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We propose a class of virus dynamics models with multitarget cells and multiple intracellular
delays and study their global properties. The first model is a 5-dimensional system of nonlinear
delay differential equations (DDEs) that describes the interaction of the virus with two classes of
target cells. The second model is a (2n + 1)-dimensional system of nonlinear DDEs that describes
the dynamics of the virus, n classes of uninfected target cells, and n classes of infected target cells.
The third model generalizes the second one by assuming that the incidence rate of infection is
given by saturation functional response. Two types of discrete time delays are incorporated into
these models to describe (i) the latent period between the time the target cell is contacted by the
virus particle and the time the virus enters the cell, (ii) the latent period between the time the
virus has penetrated into a cell and the time of the emission of infectious (mature) virus particles.
Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected
and infected steady states of these models. We have proven that if the basic reproduction number
R0 is less than unity, then the uninfected steady state is globally asymptotically stable, and if R0 > 1
(or if the infected steady state exists), then the infected steady state is globally asymptotically
stable.

1. Introduction

Nowadays, various types of viruses infect the human body and cause serious and dangerous
diseases. Mathematical modeling and model analysis of virus dynamics have attracted the
interests of mathematicians during the recent years, due to their importance in understanding
the associated characteristics of the virus dynamics and guiding in developing efficient anti-
viral drug therapies. Several mathematical models have been proposed in the literature to
describe the interaction of the virus with the target cells [1]. Some of these models are given
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by a system of nonlinear ordinary differential equations (ODEs). Others are given by a system
of nonlinear delay differential equations (DDEs) to account the intracellular time delays. The
basic virus dynamics model with intracellular discrete time delay has been proposed in [2]
and given by

ẋ(t) = λ − dx(t) − βx(t)v(t), (1.1)

ẏ(t) = e−mτβx(t − τ)v(t − τ) − ay(t), (1.2)

v̇(t) = py(t) − cv(t), (1.3)

where x(t), y(t), and v(t) represent the populations of uninfected target cells, infected cells,
and free virus particles at time t, respectively. Here, λ represents the rate of which new target
cells are generated from sources within the body, d is the death rate constant, and β is the in-
fection rate constant. Equation (1.2) describes the population dynamics of the infected cells
and shows that they die with rate constant a. The virus particles are produced by the in-
fected cells with rate constant p, and are removed from the system with rate constant c. The
parameter τ accounts for the time between viral entry into the target cell and the production
of new virus particles. The recruitment of virus-producing cells at time t is given by the num-
ber of cells that were newly infected cells at time t − τ and are still alive at time t. The pro-
bability of surviving the time period from t− τ to t is e−mτ , wherem is the constant death rate
of infected cells but not yet virus-producing cells.

A great effort has been made in developing various mathematical models of viral in-
fections with discrete or distributed delays and studying their basic and global properties,
such as positive invariance properties, boundedness of themodel solutions and stability anal-
ysis [3–19]. In [20–24], multiple inracellular delays have been incroporated into the virus dy-
namics model. Most of the existing models are based on the assumption that the virus attacks
one class of target cells (e.g., CD4+ T cells in case of HIV or hepatic cells in case of HCV and
HBV). Since the interactions of some types of viruses inside the human body is not very clear
and complicated, therefore, the virus may attack more than one class of target cells. Hence,
virus dynamics models describing the interaction of the virus with more than one class of tar-
get cells are needed. In case of HIV infection, Perelson et al. [25] observed that the HIV attack
two classes of target cells, CD4+ T cells and macrophages. In [26, 27], an HIV model with two
target cells has been proposed. In very recent works [28–30], we have proposed several HIV
models with two target cells and investigated the global asymptotic stability of their steady
states. In [31], we have proposed a class of virus dynamics models with multitarget cells.
However, the intracellular time delay has been neglected in [26–31].

The purpose of this paper is to propose a class of virus dynamics models with multi-
target cells and establish the global stability of their steady states. The first model considers
the interaction of the virus with two classes of target cells. In the second model, we assume
that the virus attacks n classes of target cells. The third model generalizes the second one by
assuming that the infection rate is given by saturation functional response. We incorporate
two types of discrete time delays into these models describing (i) the time between the target
cell is contacted by the virus particle and the contacting virus enters the cell, (ii) the time
between the virus has penetrated into a cell and the emission of infectious (mature) virus
particles. The global stability of these models is established using Lyapunov functionals,
which are similar in nature to those used in [11, 20]. We prove that the global dynamics
of these models are determined by the basic reproduction number R0. If R0 ≤ 1, then
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the uninfected steady state is globally asymptotically stable (GAS). IfR0 > 1 (or if the infected
steady state exists), then the infected steady state is GAS for all time delays.

2. Virus Dynamics Model with Two Target Cells and Delays

In this section, we introduce a mathematical model of virus infection with two classes of
target cells. This model can describe the HIV dynamics with two classes of target cells, CD4+

T cells and macrophages [26, 27]. This model can be considered as an extension of the models
given in [11, 26, 27]:

ẋ1(t) = λ1 − d1x1(t) − β1x1(t)v(t), (2.1)

ẏ1(t) = e−m1τ1β1x1(t − τ1)v(t − τ1) − a1y1(t), (2.2)

ẋ2(t) = λ2 − d2x2(t) − β2x2(t)v(t), (2.3)

ẏ2(t) = e−m2τ2β2x2(t − τ2)v(t − τ2) − a2y2(t), (2.4)

v̇(t) = e−n1ω1p1y1(t −ω1) + e−n2ω2p2y2(t −ω2) − cv(t), (2.5)

where x1 and x2 represent the populations of the two classes of uninfected target cells; y1

and y2 are the populations of the infected cells. The population of the target cells are described
by (2.1) and (2.3), where λ1 and λ2 represent the rates of which new target cells are generated,
d1 and d2 are the death rate constants, and β1 and β2 are the infection rate constants. Equations
(2.2) and (2.4) describe the population dynamics of the two classes of infected cells and show
that they die with rate constants a1 and a2. The virus particles are produced by the two classes
of infected cells with rate constants p1 and p2 and are cleared with rate constant c. Here the
parameter τi accounts for the time between the target cells of class i are contacted by the virus
particle and the contacting virus enters the cells. The recruitment of virus-producing cells at
time t is given by the number of cells that were newly infected cells at times t− τi and are still
alive at time t. Also,mi is assumed to be a constant death rate for infected target cells, but not
yet virus-producing cells. Thus, the probability of surviving the time period from t − τi to t
is e−miτi , i = 1, 2. The time between the virus has penetrated into a target cell of class i and
the emission of infectious (matures) virus particles is represented by ωi. The probability of
survival of an immature virus is given by e−niωi , where ni is constant.

