is to use suitable Lyapunov functionals which are
similar in nature to those used in [11, 20]. Next we will use the following notation: z = z(t),
for any z € {x1,11,x2,Y2,v}. We also define a function H : R,g — Ry as

H(z)=z-1-1Inz. (2.16)

It is clear that H(z) > 0 for any z > 0 and H has the global minimum H(1) = 0.
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Theorem 2.2. (i) If Ry <1, then Eg is GAS for any 71, Ty, w1, w; > 0.
(ii) If Ry > 1, then Eq is GAS for any 1, 7>, w1, wy > 0.

Proof. (i) We consider a Lyapunov functional

Wi = Wy + Wiy + Wy, (2.17)
where
Wi =e ™™ x?H(x—(l)> +yn+ y<emmxgH<x—§> + y2> + A gmen v,
x3 Xy P1
Wiy = ™™™ Jj Prx1(t — 0)v(t —0)dO + ye ™™ J‘: Poxo(t — 0)v(t—0)do, (2.18)

Wiz = aq yi(t—0)do +yas y2(t—0)do,
0 0

where y = (p2ai1/p1az)e™ 72, We note that W is defined, continuous, and positive definite
for all (x1, y1, x2, ¥2,v) > 0. Also, the global minimum W; = 0 occurs at the uninfected steady
state Ej.

The time derivatives of Wj; and Wi, are given by

AW x9 _ xJ a
= 1-— )+ + me(1- = )+, )+ —e",
P o Jfrere P AR 2 ple v

AWy J‘T1 d - J‘TZ d
=e ™M | —Bixi(t-0)v(t-0)d0 +ye ™™ | —foxo(t - 0)v(t—0)do
= ™Mn J‘T1 iﬂlxl (t-0)v(t—0)do —ye ™™ J‘Tz iﬂzxz(if - 0)ov(t-0)do
o do o do
=e ™M (1o — Prxa(t—T)o(t—T1)) + ye "7 [faxav — foxo(t — ) 0(t - 2)].
Similarly, dWy3/dt is given by
dw
— = a1y = yi(t - w)) + ya2(v2 - valt - w2)). (220)

It follows that

dWi

50
Tl e ™M (1 - x—1> (M —dix1 = frx1o) + e ™M prxg (t—1)o(t—T1) — a1y
1

xO
+y [e_szz <1 - x—§> (./\2 —dorxy — ﬂzXzU) + e_mZTZﬂQJQ(t -m)o(t—-m) - azyz]

—Mawy

a
+ Lemws [ pry1 (t — wr) + e poya(t — w)) — o]

p1
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+e "M [Prxrv = Py (t = T)o(t = T1)] +ye ™ [faxav — Prxo(t — T2)0(t - )]

+aiy - yi(t - w)] +yaz [y - ya(t - wo)]

0 0
- X1 X - X X2 -
e [2- 2 - vy |2- 2 - 2 ey
0 0 1
X1 X X2 X,

aic
~mMyT) 0., _ niw
+e yPaxyv o ey

0 0 niw
x X 101
= g_mlTl_)Ll[ it ﬂ:l +e ™My, [2 -2 _ ﬂ:l 4 dice (R - 1)v.

x1 o xf X2 x3 2

(2.21)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the first
two terms of (2.21) are less than or equal to zero. Therefore, if Ry < 1, then dW;/dt < 0 for
all x1,x,,v > 0. By Theorem 5.3.1 in [32], the solutions of system (2.1)—(2.5) limit to M, the
largest invariant subset of {dW;/dt = 0}. Clearly, it follows from (2.21) that dW;/dt = 0 if
and only if x; = x?, Xy = xg, v = 0. Noting that M is invariant, for each element of M we have
v =0,9 =0. From (2.5) we drive that

—mwi —Maw>

O=v=e¢e piyi(t—wi) +e Py (t — w»). (2.22)

Since y1(t—60) > 0and y»(t—0) > 0 for all 6 € [0, max{Ti, 7>, w1, w;}], then e ™ pry; (t—w) +
e 21y (- wy) = 0if and only if y1(t —w1) = y2(f —w2) = 0. Hence, dW1/dt = 0 if and only
if x; = x(l), Xy = xg, y1 = Y2 = v = 0. From LaSalle’s invariance principle, Ej is GAS for any
T, Ty, W1, Wy > 0.