2.1. Initial Conditions

The initial conditions for system (2.1)–(2.5) take the form

x1(θ) = ϕ1(θ), y1(θ) = ϕ2(θ), x2(θ) = ϕ3(θ), y2(θ) = ϕ4(θ), v(θ) = ϕ5(θ),

ϕi(θ) ≥ 0, θ ∈ [−max{τ1, τ2, ω1, ω2}, 0], i = 1, . . . , 5,
(2.6)

where (ϕ1(θ), . . . , ϕ5(θ)) ∈ C([−max{τ1, τ2, ω1, ω2}, 0],R5
+), the Banach space of continuous

functions mapping the interval [−max{τ1, τ2, ω1, ω2}, 0] into R
5
+, where R

5
+ = {(z1, z2, . . . ,

z5) : zi ≥ 0}.
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By the fundamental theory of functional differential equations [32], system (2.1)–(2.5)
has a unique solution (x1(t), y1(t), x2(t), y2(t), v(t)) satisfying the initial conditions (2.6).

2.2. Nonnegativity and Boundedness of Solutions

In the following, we establish the nonnegativity and boundedness of solutions of (2.1)–(2.5)
with initial conditions (2.6).

Proposition 2.1. Let (x1(t), y1(t), x2(t), y2(t), v(t)) be any solution of (2.1)–(2.5) satisfying the
initial conditions (2.6), then x1(t), y1(t), x2(t), y2(t), and v(t) are all nonnegative for t ≥ 0 and
ultimately bounded.

Proof. From (2.1) and (2.3), we have

xi(t) = xi(0)e−
∫ t
0(di+βiv(ξ))dξ + λi

∫ t

0
e−
∫ t
η(di+βiv(ξ))dξdη, i = 1, 2, (2.7)

which indicates that x1(t) ≥ 0, x2(t) ≥ 0 for all t ≥ 0. Now from (2.2), (2.4), and (2.5), we have

yi(t) = yi(0)e−ait + e−miτi

∫ t

0
βixi

(
η − τi

)
v
(
η − τi

)
e−ai(t−η)dη, i = 1, 2,

v(t) = v(0)e−ct +
∫ t

0

[
e−n1ω1p1y1

(
η −ω1

)
+ e−n2ω2p2y2

(
η −ω2

)]
e−c(t−η)dη,

(2.8)

confiming that y1(t) ≥ 0, y2(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0,max{τ1, τ2, ω1, ω2}]. By a recursive
argument, we obtain y1(t) ≥ 0, y2(t) ≥ 0, v(t) ≥ 0 for all t ≥ 0.

To show the boundedness of the solutions, we letX1(t) = e−m1τ1x1(t−τ1−ω1)+y1(t−ω1)
and X2(t) = e−m2τ2x2(t − τ2 −ω2) + y2(t −ω2), then

Ẋ1(t) ≤ λ1e
−m1τ1 − σ1X1(t),

Ẋ2(t) ≤ λ2e
−m2τ2 − σ2X2(t),

(2.9)

where σ1 = min{d1, a1} and σ2 = min{d2, a2}. Hence, lim supt→∞ X1(t) ≤ L1, and lim supt→∞
X2(t) ≤ L2, where L1 = λ1e

−m1τ1/σ1 and L2 = λ2e
−m2τ2/σ2. On the other hand,

v̇(t) ≤ e−n1ω1p1L1 + e−n2ω2p2L2 − cv, (2.10)

then lim supt→∞ v(t) ≤ L3, where L3 = (e−n1ω1p1L1 +e−n2ω2p2L2)/c. It follows that the solution
(x1(t), y1(t), x2(t), y2(t), v(t)) is ultimately bounded.

2.3. Steady States

It will be explained in the following that the global behavior of model (2.1)–(2.5) crucially
depends on the basic reproduction number given by

R0 =
e−(m1τ1+n1ω1)p1β1a2x

0
1 + e−(m2τ2+n2ω2)p2β2a1x

0
2

a1a2c
, (2.11)
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where x0
1 = λ1/d1 and x0

2 = λ2/d2. We observe that R0 can be written as

R0 = R1 + R2, (2.12)

where

R1 =
e−(m1τ1+n1ω1)p1β1λ1

a1d1c
, R2 =

e−(m2τ2+n2ω2)p2β2λ2
a2d2c

(2.13)

are the basic reproduction numbers of each class of target cell dynamics separately (see [28]).
Following the same line as in [28], we can show that if R0 ≤ 1, then system (2.1)–

(2.5) has only one steady state E0 = (x0
1, 0, x

0
2, 0, 0) which is called uninfected steady state,

and if R0 > 1, then system (2.1)–(2.5) has two steady states E0 and infected steady state
E1 = (x∗

1, y
∗
1, x

∗
2, y

∗
2, v

∗). The coordinates of the infected steady state are given by

x∗
1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α5c

α1α5 + α2α3
, if α4 = 0,

−(α1α5 + α2α3 − α4c) +
√
(α1α5 + α2α3 − α4c)2 + 4α1α4α5c

2α1α4
, if α4 /= 0,

x∗
2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α3c

α1α5 + α2α3
, if α4 = 0,

c

α2
+
(α1α5 + α2α3 − α4c) −

√
(α1α5 + α2α3 − α4c)2 + 4α1α4α5c

2α2α4
, if α4 /= 0,

y∗
1 =

d1

a1em1τ1

(
x0
1

x∗
1
− 1

)

x∗
1, y∗

2 =
d2

a2em2τ2

(
x0
2

x∗
2
− 1

)

x∗
2, v∗ =

d1

β1

(
x0
1

x∗
1
− 1

)

,

(2.14)

where

α1 =
e−(n1ω1+m1τ1)p1β1

a1
, α2 =

e−(n2ω2+m2τ2)p2β2
a2

, α3 = λ2β1,

α4 = β1d2 − β2d1, α5 = λ1β2.

(2.15)

2.4. Global Stability

In this section, we prove the global stability of the uninfected and infected steady states of
system (2.1)–(2.5). The strategy of the proof is to use suitable Lyapunov functionals which are
similar in nature to those used in [11, 20]. Next we will use the following notation: z = z(t),
for any z ∈ {x1, y1, x2, y2, v}. We also define a function H : R>0 → R≥0 as

H(z) = z − 1 − ln z. (2.16)

It is clear that H(z) ≥ 0 for any z > 0 and H has the global minimum H(1) = 0.
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Theorem 2.2. (i) If R0 ≤ 1, then E0 is GAS for any τ1, τ2, ω1, ω2 ≥ 0.
(ii) If R0 > 1, then E1 is GAS for any τ1, τ2, ω1, ω2 ≥ 0.

Proof. (i)We consider a Lyapunov functional

W1 = W11 +W12 +W13, (2.17)

where

W11 = e−m1τ1x0
1H

(
x1

x0
1

)

+ y1 + γ

(

e−m2τ2x0
2H

(
x2

x0
2

)

+ y2

)

+
a1

p1
en1ω1v,

W12 = e−m1τ1

∫ τ1

0
β1x1(t − θ)v(t − θ)dθ + γe−m2τ2

∫ τ2

0
β2x2(t − θ)v(t − θ)dθ,

W13 = a1

∫ω1

0
y1(t − θ)dθ + γa2

∫ω2

0
y2(t − θ)dθ,

(2.18)

where γ = (p2a1/p1a2)en1ω1−n2ω2 . We note thatW1 is defined, continuous, and positive definite
for all (x1, y1, x2, y2, v) > 0. Also, the global minimumW1 = 0 occurs at the uninfected steady
state E0.

The time derivatives of W11 andW12 are given by

dW11

dt
= e−m1τ1

(

1 − x0
1

x1

)

ẋ1 + ẏ1 + γ

(

e−m2τ2

(

1 − x0
2

x2

)

ẋ2 + ẏ2

)

+
a1

p1
en1ω1 v̇,

dW12

dt
= e−m1τ1

∫ τ1

0

d

dt
β1x1(t − θ)v(t − θ)dθ + γe−m2τ2

∫ τ2

0

d

dt
β2x2(t − θ)v(t − θ)dθ

= −e−m1τ1

∫ τ1

0

d

dθ
β1x1(t − θ)v(t − θ)dθ − γe−m2τ2

∫ τ2

0

d

dθ
β2x2(t − θ)v(t − θ)dθ

= e−m1τ1
(
β1x1v − β1x1(t − τ1)v(t − τ1)

)
+ γe−m2τ2

[
β2x2v − β2x2(t − τ2)v(t − τ2)

]
.

(2.19)

Similarly, dW13/dt is given by

dW13

dt
= a1

(
y1 − y1(t −ω1)

)
+ γa2

(
y2 − y2(t −ω2)

)
. (2.20)

It follows that

dW1

dt
= e−m1τ1

(

1 − x0
1

x1

)
(
λ1 − d1x1 − β1x1v

)
+ e−m1τ1β1x1(t − τ1)v(t − τ1) − a1y1

+ γ

[

e−m2τ2

(

1 − x0
2

x2

)
(
λ2 − d2x2 − β2x2v

)
+ e−m2τ2β2x2(t − τ2)v(t − τ2) − a2y2

]

+
a1

p1
en1ω1

[
e−n1ω1p1y1(t −ω1) + e−n2ω2p2y2(t −ω2) − cv

]
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+ e−m1τ1
[
β1x1v − β1x1(t − τ1)v(t − τ1)

]
+ γe−m2τ2

[
β2x2v − β2x2(t − τ2)v(t − τ2)

]

+ a1
[
y1 − y1(t −ω1)

]
+ γa2

[
y2 − y2(t −ω2)

]

= e−m1τ1λ1

[

2 − x0
1

x1
− x1

x0
1

]

+ e−m2τ2γλ2

[

2 − x0
2

x2
− x2

x0
2

]

+ e−m1τ1β1x
0
1v

+ e−m2τ2γβ2x
0
2v − a1c

p1
en1ω1v

= e−m1τ1λ1

[

2 − x0
1

x1
− x1

x0
1

]

+ e−m2τ2γλ2

[

2 − x0
2

x2
− x2

x0
2

]

+
a1ce

n1ω1

p1
(R0 − 1)v.

(2.21)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the first
two terms of (2.21) are less than or equal to zero. Therefore, if R0 ≤ 1, then dW1/dt ≤ 0 for
all x1, x2, v > 0. By Theorem 5.3.1 in [32], the solutions of system (2.1)–(2.5) limit to M, the
largest invariant subset of {dW1/dt = 0}. Clearly, it follows from (2.21) that dW1/dt = 0 if
and only if x1 = x0

1, x2 = x0
2, v = 0. Noting thatM is invariant, for each element ofMwe have

v = 0, v̇ = 0. From (2.5)we drive that

0 = v̇ = e−n1ω1p1y1(t −ω1) + e−n2ω2p2y2(t −ω2). (2.22)

Since y1(t−θ) ≥ 0 and y2(t−θ) ≥ 0 for all θ ∈ [0,max{τ1, τ2, ω1, ω2}], then e−n1ω1p1y1(t−ω1)+
e−n2ω2p2y2(t−ω2) = 0 if and only if y1(t−ω1) = y2(t−ω2) = 0. Hence, dW1/dt = 0 if and only
if x1 = x0

1, x2 = x0
2, y1 = y2 = v = 0. From LaSalle’s invariance principle, E0 is GAS for any

τ1, τ2, ω1, ω2 ≥ 0.
(ii) Define a Lyapunov functional as

W2 = e−m1τ1x∗
1H

(
x1

x∗
1

)

+ y∗
1H

(
y1

y∗
1

)

+ γ

[
e−m2τ2x∗

2H

(
x2

x∗
2

)
+ y∗

2H

(
y2

y∗
2

)]

+
a1

p1
en1ω1v∗H

( v

v∗
)
+ e−m1τ1β1x

∗
1v

∗
∫ τ1

0
H

(
x1(t − θ)v(t − θ)

x∗
1v

∗

)

dθ

+ e−m2τ2γβ2x
∗
2v

∗
∫ τ2

0
H

(
x2(t − θ)v(t − θ)

x∗
2v

∗

)
dθ + a1y

∗
1

∫ω1

0
H

(
y1(t − θ)

y∗
1

)

dθ

+ γa2y
∗
2

∫ω2

0
H

(
y2(t − θ)

y∗
2

)
dθ.