(ii) Define a Lyapunov functional as

_ X X1 X W
WZ =e m]T]x H — + H —* +
1 <x1> Yi <y1> Y

() ()
X5

Ql
x| N

T _ _
s Bemrr(2) s emmpaio [ (20 g
p1 v 0 X0
b - - ! t—0
+e_m2TzYﬂ2x§v*I H<W>d9+a1yff a9 : )\ ao
0 xZU 0 y1

2%} t_
+Yay; I H<—y2( - 9) )d@.
0 v

2

(2.23)

Differentiating with respect to time yields

*

dw. x]
dtz =g MmN <1 - —1> (.)Ll - d1x1 - ﬂlxlv) + <1 - £> (e_mmﬁlxl (t - Tl)U(t - T1) - alyl)
X1 n
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Ty

emm (1 _ ﬁ> ()Lz —doxy — ﬂzxzv)
X2
y; —MmMyTy
+<l - £>(8 Prxa(t — m2)v(t - 12) _a2y2)]

ai

pP1

+ —eM <1 - ) (e pry1 (t — w1) + e 2Py (t — wy) — cv)

(4

+emn [ﬂlxﬂ) - pix1(t —m)o(t— 1) + frxjo0" ln(xl(t —m)olt—7) >]

X10

+ye "™ [ﬁzxzv - Poxo(t = ) (t — ) + Poxyv" ln<

vi-yi(t—wi) +yi ln<w>]

+ ary [yz — 1yt - w2) + yZm(%)]

x2(t - 2)v(t — 1) )]

X0

+ ap

x5 Brxi(t—T)o(t -1
= e ™MT <1__1)()L1_d1x1)+emlﬁﬂlxiv—emllelﬁl 1( 1) ( 1) +a1y1<
X1 n
x5 *Boxr(t—T)v(t—T
+y o mm (1 _ _2> ()tz _ dzxZ) + e_szzﬂzx;U — oMM yZﬂZ 2( 2) ( 2)
X2 Y2
vy (t—w o'y (t— w ac ac
+a2y§] - al—yl( ) _ yaz—yZ( 2) _ —emwiy 4 L pmeiy*
v v P1 pP1
t— t— t— t—
+e—m1’r1ﬂ1x1<v* ln<x1( Tl)v( T1)> +Ye—m2"rzﬂ2x;v* 1n<x2( TZ)U( TZ))
X10 X0
I-w t—w
+a1y1‘1n<—yl( 1)) +ya2y;1n<—y2( 2)>.
n Y
(2.24)
Using the infected steady state E; conditions
M = dix] + pixjv", Ay = doxy + Poxyv", aryje™™ = fixjv’,
(2.25)
ay,e™" = frx3vt,  cvt =pie "y + pre Py,
we obtain
aw. b
d_t2 = ™T [dlx{ +aryje™™ - dixg - x—l(dlxI +ary;e™™ - dixy)
1

o) *x1(t—m)o(t -1
+ e_mlTlﬁleU*<_*> _ aly; y1 ( *) *( )
v Y1xj0

+2a1y;

x*
e (dyxty + ary5e™™ — dyxy) — e 2 (dox3 + ary5e™™ — doxy)
2

+Y x
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_ v Yx2(t — m)o(t — 1)
+e Mn x*v*(—) - ay;
Pax; - 2Y Vaxor

+ Zazy;]