(2.23)

Differentiating with respect to time yields

dW2

dt
= e−m1τ1

(
1 − x∗

1

x1

)
(
λ1 − d1x1 − β1x1v

)
+
(
1 − y∗

1

y1

)
(
e−m1τ1β1x1(t − τ1)v(t − τ1) − a1y1

)
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+ γ

[
e−m2τ2

(
1 − x∗

2

x2

)
(
λ2 − d2x2 − β2x2v

)

+
(
1 − y∗

2

y2

)
(
e−m2τ2β2x2(t − τ2)v(t − τ2) − a2y2

)
]

+
a1

p1
en1ω1

(
1 − v∗

v

)
(
e−n1ω1p1y1(t −ω1) + e−n2ω2p2y2(t −ω2) − cv

)

+ e−m1τ1

[
β1x1v − β1x1(t − τ1)v(t − τ1) + β1x

∗
1v

∗ ln
(
x1(t − τ1)v(t − τ1)

x1v

)]

+ γe−m2τ2

[
β2x2v − β2x2(t − τ2)v(t − τ2) + β2x

∗
2v

∗ ln
(
x2(t − τ2)v(t − τ2)

x2v

)]

+ a1

[
y1 − y1(t −ω1) + y∗

1 ln
(
y1(t −ω1)

y1

)]

+ a2γ

[
y2 − y2(t −ω2) + y∗

2 ln
(
y2(t −ω2)

y2

)]

= e−m1τ1

(
1 − x∗

1

x1

)
(λ1 − d1x1) + e−m1τ1β1x

∗
1v − e−m1τ1

y∗
1β1x1(t − τ1)v(t − τ1)

y1
+ a1y

∗
1

+ γ

[
e−m2τ2

(
1 − x∗

2

x2

)
(λ2 − d2x2) + e−m2τ2β2x

∗
2v − e−m2τ2

y∗
2β2x2(t − τ2)v(t − τ2)

y2

+a2y
∗
2

]
− a1

v∗y1(t −ω1)
v

− γa2
v∗y2(t −ω2)

v
− a1c

p1
en1ω1v +

a1c

p1
en1ω1v∗

+ e−m1τ1β1x
∗
1v

∗ ln
(
x1(t − τ1)v(t − τ1)

x1v

)
+ γe−m2τ2β2x

∗
2v

∗ ln
(
x2(t − τ2)v(t − τ2)

x2v

)

+ a1y
∗
1 ln
(
y1(t −ω1)

y1

)
+ γa2y

∗
2 ln
(
y2(t −ω2)

y2

)
.

(2.24)

Using the infected steady state E1 conditions

λ1 = d1x
∗
1 + β1x

∗
1v

∗, λ2 = d2x
∗
2 + β2x

∗
2v

∗, a1y
∗
1e

m1τ1 = β1x
∗
1v

∗,

a2y
∗
2e

m2τ2 = β2x
∗
2v

∗, cv∗ = p1e
−n1ω1y∗

1 + p2e
−n2ω2y∗

2,
(2.25)

we obtain

dW2

dt
= e−m1τ1

[
d1x

∗
1 + a1y

∗
1e

m1τ1 − d1x1 −
x∗
1

x1

(
d1x

∗
1 + a1y

∗
1e

m1τ1 − d1x1
)
]

+ e−m1τ1β1x
∗
1v

∗
( v

v∗
)
− a1y

∗
1

y∗
1x1(t − τ1)v(t − τ1)

y1x
∗
1v

∗ + 2a1y
∗
1

+ γ

[
e−m2τ2

(
d2x

∗
2 + a2y

∗
2e

m2τ2 − d2x2
) − e−m2τ2

x∗
2

x2

(
d2x

∗
2 + a2y

∗
2e

m2τ2 − d2x2
)
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+e−m2τ2β2x
∗
2v

∗
( v

v∗
)
− a2y

∗
2

y∗
2x2(t − τ2)v(t − τ2)

y2x
∗
2v

∗ + 2a2y
∗
2

]

− a1y
∗
1
v∗y1(t −ω1)

vy∗
1

− γa2y
∗
2
v∗y2(t −ω2)

vy∗
2

− a1c

p1
en1ω1v∗

( v

v∗
)

+ a1y
∗
1 ln
(
x1(t − τ1)v(t − τ1)

x1v

)
+ γa2y

∗
2 ln
(
x2(t − τ2)v(t − τ2)

x2v

)

+ a1y
∗
1 ln
(
y1(t −ω1)

y1

)
+ γa2y

∗
2 ln
(
y2(t −ω2)

y2

)

= e−m1τ1d1x
∗
1

(

2 − x1

x∗
1
− x∗

1

x1

)

− a1y
∗
1

x∗
1

x1
− a1y

∗
1

y∗
1x1(t − τ1)v(t − τ1)

y1x
∗
1v

∗

− a1y
∗
1
v∗y1(t −ω1)

vy∗
1

+ 3a1y
∗
1 + a1y

∗
1 ln
(
x1(t − τ1)v(t − τ1)y1(t −ω1)

x1vy1

)

+ γ

[
e−m2τ2d2x

∗
2

(
2 − x2

x∗
2
− x∗

2

x2

)
− a2y

∗
2

x∗
2

x2
− a2y

∗
2

y∗
2x2(t − τ2)v(t − τ2)

y2x
∗
2v

∗

−a2y
∗
2
v∗y2(t −ω2)

vy∗
2

+ 3a2y
∗
2 + a2y

∗
2 ln
(
x2(t − τ2)v(t − τ2)y2(t −ω2)

x2vy2

)]

+
a1

p1
en1ω1

(
e−n1ω1p1y

∗
1 + e−n2ω2p2y

∗
2 − cv∗) v

v∗ .

(2.26)

From (2.25), we see that the last term in (2.26) vanishes. Then, using the following equalities:

ln
(
x1(t − τ1)v(t − τ1)y1(t −ω1)

x1vy1

)
= ln
(
x∗
1

x1

)
+ ln

(
y1(t −ω1)v∗

y∗
1v

)

+ ln

(
y∗
1x1(t − τ1)v(t − τ1)

y1x
∗
1v

∗

)

,

ln
(
x2(t − τ2)v(t − τ2)y2(t −ω2)

x2vy2

)
= ln
(
x∗
2

x2

)
+ ln
(
y2(t −ω2)v∗

y∗
2v

)

+ ln
(
y∗
2x2(t − τ2)v(t − τ2)

y2x
∗
2v

∗

)
,

(2.27)

we can rewrite (2.26) as

dW2

dt
= e−m1τ1d1x

∗
1

(

2 − x1

x∗
1
− x∗

1

x1

)

+ e−m2τ2γd2x
∗
2

(
2 − x2

x∗
2
− x∗

2

x2

)

− a1y
∗
1

[

H

(
x∗
1

x1

)
+H

(
y1(t −ω1)v∗

y∗
1v

)

+H

(
y∗
1x1(t − τ1)v(t − τ1)

y1x
∗
1v

∗

)]

− γa2y
∗
2

[
H

(
x∗
2

x2

)
+H

(
y2(t −ω2)v∗

y∗
2v

)
+H

(
y∗
2x2(t − τ2)v(t − τ2)

y2x
∗
2v

∗

)]
.

(2.28)
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Since the arithmetical mean is greater than or equal to the geometrical mean, then the first
two terms of (2.28) are less than or equal to zero. It is easy to see that if x∗

1, y
∗
1, x

∗
2, y

∗
2, v

∗ > 0,
then dW2/dt ≤ 0. By [32, Theorem 5.3.1], the solutions of system (2.1)–(2.5) limit to M,
the largest invariant subset of {dW2/dt = 0}. It can be seen that dW2/dt = 0 if and only if
x1 = x∗

1, x2 = x∗
2, v = v∗, and H = 0, that is,

y1(t −ω1)v∗

y∗
1v

=
y2(t −ω2)v∗

y∗
2v

=
y∗
1x1(t − τ1)v(t − τ1)

y1x
∗
1v

∗ =
y∗
2x2(t − τ2)v(t − τ2)

y2x
∗
2v

∗ = 1. (2.29)

If v = v∗, then from (2.29), we have y1 = y∗
1 and y2 = y∗

2, and hence dW2/dt equal to zero at
E1. LaSalle’s invariance principle implies global stability of E1.

3. Basic Virus Dynamics Model with Multitarget Cells and Delays

In this section, we propose a virus dynamics model which describes the interaction of the
virus with n classes of target cells. Two types of discrete-time delays (τi, ωi, i = 1, . . . , n) are
incorporated into the model. The model is a generalization of those of one class of target cells
and two classes of target cells models presented, respectively, in [26, 33]. Moreover, it can be
seen that when n = 1 and ω1 = 0, then the following model leads to the model presented in
[11].

ẋi = λi − dixi − βixiv, i = 1, . . . , n,

ẏi = e−miτiβixi(t − τi)v(t − τi) − aiyi, i = 1, . . . , n,

v̇ =
n∑

i=1

e−niωipiyi(t −ωi) − cv,

(3.1)

where xi and yi represent the populations of the uninfected target cells and infected cells of
class i, respectively, v is the population of the virus particles. All the parameters of the model
have the same biological meaning as given in the previous section.

The initial conditions for system (3.1) take the form

xj(θ) = ϕj(θ), j = 1, . . . , n,

yj(θ) = φj+n(θ), j = 1, . . . , n,

v(θ) = ϕ2n+1(θ),

ϕj(θ) ≥ 0, j = 1, . . . , 2n + 1, θ ∈ [−max{τ1, . . . , τn, ω1, . . . , ωn}, 0],

(3.2)

where (ϕ1(θ), ϕ2(θ), . . . , ϕ2n+1(θ)) ∈ C and C = C([−max{τ1, . . . , τn, ω1, . . . , ωn}, 0],R2n+1
+ ) is

the Banach space of continuous functions mapping the interval [−max{τ1, . . . , τn, ω1, . . . ,
ωn}, 0] into R

2n+1
+ .

Similar to the previous section, the nonnegativity and the boundedness of the solutions
of system (3.1) can be shown.
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3.1. Steady States

It is clear that system (3.1) has an uninfected steady state E0 = (x0
1, . . . , x

0
n, y

0
1 , . . . , y

0
n, v

0),
where x0

i = λi/di, y0
i = 0, i = 1, . . . , n, and v0 = 0. The system can also have a positive infected

steady state E1(x∗
1, . . . , x

∗
n, y

∗
1, . . . , y

∗
n, v

∗). The coordinates of the infected steady state, if they
exist, satisfy the equalities:

λi = dix
∗
i + βix

∗
i v

∗, i = 1, . . . , n, (3.3)

aiy
∗
i = e−miτiβix

∗
i v

∗, i = 1, . . . , n, (3.4)

cv∗ =
n∑

i=1

e−niωipiy
∗
i . (3.5)

The basic reproduction number of system (3.1) is given by

R0 =
n∑

i=1

Ri =
n∑

i=1

e−(miτi+niωi)βipiλi
aidic

, (3.6)

where Ri is the basic reproduction number for the dynamics of the interaction of the virus
only with the target cells of class i.

3.2. Global Stability

In the following theorem, the global stability of the uninfected and infected steady states of
system (3.1)will be established.

Theorem 3.1. (i) If R0 ≤ 1, then E0 is GAS for any τi, ωi ≥ 0, i = 1, . . . , n.
(ii) If E1 exists, then it is GAS for any τi, ωi ≥ 0, i = 1, . . . , n.