Typt-w) *v*yz(t—wz)_@emwlv*<g>
U*

-ay
1Y oy 2V o o
. xl(t—Tl)U(t—Tl)) . <x2(t—7'2)v(t—72))
T ln< X10 " Yazyzln X0
e (Y1t —w1) Yot —wo)
i n(BETE ) ey in (S5
1 1 P (- t-r
=e "MMdx] <2 - JC_1 - %) - (11]/1‘ﬂ - ay) yixil Tl*)v*( )
1ox X1 Y1xj0
vy (- wi) xl(t—Tl)U(t—Tl)yl(t—w1)>
— * ~ JN TS * *1
aiy; vyi +3a1y; + a1y; n< o
M wfn_ X2 x_; _ x* * y2.X'2(t - 1)v(t - 12)
tyle drx; <2 x x2> zyz a2y, oo

v (t—w
—azyz—yi()y* 2 +3ays + a2y ln<
2

X (t = m)v(t — 1)y (t — wo) >]

X20Y»

a _ _
+ _enlwl (6 nlwlply; +e Nowy

* CU*)E
Pl szZ v*'

(2.26)

From (2.25), we see that the last term in (2.26) vanishes. Then, using the following equalities:

ln<x1(t —m)o(t -1y (t - wr) > _ ln<£> . ln<y1(t —*a)l)v*>
X101 X1 ylv

. 1n<]/fx1(t - Tl*)U*(f - 1) >’
¥y1x,0 (2.27)
1n<x2(t - 1)v(t = 1)y (t — w») > _ 1n<x—;> . ln<y2(t —*w2)0*>
X20Y» X2 yz’l)
N ln<y§x2(t - Tz*)v(t -T) >,
yzxzv*
we can rewrite (2.26) as
dW, _ X1 XI < x;)
— miTy 2____ —myTy 2_ _ _~

eyt |H _T (t—wl)v v H yixi(t —m)o(t — 1) (2.28)
y1x30*

~yary [H<—§> yz(t wz)v >+H<y;x2(t—72)v(t—72)>].

Yo x50*
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Since the arithmetical mean is greater than or equal to the geometrical mean, then the first
two terms of (2.28) are less than or equal to zero. It is easy to see that if xJ, y}, x5, y5,0* > 0,
then dW,/dt < 0. By [32, Theorem 5.3.1], the solutions of system (2.1)—(2.5) limit to M,
the largest invariant subset of {dW,/dt = 0}. It can be seen that dW,/dt = 0 if and only if
X1 =xj, X2 =x;, v=0",and H =0, thatis,

yit-w)v*  pt-w)vt  yixt-m)o(t-n)  yxolt-n)olt-n)
yio Y Yy1xjv* Y2 x50

1. (229

If v = v*, then from (2.29), we have y; = y] and y» = 3, and hence dW,/dt equal to zero at
E,. LaSalle’s invariance principle implies global stability of E;. O

3. Basic Virus Dynamics Model with Multitarget Cells and Delays

In this section, we propose a virus dynamics model which describes the interaction of the
virus with n classes of target cells. Two types of discrete-time delays (7;, w;, i =1,...,n) are
incorporated into the model. The model is a generalization of those of one class of target cells
and two classes of target cells models presented, respectively, in [26, 33]. Moreover, it can be
seen that when n = 1 and w; = 0, then the following model leads to the model presented in
[11].

xi:)ti—dl-xi—ﬁixiv, i:l,...,n,

i =e MBix;(t-T))o(t-T)—ay;, i=1,...,n,
Y Pixi(t - Ti)v(t — i) — aiy (3.1)

n
0= Ze*”"“’fpiyi(t - wj) - co,

i=1

where x; and y; represent the populations of the uninfected target cells and infected cells of
class i, respectively, v is the population of the virus particles. All the parameters of the model
have the same biological meaning as given in the previous section.