Proof. (i) Define a Lyapunov functional W1 as follows:

W1 =
n∑

i=1

γi

[

e−miτix0
i H

(
xi

x0
i

)

+ yi + e−miτiβi

∫ τi

0
xi(t − θ)v(t − θ)dθ + ai

∫ωi

0
yi(t − θ)dθ

]

+
a1

p1
en1ω1v,

(3.7)

where γi = (a1pi/aip1)en1ω1−niωi . The time derivative of W1 along the solution of system (3.1)
satisfies

dW1

dt
=

n∑

i=1

γi

[

e−miτi

(

1 − x0
i

xi

)
(
λi − dixi − βixiv

)
+ e−miτiβixi(t − τi)v(t − τi) − aiyi

+e−miτi
(
βixiv − βixi(t − τi)v(t − τi)

)
+ ai

(
yi − yi(t −ωi)

)
]
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+
a1

p1
en1ω1

(
n∑

i=1

e−niωipiyi(t −ωi) − cv

)

=
n∑

i=1

e−miτiγiλi

[

2 − xi

x0
i

− x0
i

xi

]

+
a1c

p1
en1ω1

(
n∑

i=1

e−(miτi+niωi)piβix
0
i

aic
− 1

)

v

=
n∑

i=1

e−miτiγiλi

[

2 − xi

x0
i

− x0
i

xi

]

+
a1c

p1
en1ω1(R0 − 1)v.

(3.8)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the first
term of (3.8) is less than or equal to zero. Therefore, if R0 ≤ 1, then dW1/dt ≤ 0 for all xi,
yi, v > 0. Similar to the previous section, one can show that themaximal compact invariant set
in {dW1/dt = 0} is the singleton {E0} when R0 ≤ 1. The global stability of E0 follows from
LaSalle’s invariance principle.

To prove (ii), we consider the Lyapunov functional

W2 =
n∑

i=1

γi

[

e−miτix∗
i H

(
xi

x∗
i

)

+ y∗
i H

(
yi

y∗
i

)

+ e−miτiβix
∗
i v

∗
∫ τi

0
H

(
xi(t − θ)v(t − θ)

x∗
i v

∗

)

dθ

+aiy
∗
i

∫ωi

0
H

(
yi(t − θ)

y∗
i

)

dθ

]

+
a1

p1
en1ω1v∗H

( v

v∗
)
.

(3.9)

Differentiating with respect to time yields

dW2

dt
=

n∑

i=1

γi

[
e−miτi

(
1 − x∗

i

xi

)
(
λi − dixi − βixiv

)
+
(
1 − y∗

i

yi

)
(
e−miτiβixi(t − τi)v(t − τi) − aiyi

)

+ e−miτi
(
βixiv − βixi(t − τi)v(t − τi)

)
+ e−miτiβix

∗
i v

∗ ln
(
xi(t − τi)v(t − τi)

xiv

)

+ai

(
yi − yi(t −ωi)

)
+ aiy

∗
i ln
(
yi(t −ωi)

yi

)]

+
a1e

n1ω1

p1

(
1 − v∗

v

)( n∑

i=1

e−niωipiyi(t −ωi) − cv

)

=
n∑

i=1

γi

[
e−miτi

(
λi − dixi −

λix
∗
i

xi
+ dix

∗
i + βix

∗
i v

)
− e−miτiβixi(t − τi)v(t − τi)

y∗
i

yi
+ aiy

∗
i

+e−miτiβix
∗
i v

∗ ln
(
xi(t − τi)v(t − τi)

xiv

)
+ aiy

∗
i ln
(
yi(t −ωi)

yi

)]

− a1ce
n1ω1

p1
v − v∗

v

n∑

i=1

γiaiyi(t −ωi) +
a1ce

n1ω1

p1
v∗.

(3.10)
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Using the infected steady state conditions (3.3)–(3.5), and the following equality:

a1ce
n1ω1

p1
v∗ =

a1e
n1ω1

p1

n∑

i=1

e−niωipiy
∗
i =

n∑

i=1

γiaiy
∗
i , (3.11)

we obtain

dW2

dt
=

n∑

i=1

γi

[
e−miτi

(
dix

∗
i + emiτiaiy

∗
i − dixi −

x∗
i

xi

(
dix

∗
i + emiτiaiy

∗
i

)
+ dix

∗
i

)

− aiy
∗
i

y∗
i xi(t − τi)v(t − τi)

yix
∗
i v

∗ + 2aiy
∗
i − aiy

∗
i

v∗yi(t −ωi)
vy∗

i

+aiy
∗
i ln
(
xi(t − τi)v(t − τi)

xiv

)
+ aiy

∗
i ln
(
yi(t −ωi)

yi

)]

+

(
n∑

i=1

e−miτiγiβix
∗
i −

a1ce
n1ω1

p1

)

v

=
n∑

i=1

γi

[

e−miτidix
∗
i

(

2 − x∗
i

xi
− xi

x∗
i

)

− aiy
∗
i

x∗
i

xi
− aiy

∗
i

v∗yi(t −ωi)
vy∗

i

−aiy
∗
i

y∗
i xi(t − τi)v(t − τi)

yix
∗
i v

∗ + 3aiy
∗
i + aiy

∗
i ln
(
xi(t − τi)v(t − τi)yi(t −ωi)

xivyi

)]

+
a1e

n1ω1

p1

(
n∑

i=1

e−niωipiy
∗
i − cv∗

)
v

v∗ .

(3.12)

From (3.5), we can see that the last term in (3.12) vanishes. Then, by using the following equa-
lity:

ln
(
xi(t − τi)v(t − τi)yi(t −ωi)

xivyi

)
= ln
(
x∗
i

xi

)
+ ln

(
v∗yi(t −ωi)

vy∗
i

)

+ ln

(
y∗
i xi(t − τi)v(t − τi)

yix
∗
i v

∗

)

,

(3.13)

we can rewrite (3.12) as

dW2

dt
=

n∑

i=1

γi

[

e−miτidix
∗
i

(

2 − x∗
i

xi
− xi

x∗
i

)

− aiy
∗
i

(

H

(
x∗
i

xi

)
+H

(
v∗yi(t −ωi)

vy∗
i

)

+H

(
y∗
i xi(t − τi)v(t − τi)

yix
∗
i v

∗

))]

.

(3.14)

It is easy to see that if x∗
i , y

∗
i , v

∗ > 0, i = 1, . . . , n, then dW2/dt ≤ 0 for all (xi, yi, v) > 0 (the
arithmetical mean is greater than or equal to the geometrical mean and H ≥ 0). Clearly,
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the singleton {E1} is the only invariant set in {dW2/dt = 0}. LaSalle’s invariance principle
implies global stability of E1.

4. Virus Dynamics Model with Saturation Infection Rate

In this section, we proposed a virus dynamics model which describes the interaction of the
virus with n classes of target cells taking into account the saturation infection rate and multi-
ple intracellular delays:

ẋi(t) = λi − dixi(t) −
βixi(t)v(t)
1 + αiv(t)

, i = 1, . . . , n,

ẏi(t) =
e−mtτiβixi(t − τi)v(t − τi)

1 + αiv(t)
− aiyi(t), i = 1, . . . , n,

v̇(t) =
n∑

i=1

e−niωipiyi(t −ωi) − cv(t),

(4.1)

where αi, i = 1, . . . , n are positive constants. The variables and parameters of the model have
the same definitions as given in Section 2. We mention that if n = 1 and ω1 = 0, then model
(4.1) leads to the model presented in [9], and if n = 2 and ω1 = ω2 = 0, α1 = α2 = 1, then
model (4.1) leads to the model presented in [34].

4.1. Steady States

It is clear that system (4.1) has an uninfected steady state E0 = (x0
1, . . . , x

0
n, y

0
1 , . . . , y

0
n, v

0),
where x0

i = λi/di, y0
i = 0, and v0 = 0. The system can also have a positive infected steady state

E1(x∗
1, . . . , x

∗
n, y

∗
1, . . . , y

∗
n, v

∗). The coordinates of the infected steady state, if they exist, satisfy
the equalities:

λi = dix
∗
i +

βix
∗
i v

∗

1 + αiv∗ , i = 1, ..., n,

aiy
∗
i = e−miτi

βix
∗
i v

∗

1 + αiv∗ , i = 1, ..., n,

cv∗ =
n∑

i=1

e−niωipiy
∗
i .

(4.2)

The basic reproduction number R0 for system (4.1) is the same as given by (3.6).

4.2. Global Stability

In this section, we study the global stability of the uninfected and infected steady states of
system (4.1).

Theorem 4.1. (i) If R0 ≤ 1, then E0 is GAS for any τi, ωi ≥ 0, i = 1, . . . , n.
(ii) If E1 exists, then it is GAS for any τi, ωi ≥ 0, i = 1, . . . , n.
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Proof. (i) Define a Lyapunov functional W1 as follows:

W1 =
n∑

i=1

γi

[

e−miτix0
i H

(
xi

x0
i

)

+ yi + e−miτiβi

∫ τi

0

xi(t − θ)v(t − θ)
1 + αiv(t − θ)

dθ + ai

∫ωi

0
yi(t − θ)dθ

]

+
a1e

n1ω1

p1
v,

(4.3)

The time derivative of W1 along the trajectories of (4.1) satisfies

dW1

dt
=

n∑

i=1

γi

[

e−miτi

(

1 − x0
i

xi

)(
λi − dixi −

βixiv

1 + αiv

)
+ e−miτi

βixi(t − τi)v(t − τi)
1 + αiv(t − τi)

− aiyi

+e−miτi

(
βixiv

1 + αiv
− βixi(t − τi)v(t − τi)

1 + αiv(t − τi)

)
+ ai

(
yi − yi(t −ωi)

)
]

+
a1e

n1ω1

p1

(
n∑

i=1

e−niωipiyi(t −ωi) − cv

)

=
n∑

i=1

γie
−miτi

[

λi − dixi − λi
x0
i

xi
+ dix

0
i +

βix
0
i v

1 + αiv

]

− a1ce
n1ω1

p1
v

=
n∑

i=1

γie
−miτiλi

[

2 − xi

x0
i

− x0
i

xi

]

− a1ce
n1ω1

p1
v +

a1ce
n1ω1

p1

n∑

i=1

e−(miτi+niωi)piβix
0
i v

aic(1 + αiv)

=
n∑

i=1

γie
−miτiλi

[

2 − xi

x0
i

− x0
i

xi

]

− a1ce
n1ω1

p1
v +

a1ce
n1ω1

p1

n∑

i=1

Riv

1 + αiv

=
n∑

i=1

γie
−miτiλi

[

2 − xi

x0
i

− x0
i

xi

]

+
a1ce

n1ω1

p1
(R0 − 1)v − a1ce

n1ω1

p1

n∑

i=1

Riαiv
2

1 + αiv
.

(4.4)

It is clear that if R0 ≤ 1, then dW1/dt ≤ 0 for all xi, yi, v > 0, where equality occurs at E0. The
global stability of E0 follows from LaSalle’s invariance principle.

To prove (ii), we consider the Lyapunov functional:

W2 =
n∑

i=1

γi

[

e−miτix∗
i H

(
xi

x∗
i

)

+ y∗
i H

(
yi

y∗
i

)

+ e−miτi
βix

∗
i v

∗

1 + αiv∗

∫ τi

0
H

(
xi(t − θ)v(t − θ)(1 + αiv

∗)
x∗
i v

∗(1 + αiv(t − θ))

)

dθ

+aiy
∗
i

∫ωi

0
H

(
yi(t − θ)

y∗
i

)

dθ

]

+
a1e

n1ω1

p1
v∗H

( v

v∗
)
.