The initial conditions for system (3.1) take the form

xj(0) =¢;©), j=1,...,n,
yf(e):¢j+n(9)/ j=l,...,n,
v(0) = (P2n+1(9),

(p]-(Q) >0, j=1,...,2n+1, 0 € [-max{T,..., Ty, w1,...,wy},0],

(3.2)

where (¢1(0),92(0), ..., ¢02.:1(0)) € C and C = C([-max{Ty,..., Ty, w1,...,wy,},0],R2") is
the Banach space of continuous functions mapping the interval [-max{7y,..., T, w1,...,
wy},0] into R2*1,

Similar to the previous section, the nonnegativity and the boundedness of the solutions
of system (3.1) can be shown.
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3.1. Steady States

It is clear that system (3.1) has an uninfected steady state Ey = (xJ,...,x%,y,...,49,9%),
where x? =\;/d;, y? =0,i=1,...,n,and v° = 0. The system can also have a positive infected
steady state E1(x],...,x},Y],..., Y5, 0"). The coordinates of the infected steady state, if they
exist, satisfy the equalities:

Ai = dix} + pixjvt, i=1,...,m, (3.3)

ayy; =e"Mpixivt, i=1,...,m, (3.4)
n

CU* = Ze_nWiPi]/;- (35)

i=1
The basic reproduction number of system (3.1) is given by

e~ (MiTi+niwi) B4, 1 .
< > aidic

n n
i=1 i=1

where R; is the basic reproduction number for the dynamics of the interaction of the virus
only with the target cells of class i.

3.2. Global Stability

In the following theorem, the global stability of the uninfected and infected steady states of
system (3.1) will be established.

Theorem 3.1. (i) If Ry <1, then Ey is GAS forany 7;,w; >0,i=1,...,n.
(ii) If Eq exists, then it is GAS for any 7;,w; >0,i=1,...,n.

Proof. (i) Define a Lyapunov functional W; as follows:

. Wi

Wl = ZY’ [@miTix?H<%> + Yi + eimiTiﬁi J‘ l xi(t - G)U(t - 6)d6 + a; yi(t - Q)de]
i=1 i 0 0 (37)

a
+ —e""y,

P1

where y; = (aipi/ aip1)e™ 7. The time derivative of W along the solution of system (3.1)
satisfies

dw, _ c -m;T; x? -y
T _EYII}E (1 Z_>()L, dixi — fixv) + e " Bixi(t — 7)o (t — 1) — Ay

+e™ ™ (Bixiv — Pixi(t — T)o(t — 7)) + ai(yi — yi(t - wz'))]
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+ 2L gmen <Ze"i“’ipiyi(t —w;) - cv>

p1 i1

n . 0 n ,—(MiTitniw;) ,,.03.+-0
_Ze—m,ﬂri},_)k, 2_£_ﬁ +Een1w1 Ze e 'Pz,ﬁzxi “1)o
- [2ag’

i=1 X i p1 i=1 aic

n 0

R x;i X ac

= ey |2 - S oSy B e Ry 1y,

i=1 X X p1

(3.8)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the first
term of (3.8) is less than or equal to zero. Therefore, if Ry < 1, then dW;/dt < 0 for all x;,
yi,v > 0. Similar to the previous section, one can show that the maximal compact invariant set
in {dW;/dt = 0} is the singleton {Ey} when Ry < 1. The global stability of Ej follows from
LaSalle’s invariance principle.

To prove (ii), we consider the Lyapunov functional

= S | o My ﬁ * & —MTi 3. 4% oy E w
Wz—Zy,[e xiH<xf> +yiH<y?<> +e MM BixTo J;) H< pe do

i=1 i i

wi (t—0
+al~y;‘f H L*) ae| + ﬂe"“"%ﬂ‘H(%).
0 Yi p1 v

1

(3.9)

Differentiating with respect to time yields

% =D [e_m"T" <1 - ﬁ) (A = dix; = Pixiv) + ( - £> (e™Tpixi(t — T)o(t - 7) — aiy;)
s x y

i

+e T (Bixiv - Pixi(t — Ti)v(t - 73)) + e T pixiv* lr1<xi(tL —m)o(t - 7) >

X;0

+ai(yi = yi(t - wi)) + aiy; ln<@>]

i

a e ( v*) o
+ 1-— e ""ipiyi(t - w;) —co
o v <le pivi(t - wi) )