(4.5)
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Differentiating with respect to time yields

dW2

dt
=

n∑

i=1

γi

[
e−miτi

(
1 − x∗

i

xi

)(
λi − dixi −

βixiv

1 + αiv

)

+
(
1 − y∗

i

yi

)(
e−miτiβixi(t − τi)v(t − τi)

1 + αiv(t − τi)
− aiyi

)

+ e−miτi

(
βixiv

1 + αiv
− βixi(t − τi)v(t − τi)

1 + αiv(t − τi)

+
βix

∗
i v

∗

1 + αiv∗ ln
(
xi(t − τi)v(t − τi)(1 + αiv)

xiv(1 + αiv(t − τi))

))

+ai

(
yi − yi(t −ωi)

)
+ aiy

∗
i ln
(
yi(t −ωi)

yi

)]

+
a1e

n1ω1

p1

(
1 − v∗

v

)( n∑

i=1

e−niωipiyi(t −ωi) − cv

)

=
n∑

i=1

γi

[
e−miτi

(
λi − dixi −

λix
∗
i

xi
+ dix

∗
i +

βix
∗
i v

1 + αiv

)
− e−miτiβixi(t − τi)v(t − τi)

1 + αiv(t − τi)
y∗
i

yi
+ aiy

∗
i

+e−miτi
βix

∗
i v

∗

1 + αiv∗ ln
(
xi(t − τi)v(t − τi)(1 + αiv)

xiv(1 + αiv(t − τi))

)
+ aiy

∗
i ln
(
yi(t −ωi)

yi

)]

− a1ce
n1ω1

p1
v − a1e

n1ω1

p1

v∗

v

n∑

i=1

e−niωipiyi(t −ωi) +
a1ce

n1ω1

p1
v∗.

(4.6)

Using the infected steady state conditions (4.2), and the following equality:

a1ce
n1ω1

p1
v =

a1ce
n1ω1

p1
v∗ v

v∗ =
a1e

n1ω1

p1

v

v∗

n∑

i=1

e−niωipiy
∗
i =

v

v∗

n∑

i=1

γiaiy
∗
i , (4.7)

we obtain

dW2

dt
=

n∑

i=1

γi

[
e−miτi

(
dix

∗
i + emiτiaiy

∗
i − dixi −

x∗
i

xi

(
dix

∗
i + emiτiaiy

∗
i

)
+ dix

∗
i

)
+ aiy

∗
i

v(1 + αiv
∗)

v∗(1 + αiv)

− aiy
∗
i

y∗
i xi(t − τi)v(t − τi)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τi))
+ 2aiy

∗
i − aiy

∗
i

v∗yi(t −ωi)
vy∗

i

+aiy
∗
i ln
(
xi(t − τi)v(t − τi)yi(t −ωi)(1 + αiv)

xivyi(1 + αiv(t − τi))

)
− aiy

∗
i

v

v∗

]
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=
n∑

i=1

γi

[

e−miτidix
∗
i

(

2 − x∗
i

xi
− xi

x∗
i

)

− aiy
∗
i

x∗
i
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∗
i + aiy

∗
i

(
v(1 + αiv

∗)
v∗(1 + αiv)

− v
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)

− aiy
∗
i

y∗
i xi(t − τi)v(t − τi)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τi))
− aiy

∗
i

v∗yi(t −ωi)
vy∗

i

+aiy
∗
i ln
(
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xivyi(1 + αiv(t − τi))

)]

=
n∑

i=1

γi

[
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∗
i

(
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i
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i
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∗
i
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i
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+ 4aiy

∗
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∗
i
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∗
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∗
i

(
−1 + v(1 + αiv

∗)
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− v

v∗ +
1 + αiv

1 + αiv∗ − 1 + αiv
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)
− aiy

∗
i

v∗yi(t −ωi)
vy∗

i

+aiy
∗
i ln
(
xi(t − τi)v(t − τi)yi(t −ωi)(1 + αiv)

xivyi(1 + αiv(t − τi))

)]

.

(4.8)

Then using the following equalities:

ln
(
xi(t − τi)v(t − τi)yi(t −ωi)(1 + αiv)

xivyi(1 + αiv(t − τi))

)
= ln
(
x∗
i

xi

)
+ ln

(
v∗yi(t −ωi)

vy∗
i

)

+ ln
(

1 + αiv

1 + αiv∗

)

+ ln

(
y∗
i xi(t − τi)v(t − τi)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τi))

)

,

−1 + v(1 + αiv
∗)

v∗(1 + αiv)
− v

v∗ +
1 + αiv

1 + αiv∗ =
−αi(v − v∗)2

v∗(1 + αiv∗)(1 + αiv)
,

(4.9)

we obtain

dW2

dt
=

n∑

i=1

γi

[

e−miτidix
∗
i

(

2 − x∗
i

xi
− xi

x∗
i

)

− aiy
∗
i

αi(v − v∗)2

v∗(1 + αiv∗)(1 + αiv)

− aiy
∗
i

(

H

(
x∗
i

xi

)
+H

(
v∗yi(t −ωi)

vy∗
i

)

+H

(
1 + αiv

1 + αiv∗

)

+H

(
y∗
i xi(t − τi)v(t − τi)(1 + αiv

∗)
yix

∗
i v

∗(1 + αiv(t − τi))

))]

.

(4.10)

It is easy to see that if x∗
i , y

∗
i , v

∗ > 0, i = 1, . . . , n, then dW2/dt ≤ 0 for all (xi, yi, v) > 0. Clearly,
the singleton {E1} is the only invariant set in {dW2/dt = 0}. LaSalle’s invariance principle
implies global stability of E1.
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5. Conclusion

In this paper, we have studied the global properties of a class of virus dynamics models with
multitarget cells and multiple delays. First, we have introduced a model with two classes of
target cells (CD4+ T and macrophages in case of HIV). Then, we have proposed a model des-
cribing the interaction of the virus with n classes of target cells. Amodel withmultitarget cells
taking into account the saturation infection rate is also studied. Two types of discrete time de-
lays have been incorporated into these models to take into account (i) the latent period bet-
ween the time the target cell is contacted by the virus particle and the time virus enters the
cell, (ii) the latent period between the time the virus has penetrated into a cell and the time
of the emission of infectious (mature) virus particles. The global stability of the uninfected
and infected steady states has been established by using suitable Lyapunov functionals and
LaSalle invariant principle. We have proven that, if the basic reproduction number R0 is less
than unity, then the uninfected steady state is GAS and if R0 > 1 (or the infected steady state
exists) then the infected steady state is GAS for all time delays.
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