* *

L )Ll‘x. .
=D [e‘m"” <)Li —dix; - T’ +dix] + ﬂiva> —e MTixi(t - 7)ot - Ti)i—l +aiy;
i1 i '

At — T — T i t— i
+€_miTiﬂix;~k'U* ln<xl(t Tl)U(t Tl)) + aiy;‘ ln<]/ ( w ) >]

Xi0 Vi

a;ce™“

P1

ajce™“ -

U* n
v - — ) Yiayi(t —w;) +
v;jv yilt =) + =

(3.10)
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Using the infected steady state conditions (3.3)—(3.5), and the following equality:

n1wi nw, N n
aice % ae —N0; « %
P > py; = D iaiy;, (3.11)
i=1 i=1

we obtain
aw, ¢ - - xi =
= Syile ™ ( dix; + €™ agy; - dixi - x—f(chx? +e™Tayt) + dix}
i=1 i

LJYixi(t-m)o(t - 1)

"yi(t - wi
+2ay — apyr ZYLEZ WD)

v 7
i(t—7 —- T i(t— wi
+aiy?1n<x1(t 7;)o(t Tz)> +aiy;1n<y( w))]
X;0 Yi
e . ajce™w
+ e "y Bixt — v
d e xX;ox x; v"yi(t — wi)
= Syilemmaar (2 - 2 2 X J gt gy 2SR
ixi(t =)ot -7 i(t =)ot - 1)yt - w
g i m T)+3aiy;-*+aiy;-“ln<x( 7)o (t - T)yi( w))]
yixiv Xi0Yyi
a e (& . «\ 0
+ e "yt —cvt ) —.
” <§1] piy >U*

(3.12)

From (3.5), we can see that the last term in (3.12) vanishes. Then, by using the following equa-
lity:

At — T — V1 (f — (0 * *0 (F — (0: * (t—T; t—;
m(’“(t 7)ot~ T)yilt wl)>:1n<x_1)+ln<v yl(t*wz)>+1n<y,x( ) T)>,
X;j0Y; Xi vY; Yix; v*

(3.13)
we can rewrite (3.12) as
n x¥ - x¥ * i t— i
dw, - ZYI’ e™Tidixt (225 - ii - aiy; H<—1> +H L*w)
dt P Xi X Xi vYy;
(3.14)

+H<y?x,~(t - Ti)v(t -7 >>]
yix;o*

It is easy to see that if x},y},v* > 0,i = 1,...,n, then dW,/dt < 0 for all (x;, y;,v) > 0 (the
arithmetical mean is greater than or equal to the geometrical mean and H > 0). Clearly,
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the singleton {E;} is the only invariant set in {dW,/dt = 0}. LaSalle’s invariance principle
implies global stability of E;. O

4. Virus Dynamics Model with Saturation Infection Rate

In this section, we proposed a virus dynamics model which describes the interaction of the
virus with 7 classes of target cells taking into account the saturation infection rate and multi-
ple intracellular delays:

%i(f) = A — dixi(t) — % =1,...n,
() =PI TRET ay), i= 1 @)

o(t) = e “Upiyi(t - wp) - co(t),

i=1

where a;, i = 1,...,n are positive constants. The variables and parameters of the model have
the same definitions as given in Section 2. We mention that if n = 1 and w; = 0, then model
(4.1) leads to the model presented in [9], and if n = 2 and w; = w, = 0, a1 = a, = 1, then
model (4.1) leads to the model presented in [34].

4.1. Steady States

It is clear that system (4.1) has an uninfected steady state Ey = (xJ,...,x%,v,...,49,9°),
where x = \;/d;, y? = 0,and v° = 0. The system can also have a positive infected steady state
Ei(x},...,x5,y],..., Yy, 0"). The coordinates of the infected steady state, if they exist, satisfy
the equalities:

. Pixivt
.)Li =d,~xi + 1+(Xi‘(]*, _1,...,71,
* —M; T lx:"v* .
ayi=e" I, =1, (4.2)
i

n
cv' = D" piy;

i=1

The basic reproduction number Ry for system (4.1) is the same as given by (3.6).

4.2. Global Stability

In this section, we study the global stability of the uninfected and infected steady states of
system (4.1).

Theorem 4.1. (i) If Ry <1, then Ey is GAS forany 7;,w; >0,i=1,...,n.
(ii) If Eq exists, then it is GAS for any 7;,w; >0,i=1,...,n.
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Proof. (i) Define a Lyapunov functional W; as follows:

L T x;(t—0)o(t-0 wi
W, = ZYI' m,-r,xOH +tyi+e miTiﬂif le( )U( 5 )de +a; yi(t_ 9)619
— xi o l+ao(t-0) 0 (4.3)
aje™m .
p
The time derivative of W; along the trajectories of (4.1) satisfies
n 0 oy it — Vot — T
Z e 1-— <)Li —dix; - —ﬁlxlv > + e M prxilt ~m)olt - ) = aiYi
- X 1+a0 1+av(t-1)
i ( Bixiv Pixi(t—T)o(t - T)
m;T; — . R . t —_ .
e <1+aiv 1+av(t-1) +ai(yi—yilt-w))
niwi n
+ al; (Ze"""“"'piyi(t - w;) — cv>
i=1
0 0 11w
X X0 1W1
:Zye M) — dx,—)q—'+d1~x?+ Pixi _aice v (4.4)
P X; 1+ a0 p1
= i}"e‘mmx — X x_? _ e v+ arce™ e_(MiTiJrniWi)piﬁix?U
i=1 1 l | x? Xi | p1 | aic(1 + a;v)
_ iye_mﬂ"')v X x_? _ ajce™n . ajce™* z": Riv
< T 2 x P P Sl+aow
1 [ x; V] ajceme alce””‘” Ria;v
= e M2 - - L Ry-1 !
;Yze 12 xl_+ o (Ry-1)v o Zl+a1

It is clear that if Ry < 1, then dW;/dt < 0 for all x;, y;, v > 0, where equality occurs at Eg. The
global stability of Ey follows from LaSalle’s invariance principle.
To prove (ii), we consider the Lyapunov functional:

—m;T; ]/1
W, = i TixiH +v;
=S rmon () e ()

4 omm P f H<x,»<t ~0)v(t-0)(1 + aiv") > " (45)
0

1+ a;0* x;v*(1+a;o(t - 0))

i t niwi
+aiyfj H =y (t-9) cae 1 v*H(%).
0 A p1 4
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Differentiating with respect to time yields

sz _ i —— x;.* ﬂixiv
dt _EYI [e (1 E) <)” dixi 1+aiv>

. <1 _ y_f) (e_miriﬁixi(t -T)o(t-7) ai}ﬁ)

Yi 1+av(t-7)

. e‘"‘"T"< pixiv  Pixi(t - m)v(t - 7)
1+ a0 l+av(t-7)

Traer (e )
yi(t — wi) )]

1

+a;(yi — yi(t - wy)) + aiy} ln<

. De = (1 - v_> (Ze‘""“’fpiy,-(t - wj) — cv>
i=1

p1 v

_ iy‘ ot (o~ dis )Lix:f e dat 4 ﬂix;‘v ) B e‘miTiﬁix,-(t —-1)o(t—T1;) y_f N a-yf‘
e} ! ! B Xi B 1+ ;o 1+ aiv(t - Tl‘) Yi i

e X v 1n<xi(t - 1)o(t — 1) (1 + a;v) ) +ay! IH<M>]
1+ a0 xiv(l +ao(t - 1)) Yi
njw1 MW gy*x N T
_mee™ | ae" v i (E - wi) + ajce™
p1 pr U3
(4.6)

Using the infected steady state conditions (4.2), and the following equality:

ajce™ ace™? v @meMmM v G L. . U .
p1 p1 p1 i=1 i=1
we obtain

sz S —M;T; * iTi * x; * iTi * * 'U(l +a'v*)
= ;Yi [e T <d,-xi +e"Tayt — dix; — ;’i(dixi +e™Tiayt) + d,-xi) + aiy; v*(1—+z;iv)

LYixi(t—T)o(t— 1) (1 + av”) . LUyt - wi)
- ay; > +2aiy; - Ay —————
yix;o* (1 + ajo(t — 7)) vYy;

. <xi(t_Ti)v(t_Ti)yi(t_wi)(l +“iv)> £ 0
+a;y; In - a;y; —
xoyi(1 + ao(t — 1)) v*
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*

L X; ; x} 1 o*
= ZYI [EWIiTidix;‘ <2 _ ;ll — %) _ aly;‘_l + 3aiy;'k + aly;k(M — v >

— : X; v*(1 + a;v) v*

yixt-m)ot-n)(1+ o) vyt - wi)
Ty (U a(t - ) oy

xi(t =)ot - 1)yt - wi) (1 + a;v)
xvyi(1+ao(t - 1)) >]

t7i

+a;y; ln<

n x* x; x} yixi(t —m)ot - )1 + av*)
— Ne™Tidx*( 2L -2 ) gt +dayt — gyt
i:ZlY’ [e i < X; x:‘> aiYi X; aiYi — 4 yix;v* (1 + ao(t - 1;))

v(l+av*) v 1+av 1+a0 ) LUyt —wi)
_ —ay

+a,-y;*<—1+— — + - -
v*(1+av) v 1+ao* 1+a0* vy,

+a;y’ ln<xi(t - 7)o (t - 73)yi(t — wi) (1 + ajv) )]

xivyi(1+av(t - 7))

(4.8)

Then using the following equalities:

1n<xi(t - 1)t —7)yi(t—wi)(1 +6¥iv)> _ ln<ﬁ> il ? yi(t — wi) . ln< 1+a;v >
xioyi(1 + ajo(t — 1)) X; vy 1+ a;v*

1

N 1n<y;*xi(t —m)o(t—1)(1 + a;v*) >’

yix;.*v*(l +a;o(t - 1))

v(l+aiv’) © N l+av —a;(v — v*)?
v*(1+aw) v l+apr v*(1+av)(1+av)

(4.9)

we obtain

x ity g X, ox . ai(v—v*)°
dar ZYI [e dix; < X x’.“> aiYi v*(1 + a;v*) (1 + a;v)
—av( H x_f +H vyilt—wi) +H l+aw (4.10)
iYi X vy; 1+ a;v* '

yixi(t—m)o(t - 7)1+ a;v*)
+H< yixiv*(1 + ajo(t - 73)) >>]

It is easy to see that if x7, y;,v* >0, i =1,...,n, then dW,/dt <0 for all (x;, y;, v) > 0. Clearly,
the singleton {E;} is the only invariant set in {dW,/dt = 0}. LaSalle’s invariance principle
implies global stability of E;. O
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5. Conclusion

In this paper, we have studied the global properties of a class of virus dynamics models with
multitarget cells and multiple delays. First, we have introduced a model with two classes of
target cells (CD4" T and macrophages in case of HIV). Then, we have proposed a model des-
cribing the interaction of the virus with n classes of target cells. A model with multitarget cells
taking into account the saturation infection rate is also studied. Two types of discrete time de-
lays have been incorporated into these models to take into account (i) the latent period bet-
ween the time the target cell is contacted by the virus particle and the time virus enters the
cell, (ii) the latent period between the time the virus has penetrated into a cell and the time
of the emission of infectious (mature) virus particles. The global stability of the uninfected
and infected steady states has been established by using suitable Lyapunov functionals and
LaSalle invariant principle. We have proven that, if the basic reproduction number R is less
than unity, then the uninfected steady state is GAS and if Ry > 1 (or the infected steady state
exists) then the infected steady state is GAS for all time delays.
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